


Ideology of Finite Markov Chain Stochastic Process and Its Application in Several Geological Representative Examples.  	Comment by Reviewer: In Geology, words such as ‘’Concept’’ or ‘’Framework’’ are more appropriate than ‘’Ideology’'. 

Suggestion: ‘’ Conceptual Framework of Finite Markov Chain Stochastic Processes and Their Application to Representative Geological Case Studies’’
	Comment by Reviewer: Wordy – ‘Selected geological case studies’ can be considered.


ABSTRACT
Stratigraphy is a key concept in understanding the depositional domain of a sedimentary unit and its prospects for the exploration of coal and hydrocarbon. Generally, stratigraphy analysis uses a convenient qualitative approach to interpret sedimentary environments and models are reconstructed based on visual description is well received among sedimentological researchers to conduct depositional and lithofacies analysis. The interpretations and environmental models derived from such generally subjective data are therefore wanting. New statistical tools in stratigraphy including semi-quantitative and quantitative models for categorical data analysis were introduced to compliment subjective stratigraphic analysis. The Finite Markov Chain Stochastic Process, a method is based on a comparatively simple statistical theory  that can predict the probability of the next process in a sedimentary cyclic system by knowing the previous process within a succession, is able to provide a more objective interpretation of ordering of lithofacies borehole data. The Finite Markovian statistics of vertical and lateral variability is made possible by Walther’s law, which states that lithologies that overlie one another must have been deposited in adjacent sub-environment. Exceptions to Walther’s law are caused by erosional breaks, but these are absorbed as a noise within the probability model. On the basis of stochastic methods it is observed that the early Permian coal bearing cycles are auto-cyclic in nature. Coal measure cyclothems or fluvial fining-upward cycles around the world are good examples of sedimentary succession laid down under the control of Markovian process. 	Comment by Reviewer: Confusing phrasing – Rewrite the sentence
The present ideology is to highlight the scope of stochastic processes including Finite Markov Chain, Quasi-independence, Markov Reversibility and Marginal homogeneity to, predict and quantify sedimentary cycles or trends for proper correlation within and between oil bearing and coal bearing successions and it’s bearing on exploration of coal and hydrocarbon and their development. The data used in this work comes from the vertical stratigraphic outcrop sections/subsurface borehole logs from the early Permian Gondwana stratigraphy of peninsular India.	Comment by Reviewer: Not a good phrase in scientific writing. It can be modified- ‘’ The study aims to highlight the application of stochastic processes- including Finite Markov Chains, Quasi-independence, ………	Comment by Reviewer: The study objective is vaguely worded and introduced late here. Kindly move it up.	Comment by Reviewer: General comment on Abstract: 
It covers relevant geological applications of the Finite Markov Chain in Stratigraphic modeling.
Key concepts such as Walther’s law, sedimentary cycles etc. were mentioned.
But it lacks structure – combines theory with application.

Note: Rewrite and restructure to reflect these – Background, Objective, Methods, Results and Conclusion in that order.
____________________________________________________________________________________
Key Words: Stochastic Finite Markov Chain, Quasi-independence, Reversibility Markov Chain, Depositional Environment.                                     	Comment by Reviewer: Reversible Markov Chain	Comment by Reviewer: Consider adding a second geological keyword to reflect the application area more directly (Coal-Bearing Sequence, Lithofacies Analysis)


1. INTRODUCTION
Sedimentologists in their field work usually provide records of sedimentary strata as a vertical section of successive lithofacies. The key to the interpretation of the sedimentary record is to study facies association, in particular their vertical and lateral position [1]. Vertical variations of lithofacies within a given sequence play an important role in the recognition of depositional environment and their lateral dispersal. It is of particular importance in the light of the widely accepted law of the correlation of facies as proposed by Walther and elaborated by  [2] and more recently by  [3] According to this law, only those facies can be superimposed which can be observed beside each other at a given time. Importantly, only a gradual transition from one facies to another implies that the two facies represent environments that once were adjacent laterally. Comparison of lithofacies from the study area with standard facies models for different depositional systems is a useful practice and adopted by several researchers. However, reliance on model-driven interpretations often leads to the imposition of perceived order, even when natural  stratigraphic patterns may lack systematic arrangement [4].the balance of data being interpreted against models tempts us to look for some kind of arrangement, even if there is no order [4]. Traditionally, reconstruction of sedimentary environments and models are reconstructed based relies on visual descriptions of facies and these lithologic variables, which are inherently subjective in nature. Consequently, The interpretations and environmental models derived from such generally subjective data are often limited in realibility therefore wanting. New tools in stratigraphy including semi-quantitative and quantitative techniques for data analysis were introduced to complement descriptive stratigraphic analysis. These Techniques such as the finite Markov chain analysis, the time series analysis, power spectral density analysis and Kolmogorov functions introduce bring objectivityely and precision in to analysiszing and interpretationing of stratigraphic models and depositional environments and also to reduce subjective impact on interpretation of the sedimentological record. They also provide multiple working hypotheses to detect and define stratigraphic trends in analyses sequences. Most of these techniques employ Almost all use the probability matrices and are based on the principles employ the idea of F finite Markov chains statistics. This method was developed because of the urgent need to process a better understanding about how the natural process interacts and produces the end product we record on the litho-stratigraphic sections. The Finite markov chains are increasingly considered regarded as almost a standard tools of in sedimentological analysis. but still However, many publications demonstrate inadequate appears, whose authors do not fully understanding of the underlying applied stochastic statistical methods and, thus, their leading to questionable conclusions. are not fully correct. Therefore, this study revisits  it seems reasonable to present once again the the principles and applications of the F finite Markov model applications to the  in analysing s of litho-stratigraphic successions. 	Comment by Reviewer: ‘The interpretation of sedimentary records relies heavily on the study of facies associations, particularly their vertical and lateral relationships’	Comment by Reviewer: Delete	Comment by Reviewer: delete	Comment by Reviewer: delete	Comment by Reviewer: Remove	Comment by Reviewer: delete	Comment by Reviewer: delete	Comment by Reviewer: Delete	Comment by Reviewer: 
The present research havehas two fold(twofold) objectives; 1) one purpose is to provide an explicit treatment of the mathematical foundations on which application of Markov stochastic process in geology based, but not readily available in publications normally used by geologists and 2) the effectiveness of the Markov Chain to predict and quantifies sedimentary cycles while dealing with the geological interpretation of juxtaposition tendencies of facies in vertical stratigraphic successions is evaluated by the interval on borehole data.   The results show that the proposed stochastic methods have good performance and robustness.
2. Nature and Source of data	Comment by Reviewer: This section should not remain as a stand-alone ‘’Section 2’’ after the introduction.

Create a new ‘’ Methodology’’ or ‘’ Materials and Methods’’ section or subsection titled ‘’ Study Area and Lithological Dataset’’ for this content.
The basic requirement for such study is the vertical lithological transition data. The early Permian Gondwana stratigraphy of Peninsular India is selected for data collection because of the availability of borehole logs drilled extensively by the Government and semi-government agencies for coal exploration. The length of borehole logs varies between 100-210 m. This apart, the small (5-10m) measured outcrop sections are also used to supplement the borehole transitions. The transition data used in this study comes from (i) Karharbari Formation, Giridih sub-basin (Koel-Damodar valley), (ii) Karharbari Formation, Talchir sub-basin (Son-Mahanadi valley), (iii) Barakar Formation (Pranhita-Godavari valley), and (iv) Barakar Formation, Saharjuri sub basin (Koel-Damodar valley) of Gondwana Master Basin of Peninsular India.                                              
The Early Permian Gondwana stratigraphy (Karharbari and Barakar formations) of Peninsular India consists of an interbedded sequence of coarse to medium grained sandstone, arenaceous and argillaceous shale, carbonaceous shale and coal with variable proportions in space and time [5]. Compositional studies based on large number of borehole logs, quarry sections and accessible outcrops have shown that the Karharbari Formation abounds in sandstone (≈ 70-80%), with associated shale (≈8-12%) and coal (5-16 %). The overlying Barakar Formation analyzes reduction in bulk sandstone (≈32 - 62%), and increase in shale (≈20-62%) and coal and shaly coal (≈6- 42%). Eight lithofacies are identified in the given succession from the borehole log and outcrop/quarry sections as:(i) very coarse to sandstone, occasionally pebbly (ii) coarse to very coarse sandstone, (iii) medium to coarse sandstone, (iv) fine to medium sandstone, (v) ripple drift laminated fine sandstone, (vi) interbedded fine grained sandstone and argillaceous shale, (vii) arenaceous and argillaceous shale and (viii) interbedded carbonaceous shale, shaly coal, and coal. In order to prevent transition tendencies from being too diffused, the above   lithofacies are condensed to only five lithofacies which are distinctly marked in borehole as well as in outcrop sections. The condensation of lithologies does not affect the overall interpretation of facies modal inasmuch as help to obtain sizeable number of data of lithologic transitions. These five facies are:
· Facies (COSD): coarse to very coarse grained sandstone,	Comment by Reviewer: Kindly justify the rationale for condensing 8 facies into 5?
· Facies (MFSD): medium to coarse grained sandstone,
· Facies (FSD): fine grained to ripple laminated fine sandstone
· Facies (SH): argillaceous shale and interbedded fine sandstone and shale,
· Facies (C): coal and shaly coal	Comment by Reviewer: After subsection ‘’ Study Area and Lithological Dataset’’, Create another for Facies Classification and Condensation Rationale’’ before introducing the Markov Chain modeling procedures.
All these lithofacies have been very well interpreted for depositional processes, wherein coarse grade facies (COSD and MSFD) correspond to in-channel/point bars, fine grade (FSD and SH) to overbank and coal (C) to back swamps of fluvial system [5, 6, 7]. These lithofacies are used to structure separately (1) continuous time and (2) discrete Markov models.	Comment by Reviewer: Inconsistent facies coding ‘’ MSFD’’ or ‘’MFSD’’	Comment by Reviewer: Consider using a table to present the facies, their codes, sediment types, depositional interpretation, and their proportion in formations.

How did you validate the facies interpretation?
3. ANALYTICAL PROCEDURE	Comment by Reviewer: Move this to ‘’Methodology’’.

It contains significant grammatical errors, redundant phrases and poor structure.
Finite Markov chain is a class of probabilistic model created by Andrey Markov that outlines the probability associated with a sequence of events occurring based on the state in the previous event, which means that the event will not be affected by how current situation comes. In simple words the probability that (n+1) th events will be depends only on the (n) th events not the complete sequence of events that came before n. This property is known as Markov Property. It’s a very common and easy to understand due to their versatility have achieved widespread application in the quantitative sciences for modeling stochastic processes.  The main purpose of the Markov Stochastic process is to specify the probability of transitioning from one to another succeeding event. In sedimentary framework, Finite Markov process corresponds to successive pulses of deposition which are random and dependent in their occurrence, so that past deposition will influence present and future deposition. The “memory” of the depositional process may be short or long, and when it extends backward only one step, it is described as first-order Finite Markov process. Recent studies show that Finite Markov process with a one step memory make better models for the analysis of sedimentary successions than models without a memory [8] . The Markov model therefore, assumes that a lithofacies state is influenced by that of the underlying lithofacies. The literature on first- order Finite Markov chain is now rapidly growing and any test cases have been published in the last decade in facies analysis of various types of deposits by [9, 7, and 10] and many more.
[11] Described three models of structuring lithofacies states observed in field as well as in borehole logs for finite Markov chain analysis for simulating sedimentary cycles. These are; 
(i). The regular Markov where stratigraphic intervals are sampled at fixed or regular vertical intervals of equal thickness to generate the data for simulating cycles designated as continuous time Markov chain model (CTMC) and does not emphasize changes in the depositional environment. It correspond to [12] fixed interval Markov chain; 
(ii) The embedded or discrete time Markov chain (DTMC) matrix which emphasize every lithological change and a good method for understanding the evolution of depositional environments and processes. A lithologic state can pass upwards into similar lithology resulting non-zero elements in diagonal of tally count matrix (i.e. Nij ≠0). It correspond to the “embedded Markov chain “of [13] and;
(iii) The multistory Markov matrix which is a variant of the embedded or discrete Markov matrix in which similar lithofacies but with different texture or sedimentary structures are counted for structuring of a tally count matrix for lithological transitions. Since a transition is supposed to occur only when it results in a different lithology, the diagonal elements are all zeros in the resulting tally count matrix (i.e. nij =0). The discrete as well as continuous multistory time Markov model is applied in this study.	Comment by Reviewer: Rewrite as focused and well-organised methodology- with focus on how transition matrices were built, how models were validated and which formations were  analysed under each model type.

Also, in your revision state how lithofacies sequence were extracted, how transitions were counted, how transition probability matrices were computed. Mention software used and criteria for applying CTMC vs DTMC vs multistory models- consider using a table to present the three models
3.1 Continuous Time Markov Chain (CTMC)	Comment by Reviewer: This should also come under ‘’Methodology’’- You may split the sections as follows:

Methodology
   3.1 Overview of Markov Chain Models
   3.2 Continuous Time Markov Chain (CTMC)
        3.2.1 Transition Count Matrix
        3.2.2 Transition Probability Matrix
        3.2.3 Fixed Probability Vector (Equilibrium)
        3.2.4 Cumulative Probability Matrix and Simulation
   3.3 Discrete Time Markov Chain (DTMC) — if discussed later
In the past, various researchers [4, 14, 15], have used the theory of discrete time Markov chain (DTMC) to describe the structure of a sequence of lithologies, whereas very few workers [16, 17, 18] have been carried out for Markov process modeling for stratigraphic simulation using continuous time Markov chain parameters. Markov process with a continuous time (CTMC) parameters are more satisfactory for describing sedimentation than discrete time Markov chain (DTMC) because they treat sedimentation as a natural process that happens continuously (i.e., which is unbroken in time). No doubt they They not only yield not only the same information as a discrete time analysis, but also give information about the distribution of the thicknesses of the lithologies. However, the simulated stratigraphy using continuous time Markov model helps in predicting subsurface deposits specially coal and hydrocarbons [19]. The sole object of such model is to simulate stratigraphy for prediction of associated deposits. Three distinct lithofacies states of sandstone (A), shale (B) and coal (C) from Karharbari Formation of Giridih sub basin are used in this study. The first step in continuous time model is to compute Transition Count Matrix (fij ij), where i and j corresponds to row and column numbers. Trial and error suggested 2.4 m thickness interval, and transitions are counted continuously from lithologic succession. Such matrices provide idea of relative thicknesses of facies, and diagonal of the matrix contains non-zero entries. The other matrix of CTMC is named as Transition Probability Matrix (pij ij). It records the probability of actual vertical transitions, and is computed by dividing each cell value (fij ij) by corresponding row total (n+). These probability values are then converted to Fixed Probability Vector by 19 successive iterations where transition probability in each attains similar non-zero positive values sum to unity. It represents the ‘Equilibrium Stage’ of Markov chain where the cell values corresponds relative percent thickness of each facies [12]. The transition probability matrix (p ij) is used to simulate Karharbari stratigraphy. To begin with, the original probability values are converted to cumulative probability by successive addition of first and second p ij value, and then first, second and third pij elements to obtain second and third pij values of the same row of Cumulative Probability Matrix (Table 1). The cumulative values are used as input to select appropriate transitions by way of random numbers for simulation experiments [16].	Comment by Reviewer: ?	Comment by Reviewer: ?	Comment by Reviewer: As stated earlier, this section is part of methodology and it should emphasis the modeling steps and rationale - what was done, how and why
Table 1. Continuous time Markov chain matrices of Karharbari Formation, Giridih sub-basin.
(A).Transition Count Matrix (fij)	Comment by Reviewer: Not in the text. Work on the Tables and properly label it. 
	    lithofacies
	   Sandstone (A)
	        Shale (B)
	         Coal (C)
	row total (n+i)

	    Sandstone (A)
	         256
	          35
	           07
	298

	    Shale (B)
	           30
	          25
	           09
	64

	    Coal ©
	           12
	          04
	           21
	37

	 (n+j)
	         298
	         64
	           37
	n++ = 399


(B).Transition Probability Matrix (pij)
	       lithofacies
	        Sandstone (A)
	             Shale (B)
	           Coal (C)

	       Sandstone (A)
	           0.859
	             0.118
	           0.022

	       Shale (B)
	           0.462
	             0.400
	           0.138

	       Coal ©
	           0.225
	             0.085
	           0.660


(C).Fixed Probability Matrix after 19 successive steps
	       lithofacies
	        Sandstone (A)
	             Shale (B)
	           Coal (C)

	       sandstone
	           0.727
	             0.159
	           0.113

	       shale
	           0.727
	             0.159
	           0.113

	       coal
	           0.727
	             0.159
	           0.113


(D).Cumulative Probability Matrix
	       lithofacies
	        Sandstone (A)
	             Shale (B)
	           Coal (C)

	       Sandstone (A)
	           0.859
	             0.977
	           1.000

	       Shale (B)
	           0.859
	             0.977
	           1.000

	       Coal ©
	           0.859
	             0.977
	           1.000


Higher transition probability from sandstone to sandstone implies thick multistory sandstone bodies as observed in field. The constant values of sandstone, shale and coal in fixed probability vector representing their relative percent (72.7%, 15.9%, and 11.3%) compare very well with the field observations. Figure 1 illustrates the actual and simulated Karharbari Formation along with the transition count and transition probability matrices, which are fairly comparable. The simulated succession may, therefore, be used to predict subsurface stratigraphy and associated coal deposits.	Comment by Reviewer: Also move all tables to results and Discussion section.
[image: C:\Users\User\Desktop\ZAK-3 (1).jpg]	Comment by Reviewer: Please move this figure to ‘’Results and Discussion’’ for any detailed analysis or comparisons.
Figure 1. Comparative actual and simulated stratigraphic sections of the Karharbari Formation of Giridih sub-basin. Note the similarity in Transition count and Transition probability matrices of the two sections.
3.2. Discrete time Markov Chain (DTMC)
3.2.1. The Transition Count Matrix (TCM). The starting point in this method was to structure the Transitions Count Matrix (TCM). This is a two-dimensional array which tabulates the number of times all possible vertical lithofacies transitions occurs within any a given stratigraphic succession that has been subdivided into its component facies (Table 2). In geological terms, the table indicates the number of times each facies is overlain by anotherany one above facies passes upward into any other. The lower bed of each transition couplet is given by the row number of the matrix and denotes a definite lithology, and columns give the composition of stratum resting immediately above a chosen lithology. Hence, if there were n lithofacies then the total of both the row and column is n-1.Elements in the transition Count Matrix (TCM) referred to by the symbol nij where i = row number and j = column number. It will be noted that where i =j the leading diagonal of the transition matrix has zeros elements in the matrix, i.e. transitions have only been recorded where the lithofacies shows an abrupt change in character, regardless of the thickness of the individual bed. This means that once a lithofacies state has been entered, the next state must be different; no return to the same lithofacies state is possible. The transition count matrix (TCM) is also called tally matrix [12] and summing the individual tallies nij either rows or columns must give the total number of transitions.
3.2.2. The Probability Matrices. From the transition count matrix two probability matrices have been derived. The first in an independent trials probability matrix (ITPM) composed on r ij which represents the probability of the given transition occurring randomly. Given any lithofacies state i the probability of this	Comment by Reviewer: Merge
state being succeeded by any other lithofacies state j is dependent on the relative proportions of the various states present. The value in each cell of this matrix was calculated as:  
                                                                rij = f+j / (n++ ─ f+i)	Comment by Reviewer: Use equation editor for all the equations
Where rij ij = random probability of transition from state i to j, n++ = total number of transitions for all lithofacies state of rows and columns used, f+j = random number of occurrences of facies j (i.e. column total for facies j) and n+i = number of occurrences of lithofacies state i.
In the random probability matrix, all the diagonal cells are ‘structurally empty’, because of the impossibility of recognizing the transition of a given lithofacies upward into another bed of the same lithofacies.
A second matrix-Observe Transition Probability Matrix (TPM), containing elements pij was constructed by converting the observed number of transitions to actual transition probabilities for vertical sampling interval. This was done by dividing the number of transitions in each cell by the row total as follows:
                                                               p i j= f i j / n i+ 	Comment by Reviewer: Use equation editor
The values of pij matrix sum to unity along each row and they will necessarily reflect the presence of any Markovian dependency relationship. [20] Suggested the use of a di Dfference mMatrix (dij) which is produced when the matrix showing expected transition probability (r i j) is subtracted from the transition probability matrix (p i j) of observed transitions.	Comment by Reviewer: ?	Comment by Reviewer: ?
                                                                 d ij = p ij – r ij	Comment by Reviewer: See above 
Positive (+) entries of the difference matrix serve to emphasize the preferred cyclic sequence or Markov property in the given succession by indicating which transitions have occurred with greater than random frequency.  It is, nevertheless, desirable to test statistically whether the difference between p ij matrix and r ij matrix are due to random chance. A chi-square test is suitable for this purpose as suggested by [12, 21] have been applied by many researchers to test for the Markovian property in different sedimentary successions [9,7] To visualize the transition patterns, a Facies Relationship Diagram (FRD) is constructed to represent lithofacies transition path using the positive entries in the difference matrix. 
3. Test of Significance (Chi-square test)
The d Differences observed between the tTransition pProbability mMatrix (TPM) and the iIndependent trailsTrials pProbability mMatrix (ITPM) (Table 2) seem to be may appear considerable (Table 2). This However, such variations might also result from difference may themselves be due to random chance. Therefore, a statistical test is necessary to determine whether the observed differences reflect true dependence among facies or are due to stochastic variation., and thus it is desirable to apply tests of significance to the results. A cChi-square test (ϰ2) is suitable for this purpose to test the dependency between any two facies states, during constructing the facies transitions in sequence. A cChi-square statistics is given by [21, 20]	Comment by Reviewer: X2
                                                  ϰ2 = ∑I j  (fij – fi rrj )2  / fi rij	Comment by Reviewer: Equation editor
has asymptotically the chi-square distribution with (n-1)2-n degree of freedom for  n x n facies transition matrix. The null hypothesis is that the vertical succession of strata was derived by random variation in the depositional mechanism.	Comment by Reviewer: Also note that, this comes under methodology
4. Entropy of Discrete Time Markov Chain
The starting point in an entropy analysis of discrete Markov chain is a tabulation of transition matrix between vertical lithologic states observed in a given stratigraphic succession (Table 3). Let f i j denotes the number of upward transitions from lithologic state i to j, row totals n i+, column totals n +j and then grand total n++ is defined as
                                                                n++ = ∑ i   ∑ j f ij	Comment by Reviewer: Use the suggested format
The upward (forward) transition probability of i → j associated with element f ij is p ij = f ij / n i+, which is equated with the ‘entropy after deposition [E (post)]’ (i.e. across the row) has been calculated with respect to i using relationship E (post) = ∑i p ij log2 p ij, where n is relative frequency that lithofacies state j follows i  and n is number of lithologic state.	Comment by Reviewer: See above comment	Comment by Reviewer: Not well -written
The second matrix, containing q ji which represent the probability of the giving transition being preceded by and other transition i.e. downward (backward) transition probability of j → i associated with element f ij is q j i = f i j / n +j ; which is equated with the ‘entropy before deposition [E (pre)]’ can also be calculated  in a resemble manner E (pre) = ∑i q ji log2 q ji where  E (pre) is entropy before deposition (i.e. along the column) with respect to lithologic state i; q ji is relative frequency that state j precedes state i.	Comment by Reviewer: See above comment	Comment by Reviewer: ??
[E (pre)]  and [E (post)] indicate the variety of lithological transitions which immediately lead into, and follow from, that lithologic state and they were as a useful supplement to the transition probability information. By plotting [E (pre)] against [E (post)]   for each lithological state one can make some interpretation of the style of cyclicity and the way in which cycles are deposited. [22] shows a number of diagrams of the distribution of [E (pre)] versus [E (post)] for idealized, truncated symmetrical (ABCDCBA) and asymmetrical (ABCDABCD) lithological succession.
Apart from entropies with respect to individual sets, maximum entropy possible in a system where n lithological states operate has been calculated as E (max) = -log2 1/ (n-1). Similarly the entropy of the whole sedimentation unit can be calculated as
E (system) = ∑ i   ∑ j  r i j log2 r i j , where r i j  = f i j / n ++  : where f i j are entries in the tally count matrix and n++ denoted total number of lithological states, which can be used for deciphering the overall depositional environment of cyclical sequences and takes a value between  - log2 1/n and – log2 1/n(n-1) where n is the number of lithological states. A plot of this statistics against the number of lithological states in the system can prove to be useful indicator of the overall environment of deposition of cyclical successions. The calculated entropy values for the whole sedimentation vary within 4.322-2.321 in this study, indicating possibly fluctuating/ oscillatory nature of the depositional system and dominance of non-random events in the Karharbari succession.
The various probability matrices for discrete time Markov chain (DTMC) that can be calculated for the example given below is given in Table 2 and 3 and those for entropies matrices is given in Table 4 will be discussed in the section on result.	Comment by Reviewer: Reorganise , restructure this portion and separate equations from the text. Define all variables clearly.
5. Binomial Probability
A Positive (+) value in the difference matrix (i.e.,pij - rij ˃ 0) as discussed elsewhere doesn’t prove that the difference is statistically significant. Indeed, oOne limitation of the previous methods is the inability to determine which transitions are truly siginificant [23].most serious problems with the method describe above is the uncertainty of determining which transitions are significant as outlined by [23].	Comment by Reviewer: Use equation editor
To address this, overcome this difficulty, [24] recommend proposed the use of binomial probability of at N obs successes in N trails, this corresponds to the binomial probability (BP), and is given by
                                                          ∑ n=N    = C (N, n) p n q obs	Comment by Reviewer: Poorly written- use the correct format
                                                                                                        n=nobs
where C (N, n) = the number of possible combinations of N states taken  n  at a time, and is given by : C (N, n) = N! / (N, n)! n!,  N = total number of upward transitions of any lithofacies into all other lithofacies i.e. the row totals in transition count matrix ,  n = number of upward transitions of any lithofacies into any other lithofacies, q = 1-p, p = probability of success on a single trail and q = probability of failure on a single trails.
A null hypothesis (H0) was set up; all transitions of any facies into another facies occur randomly succession. The independent N trails are accepted at significance level of 90%. A criterion is set up to accept or reject the null hypothesis (H0) if the value of computed binomial probability (BP) is greater than or equal to the level of significance chosen- it will be rejected otherwise the null hypothesis would be accepted. Table 2 E shows the summary of binomial probability for all positive difference with a level of significance of 0.10 and 0.05%. 	Comment by Reviewer: Reconstruct the sentence
5.1 Application and Geological interpretation	Comment by Reviewer: This part can be placed under ‘’ Results and Discussion’’ section.

Place it under a dedicated subsection such as ‘’ Application of Markov Chain Model and Geological Interpretation’’
Tally count data for the 21 borehole logs were added and one-step embedded bulk tally count matrix (f ij) was compiled (Table 1). Table 1 records the data for the transition count matrix and separate independent trails (rij), transition probability (p ij) and difference (d ij) matrices. To determine if transition pattern is a product of chance events (i.e. random) or the sedimentation process has a ‘memory function’ (i.e. Markovian), a test of significance was applied to the result. The cChi-square statistics after [21] have been applied for this purpose as have been used by several workers [25, 26, and 7]. In this test, a null hypothesis, Ho is proposed which assumes that the transition pattern generalized by the sedimentary process was random event i.e. non Markovian. The test ϰ2 is applied to reject or uphold this hypothesis. 	Comment by Reviewer: Rewrite	Comment by Reviewer: Trials

This subsection will house all the tables (Tables 1-4), Probability matrices, difference matrices, entropy values and their interpretations.	Comment by Reviewer: Computed Chi-square = 61.34
Degree of freedom = 15
Critical value = 32.80
Conclusion: Since 61.34 ˃ 32.80, reject the null hypothesis (Ho), sedimentation is Markovian (not random)
Table2. Markov matrices, Binomial probability (BP) and Chi-square statistics (ϰ2) of the Karharbari Formation, Talchir Coalfield.
(A).Transition Count Matrix (f ij)	Comment by Reviewer: Tables should be renamed and regrouped for clarity.
	
	    COSD
	    MFSD
	      FSD
	      SH
	       C
	    n+i

	   COSD
	        0
	       41
	       47
	      13
	      02
	     103

	   MFSD
	       32
	        0
	       38
	      14
	      05
	      89

	      FSD
	       41
	       21
	        0
	      48
	      11
	     121

	       SH
	       15
	       16
	       26
	        0
	     43
	     100

	        C
	       17
	       09
	       09
	       26
	      0
	      61

	      n+j
	     105
	       85
	      120
	      101
	      61
	n++= 474


(B).Independent Trial Matrix (r ij) 	Comment by Reviewer: Table title should be at the top and figure at the bottom.
	
	      COSD
	     MFSD
	       FSD
	        SH
	         C

	    COSD
	         0
	     0.240
	     0.326
	     0.269
	     0.164

	    MFSD
	      0.267
	         0
	     0.314
	     0.259
	     0.158

	       FSD
	      0.291
	     0.252
	         0
	     0.283
	     0.172

	        SH
	     0.275
	     0.237
	     0.323
	         0
	     0.163

	         C
	     0.249
	     0.215
	     0.293
	     0.242
	        0


(C).Transition Probability Matrix (pij)
	
	      COSD
	     MFSD
	       FSD
	        SH
	         C

	    COSD
	         0
	     0.398
	     0.456
	      0.126
	      0.019

	    MFSD
	      0.359
	         0
	     0.427
	      0.157
	      0.056

	       FSD
	      0.338
	     0.173
	         0
	      0.396
	      0.091

	        SH
	      0.150
	     0.160
	     0.260
	         0
	      0.430

	         C
	      0.278
	     0.147
	      0.147
	      0.426
	          0


(D). Difference Matrix (dij)                                                         
	
	      COSD
	     MFSD
	       FSD
	        SH
	         C

	    COSD
	         0
	    +0.138
	     +0.130
	      -0.143
	      -0.145

	    MFSD
	     +0.092
	         0
	     +0.196
	      -0.102
	     - 0.001

	       FSD
	     +0.047
	     -0.079
	         0
	      +0.113
	      -0.081

	        SH
	     - 0.125
	     -0.077
	     -0.063
	         0
	     +0.267

	         C
	      +0.028
	     -0.068
	      -0.146
	      +0.184
	          0


      
Chi-square Test:  ϰ2 (cal) = 61.34 for 15 degrees of freedom; limiting value 32.80 at 99.5% confidence level.	Comment by Reviewer: ?
(E).Binomial probability (BP)
	Transition
	          p
	         q
	         N
	        n
	Probability

	COSD →MFSD
	      0.398
	     0.602
	       103
	        41
	     0.080

	MFSD→ FSD
	      0.456
	     0.544
	       103
	        47    
	     0.078

	MFSD→ COSD
	      0.359
	     0.641
	         89
	        32
	      0.089

	MFSD→FSD
	      0.427
	      0.573
	        89
	        38
	      0.085

	FSD→COSD
	      0.338
	      0.662
	        121
	        41
	      0.076

	FSDSH
	      0.396
	      0.604
	        121
	        48
	      0.073

	SH→C
	      0.430
	      0.570
	        100
	        43
	      0.080

	C→COSD
	      0.278
	      0.722
	         61
	         17
	  1.746x10-15

	C→SH
	      0.426
	      0.574
	         61
	         26
	  1.467x10-15



Table3. Transition Count (f ij), Upward transition (pij), Independent trail (rij) matrices and entropy values for the Karharbari Formation, Talchir Coalfield.	Comment by Reviewer: ?	Comment by Reviewer: You may discuss how sedimentary facies evolve vertically.

Which facies transitions are more frequent in upward (depositional) vs. downward (erosional or reworked) sequences?
(A).Transition Count Matrix (f ij)
	
	    COSD
	    MFSD
	      FSD
	      SH
	       C
	    n+i

	   COSD
	        0
	       41
	       47
	      13
	      02
	     103

	   MFSD
	       32
	        0
	       38
	      14
	      05
	      89

	      FSD
	       41
	       21
	        0
	      48
	      11
	     121

	       SH
	       15
	       16
	       26
	        0
	     43
	     100

	        C
	       17
	       09
	       09
	       26
	      0
	      61

	      n+j
	     105
	       85
	      120
	      101
	      61
	n++= 474


(B). Upward Transition Probability Matrix (pij)
	
	      COSD
	     MFSD
	       FSD
	        SH
	         C

	    COSD
	         0
	     0.398
	     0.456
	      0.126
	      0.019

	    MFSD
	      0.359
	         0
	     0.427
	      0.157
	      0.056

	       FSD
	      0.338
	     0.173
	         0
	      0.396
	      0.091

	        SH
	      0.150
	     0.160
	     0.260
	         0
	      0.430

	         C
	      0.278
	     0.147
	      0.147
	      0.426
	          0


(C).Downward Transition Probability Matrix (qji)
	
	      COSD
	     MFSD
	       FSD
	        SH
	         C

	    COSD
	         0
	     0.471
	     0.391
	      0.126
	      0.032

	    MFSD
	      0.305
	         0
	     0.316
	      0.136
	      0.082

	       FSD
	      0.390
	     0.241
	         0
	      0.466
	      0.180

	        SH
	      0.143
	     0.183
	      0.216
	         0
	      0.705

	         C
	      0.162
	     0.104
	      0.075
	       0.252
	          0


(D). Independent trails Matrix (rij)
	
	      COSD
	     MFSD
	       FSD
	        SH
	         C

	    COSD
	         0
	     0.086
	     0.099
	      0.027
	      0.004

	    MFSD
	      0.067
	         0
	     0.080
	      0.029
	      0.010

	       FSD
	      0.086
	     0.044
	         0
	      0.101
	      0.023

	        SH
	      0.031
	     0.033
	      0.054
	         0
	      0.090

	         C
	      0.035
	     0.019
	      0.019
	       0.054
	          0



Table 4. Entropy values of lithological states in Karharbari Formation
	 Facies
	     E(pre)
	E(post)
	       R(pre)
	       R(post)
	 Relationship        

	    COSD
	      1.871     
	      1.541
	     0.936
	      0.771
	E(pre) > E(post)

	    MFSD
	      1.783
	      1.722
	     0.892
	      0.860
	E(pre) ≥ E(post)

	       FSD
	      1.829
	      1.805
	      0.915
	      0.903
	E(pre) ≥ E(post)

	        SH
	      1.793
	      1.863
	      0.897
	      0.932
	E(pre) < E(post)

	         C
	      1.249
	      1.860
	      0.624
	      0.930
	E(pre)< E(post)


E (max) = 2.000                                                                                                      E (system) = 3.97
Facies (COSD): coarse to very coarse grained sandstone, Facies (MFSD): medium to coarse grained sandstone, Facies (FSD): fine grained to ripple laminated fine sandstone, Facies (SH): argillaceous shale and interbedded fine sandstone and shale, Facies (C): coal and shaly coal
E (pre) =Entropy of an individual lithological state in an upward sequence
E (post) =Entropy of an individual lithological state in downward sequence
E (max) =Maximum entropy possible for an individual lithological state
E (system) = Entropy of sedimentation system
R (pre) and R (post) = Relative (normalized) pre- and post entropy of an individual lithological state.
5.2 Quantitative Results and Geological Discussion	Comment by Reviewer: Start with matrix interpretation and Chi-square validation
5.2.1. Finite Discrete Markov Chain: Table 1 records the bulk tally count matrix as well as calculated values of three matrices (rij, p ij and d ij) of the Karharbari Formation. Chi-square statistics (ϰ2) also listed, for which the tabulated values at given degree of freedom and at 99.5% confidence limit are high enough to justify the presence of Markov property or in other words cyclicity in the given strata. Markov transition diagram or Facies Relationship Diagram (FDR) in Figure 2 gives only those values of transition probability matrix for which corresponding entries in the difference matrix show positive difference. Highest positive values of d ij matrix link lithologic states distinctly resulting in a strong transition path for lithologic sequence that can be derived as: coarse to very coarse grained sandstone →medium grained sandstone Facies →fine grained ripple laminated sandstone→ argillaceous shale→ coal and shaly coal → coarse to very coarse grained sandstone.  This transition path is typical of the coal-bearing sequence and displays a progressive fining of particle size from pebbly, coarse sandstone through fine ripple laminated sandstone to argillaceous shale to coal . A noteworthy feature is a two way transition between medium –fine grained sandstone and coarse grained sandstone, implying that interbedding of the two adjacent lithologies has a greater probability of occurrence in the observed data than would be expected if the lithologies were interbedded randomly. Likewise, a bed of coal seam shows strong preference or memory for the underlying shale and interbedded siltstone and fine sandstone, and the corresponding values of the transition probability are high. Facies Relationship Diagram (FDR) which further indicate that each cycle, generally speaking, is asymmetrical beginning with erosional surface and coarse to very coarse sandstone.  Individual cycles may vary in thickness from couple of meters to few tens of meters. The finite Markov chain result clearly shows the progressive fining up from pebbly coarse sandstone (basal sandstone) to finer grained sediment is evident This is shown by high probability of passage from coarse to medium grained sandstone indicated by positive (+0.138) d ij values.  Binomial probability for this passage of at least n0bs success in N trials is 0.080 (Table 2E) which is significant at o.10% strengthen the transition passage for facies COSD → MFSD. Invariably, the sandstone is current bedded with variable foreset azimuths. Channel lag deposits at the base grade upward into finer grained sediments invariably ending with either shaly coal or carbonaceous shale/coal intercalations. Cross bedding and lateral channel migration are the rule and indicate a typical channel bar facies. Sediment transport within the channels was mainly in the form of bed load. The upper portion of a typical cycle dominated by transition probability FSD→ SH (d ij: +0.133). This is suggestive of continuous fining up sequences and supported by typical sedimentary structures, such as ripples, low angle cross bedding, constant foreset azimuths and occasional interrupted by crevasse splay sediments.  This may be interpreted probable levees deposition with inter-fingered frequently with back swamp and overbank facies (SH→ C: +0.267) corresponding binomial probability1.746x10-15 (Table 2E) which is definitely significant at 0.05% level strongly support transition probability from SH to C. The terminal lithological state of such cycles generally consists of shaly coal/coal facies. This possibly reflects in change of depositional sub-environment from levee to back swamp and/ or coal swamp explains this tendency.  Interruption of peat formation was common during channel migration and possibly account for the patchy occurrence of coal in Karharbari Formation. This coal/shaly coal also exhibit abrupt changes in lithologic transition from C → COSD as indicated by positive d ij value (+0.028). Thus, coal facies overlain by channel sandstone and the resultant sequence are asymmetrical throughout most parts of Karharbari coal measures. The result of Markov chain analysis verifies the former observation made by earlier researchers on the basis of field study that the onset of new cycle is always characterized by an erosional surface which is a rule rather than exception. The coal bearing cycles, charactering fluvial system following Walther’s Law of Facies, represents lateral association of various sub-environments in the similar manner.	Comment by Reviewer: List the sequence and explain how stastically significant transitions support the observed facies order
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Figure2. Facies Relationship Diagram (FRD) and model sequence based on statistically significant transition.
 It is most likely that the Karharbari cycles are auto-cyclic in nature—the sediment distributive mechanisms. The sequence of lithologic transition derived by finite discrete Markov chain in this study is, however, by and large comparable with the cyclic sequences of other late Paleozoic coal measures [27,23, 25] including the Permian coal measures of lower Gondwana of peninsular India [9, 7, 26] and also Oligocene coal deposits of Northeast India [30].	Comment by Reviewer: Add model figures in this subsection and create a table summarizing facies, depositional environment, typical structures, and associated transition probabilities to improve readability.
9.2. Entropy Analysis: The variations in pre- and post depositional entropy values (Table 4) suggest variable degree of dependency of lithofacies on precursor and influence on successor during Karharbari sedimentation. For pebbly and  coarse grained sandstone (facies COSD) E (pre) >  E (post), implies with high probability of this lithological state passing up into medium to fine grained sandstone (facies MFSD) but may occur after different lithologic state, as is also recognized in the stratigraphic section. In geological terms, the channel lag or channel bar and inactive channel fill deposits followed each other in upward progression possibly due to anabranching of stream channels. In this process, some truncated cycles were developed as evidence by positive (+) d ij value (Table 2) and FDR (Figure 2). For the lithological states medium to fine sandstone (MFSD) and fine ripple laminated sandstone (FSD) which shows E (pre)≥ E (post) relationship (Table 4) suggest that these lithological facies state following them can be ascertained with more certainty than those preceding them. In simple way these facies exert strong influence by their successor while relatively less influenced by their precursors. In geological term this relationship support geological conclusion that a relatively high probability (Table 3) of medium sandstone to fine ripple laminated sandstone may reflect a gradual transition as sediment milieu continued its advance. It is logical to conclude that as the sediment became relatively fine, the corresponding stream channel velocity decreased and ripple laminated sandstone deposit on the adjoining overbank areas. For remaining two lithological sates [i.e. argillaceous shale (SH) and shaly coal and coal (C)] shows E (pre)< E (post) relationship indicate that the dependency of these two facies state on their precursor is much stronger than their influence on their successor. This relationship supports in a statistical way the otherwise geological obvious conclusion that the overbank facies were deposited in the areas abandoned by the stream and peat swamps develop in distant pat of the flood plain farther away from the stream channel.	Comment by Reviewer: Follow the above correction on section and sub-section
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Figure3. (A) Entropy sets derived from Karharbari sequence showing Type A-4 (asymmetrical) cyclic pattern, Circle: possible distribution of entropy sets for asymmetrical cycles after Hattori (1976) (B) Relationship between entropy and depositional environment after Hattori (1976), Dot: Entropy for Karharbari sequence, Talchir sub-basin.	Comment by Reviewer: Inconsistency in title
The plot of the E (pre) and E (post) values for each lithological state is given in the figure 3 A of Hattori’s diagrams, which most closely (though not exactly) follows the expected for an asymmetrical cyclic sequence (Type A-4 category) of [22]. Among entropy sets those for facies COSD, MFSD, FSD and SH (pebbly to coarse sandstone, medium to fine grained sandstone, fine sandstone to ripple laminated fine sandstone and argillaceous shale) are located along the diagonal line; there is a fair probability that these lithological states tend to occur as a symmetrical cycle, that is, alternation in the succession as observed in outcrop sections. The entropy set with respect to facies C (shaly coal and coal) deviates from the general distribution (figure 2), which is possibly due to small values of pre- and post entropy. This departure in the entropy set for shaly coal and coal (facies C) maybe explained in terms of the opinion expressed by [31] that coal forming environment whether back swamp or marsh is not a normal feature of alluvial flood plains and may develop either locally in a part of the flood plain or occupy the entire basin overlying the deposits of various sub-environments and probably neither was this during the Karharbari sedimentation. This may possibly explain why in Karharbari sedimentation carbonaceous / coal seam (facies C) do not occur regularly with each alluvial-fluvial cycle.
The value of E(system) statistics for the five lithological states data was 3.979 , compared to maximal and minimal values of 4.322 and  2.321.When the E(system) value for the Markovian sequences are evaluated in terms of broad depositional environment by plotting E(system) against the number of lithological states, the point occurs within the field allotted to fluvial-alluvial of [22], Figure 3B, thus corroborating the views expressed by earlier workers that the Karharbari sedimentation took place by lateral shifting braid channels in response to varying discharge and rate of deposition caused the development of asymmetrical (Type A- 4) cycles. 
To sum up the finite Markov chain and entropy studies strongly support that the sediments of the Karharbari succession was deposited by Markovian mechanism and as a whole represents alluvial-fluvial sedimentation deposited in a predictable cyclic arrangement of lithofacies. The statistical results concur with observed sedimentological evidence of depositional environment. Fining upward cycles correspond to the development of basal channel bars, changing into levees, then into back swamps which are topped by coal swamps. Frequent interbedding of coal and argillaceous/ carbonaceous shale in the upper part of the coal measures calls for periodic flooding and flushing of fine clastics into coal forming swamps causing interruption of peat formation. Cyclical deposition is explained by wandering channels in response to varying discharge and rate of deposition, their frequent lateral shift of channel course with consequent overstepping of adjacent sub-environments of the flood plain, a common feature rather than exception in river basins, may favorable explain for the formation of symmetrical cycles, with a paucity of fine clastics, characterize the Karharbari succession in this alluvial-fluvial depositional model.
 6. Quasi-Independence Analysis	Comment by Reviewer: Add a table or figure for PE matrix
The finite Markov model, indeed, does not correctly verify the problem of randomness tests as it ignore the lack of lithofacies transitions into themselves (the presence of zero values at the diagonal of the tally count matrix). Subsequent some authors [4, 14, and 15] proposed the improved versions, where the quasi independence model of [14], a statistically rigorous method for evaluating incomplete matrices- abbreviated as PE. The PE model can be used to generate the expected cell values for the independent trials matrix. 
6.1 Supplication of the PE model: The modified and improved Markov chain process after Power and Easterling (PE) used in this study incorporate following successive steps.	Comment by Reviewer: ???	Comment by Reviewer: This subsection is dense, repetitive, and has mixed terminologies.
Structuring of the number of observed transitions matrix (f ij) where i, j corresponds to row and column letters refers to lower and upper bed respectively; (ii) matrix of the number of expected transitions in a random sequence (E ij) derived by using an iterative procedure; (iii) matrix of differences between the number of observed transitions and the number of expected transitions in a random sequence (d ij) = (fij) - (E ij). This provides a framework for identifying large difference between observed (f ij) and expected transition frequencies (E ij). The hypotheses were tested for consistency with random sequence and for randomness of specific transitions between lithofacies (significance test of specific elements of the matrix (d ij).  Among the latest improvements of GR method the most credible is the Power and Easter ling’s [1982] proposal for more discussion readers should see in [32] here abbreviated as PE; (iv) Using the values of f ij and E ij in the expression for ϰ2 yields a statistics which is approximately distributed as a Chi-square variable with (n-1)2-n degrees of freedom.  The larger the ϰ2 value for a given value of n, the stronger the evidence in favor of the Markovian model of lithologic transition, i.e. for the presence of cyclicity; (v) comparison of observed f ij and expected E ij number of transitions; (vi) Whether or not a difference represents a ‘significant’ departure from quasi-independence depends on the size of the probabilities being estimated and on the amount of data involved in the estimates. To alleviate this problem, [33] introduced normalized difference matrix (Nd ij), which can be calculated as Ndij = (f ij-E ij)/ √Eij  where large differences (+ values) between observed and expected transition frequencies and referred as ‘dominant’ transition.  The significant excess of transitions is conventionally displayed in a diagram, with arrows connecting the lithological states for which there are positive differences and regarded as ‘ideal’ or fully developed cycles, which facilitates the geological interpretation. The inferred assumption underlying this procedure is that the expected matrix represent ‘noise’ subtracting this from the observed matrix one can filter the observations for randomness or noise. ij
The calculation method of ϰ2 statistics used for the randomness test of a sequence is identical in the GR and the PE methods, as follows
                                              n    n
                               ϰ2       =    ∑ = (f ij – E ij) 2/ E ij
                                             i=1  j=1
In the PE method the number of degrees of freedom is defined as (n-1)2-n where; n = number of lithofacies states, d ij = elements of difference matrix, E ij = elements of expected transition matrix. In the GR method the number of degrees of freedom is defined as n2-2n.
In the  Power and Easterling (PE ) method, E ij be the expected value of the number of transitions from state ‘i’ to state ‘j’ in quasi-independence is calculated as:
                      E ij = ai bj,                                                             for i ≠ j
                            = 0                                                                 for i =j 
where ai and bj, denotes frequency of individual in the ith and jth row, respectively and the values of  ai and  bj  are determined with relevant iterations.  
Let m represent the number of rows/columns in the transition frequency matrix, ni+ be the sum of i row, n+j be the sum of j column and ω  be the required accuracy of iterations. Thus first iteration:

                              ai (I) =  ni+  / (m-1),                                                i= 1,2,3,….m                 

                               bj(I) = n+j  / ∑ ai ,                                                                           j =1,2,3,…m
                                                 i≠j   
Similarly Ith Iteration:

                              ai (I) =  ni+  / ∑  bj (I-1)                                                        i=1,2,3,…m
                                                 j≠i                                                                 

                               bj(I) = n+j  / ∑ a i(I)                                                       j =1,2,3,…m
                                                  i≠j   
where ni+ and  n+j  are the row i and column j totals, respectively.
Iteration may be run until the following condition is obtained:

                                    ai (I) – ai (I-1)   ≤ ω                               for i= 1,2,3,….m                 	Comment by Reviewer: Rearrange all equations and use proper format
                                   bj(I) _  bj (I-1)    ≤ ω                                          for j =1,2,3,…m	Comment by Reviewer: Include figures or diagrams here. It lacks structure

6.1.2. Implementation of Quasi-independence Model: An application of quasi-independence model is presented of estimation method of the expected number of facies transitions. True data originate from the sector III of the Barakar Formation of Lower Gondwana succession, which represents the fluvial series of the Early Permian of Bellampalli coal basin, Pranhita Godavari Valley Basin. The succession includes 190 events of four lithological facies: coarse to medium sandstone (COSD – 46 events), interbedded fine grained sandstone and shale (FSD – 14 events), carbonaceous shale and argillaceous shale (SH – 67 events) and shaly coal and coal (C – 63 events). The observed transition count matrix f ij between these lithofacies along with matrices of the expected numbers of transition in a quasi-independence calculated by PE method (E ij), normalized difference matrix (N dij) and chi-square (ϰ2) are shown in Table 5.	Comment by Reviewer: ??
Table5. Transition count, expected cell value, normalized difference and chi-square matrices of Barakar Formation, Bellampalli coal basin.	Comment by Reviewer: ?
(A). Transition count matrix ( f ij ) 
	    facies
	    COSD
	      FSD
	       SH
	         C
	      n+i

	    COSD
	       00
	       08
	       23
	        15
	      46

	      FSD
	       06
	       00
	       06
	        02
	       14

	       SH
	       18
	       03
	       00
	        46
	       67

	        C
	       22
	       03
	       38
	        00
	       63

	      n+j
	       46
	       14
	       67
	        63
	  n++=190



  (B). Expected cell value matrix (Eij)
	    facies
	    COSD
	      FSD
	       SH
	         C
	      n+i

	    COSD
	       00
	      3.063
	     22.984
	     19.872
	      45.919

	      FSD
	       3.064
	       00
	       5.858
	      5.072
	       13.994

	       SH
	      22.925
	      5.858
	       00
	      37.978
	       66.753

	        C
	      19.861
	      5.072
	      30.059
	        00
	       63

	      n+j
	      45.850
	     13.985
	      66.981
	      62.922
	 n++=189.258


   (C) Normalized difference matrix (Ndij)
	      facies
	      COSD
	        FSD
	          SH
	          C

	      COSD
	         00
	      +2.820
	     +0.002
	     -1.093

	         FSD
	      +1.678
	         00
	     +0.062
	     -1.362

	          SH
	      -1.038
	       -1.813
	         00
	     +1.305

	           C
	      +0.479
	      -0.923
	      +1.436
	         00



   (D).Chi-square matrix (ϰ2)
	      facies
	      COSD
	        FSD
	          SH
	          C

	      COSD
	         00
	       6.714
	        00
	      1.194

	         FSD
	      1.436
	         00
	      0.003
	      1.862

	          SH
	      1.065
	       1.393
	         00
	      1.694

	           C
	      0.208
	       1.112
	       1.659
	         00


           ϰ2                          Degree of freedom                    Limiting value at o.05% significance level
          18.326                             5                                                              11.070
 
6.1.3. Quantitative Results and Geological Discussion	Comment by Reviewer: Consider the following actions:
 Break long paragraphs into smaller, topic-specific ones
Include subheadings like ‘’Dominant Transitions’’, Cyclothem Model, Sedimentary Interpretation.
Refer to tables or figures contextually and consistently.
Ensure consistency in abbreviations e.g COSD, FSD and define them on first use.
Quantitative Results: Table 4 records the bulk transition tally matrix as well as calculated values of expected cell value (Eij), normalized difference (Ndij) and chi-square matrices for the Barakar Formation of the Bellampalli coal basin. Indeed, there is a strong tendency of Markovian property or in other words cyclicity in the Barakar succession at a given degree of freedom and 0.05 % confidence level. Figure 4 show Markov transition diagram based on positive values of normalized difference matrix. Highest positive values of Ndij matrix link lithologic states distinctly resulting in a strong transition path for lithologic sequence that can be derived as: coarse to medium sandstone (facies COSD), interbedded fine sandstone and shale (facies FSD), argillaceous and carbonaceous shale (facies SH), shaly coal and coal (facies C), carbonaceous shale and argillaceous shale (facies SH) and coarse to medium sandstone (COSD) resulting asymmetrical cyclothems. Furthermore, the diagram represents a graphic visualization of matrices of differences between frequencies of expected and observed transitions enables the reconstruction of model sequence, i.e. such which shows a genetic implications resulting from the nature of depositional mechanism. Individual model cycles may vary in thickness from a couple of meters to few tens of meters. This transition path is typical of the coal-bearing and by and large display a progressive fining of particle size from coarse sandstone through fine sandstone to shale, then coal. A noteworthy feature with this sequence is a two way transition between coarse and fine sandstone, implying that interbedding of the two lithologies has a greater probability of occurrence in the observed data than would be expected if the lithologies were interbedded randomly. Likewise, a bed of shaly and coal shows a strong preference or memory for the underlying shale and the corresponding positive values of the normalized difference matrix. It was concluded that transitions of depositional intervals and lithofacies are not independent but exhibit a first-order finite Markov property. Evidently, the quantitative results imply recurrence of the corresponding depositional environments both across the basin and through time, 
6.1.4. Geological Discussion: Quantitative results suggest that a complete Barakar cycle usually show a progressive fining up from coarse, basal sandstone to finer grained sandstone is evident. This is shown by high probability to passage from coarse (COSD) to fine sandstone (FSD) indicated by high positive Ndij value (COSD→ FSD = 2.820; FSD → SH =0.62; SH → C = 1.305; see Figure 4 and Table 5). It is dominant lithofacies, which constitutes about 65% by volume of the coal bearing Barakar Formation. Invariably, the sandstone occurs as channel to sheet like and multistory bodies showing erosional base and flat-top is current bedded both planar and trough cosets. Cross bedding and lateral channel migration or aggradations are the rule and indicate of a typical point bar facies. This set up is suggestive of channel shoaling of a typical point bar facies [35, 1, and 3]. Multistory sandstone bodies in alluvial-fluvial 
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Figure 4. Model of the construction of model and modal sequence of the Barakar Formation, Bellampalli coal basin.
environments are probably formed when the rate of migration within aggrading channel belt is large enough to cause superposition of channel bars, before the channel belt is abandoned [36] whereas sheet like sandstone bodies are formed when subsidence rates is slow than sedimentation rate. Sediment transport within the channels was mainly in the form of bed load as outlined by [37] on the basis of paleohydrological studies.  The coarse and fine grain grade members (facies: COSD & FSD) are deposits which in texture and sedimentary structures compare very closely with the channel sediments of modern rivers [38, 39, 40]. The upper portion of model cycle is dominated by transition probability FSD → SH (Ndij: =0.062).This is suggestive of continuous fining up sequences and supported by typical sedimentary structures, such as ripples, low angle cross bedding and occasionally interruption by crevasse splay sediments. This may be interpreted as deposition by vertical/lateral accretion on top of channel bars during a low water stage or as levee deposition which inter-fingered frequently with back-swamp facies. Following this phase of sedimentation, sediment supply was curtailed; lacustrine conditions of stagnant water may have developed in then low lying areas beyond channel and overbank sub-environments where swamp or marshy conditions began to grow across the plain. Similar peat forming environments may also have developed in areas of abandoned channels.  Indeed as expected, argillaceous and carbonaceous shale show a greater probability to pass upwards into shaly coal and coal (Ndij =1.305) than sandstone or shale. The occurrence of coal seams at the top of the fining upward cycles, therefore, suggests cessation of alluvial-fluvial environment and conversion of the flood plain into lake or swamp. Furthermore, upward linkage of coal and shaly coal facies which represents the top unit of the Barakar cyclical units has more preference for underlying argillaceous and carbonaceous shale (facies SH), resulting in the asymmetrical fining cycles, implies a gradual encroachment of coal swamp by adjacent back swamp and levees sub-environments as a consequence of slow and gradual lateral shift of channel course across the alluvial plains. These episodes of undisturbed peat accumulation over a considerable time span was repeated several times (6 coal seams of workable thickness, ranging in thickness from 5 to 15 m, occur) and accounts about 5% of the Barakar succession. In addition, there are several impersistent coal beds of less than a meter in thickness which probably represent their formation in inter-channel and/ or distal flood plains or frequent shifting of channels may have prevented development of thick peat swamps. Initiations of second and subsequent fining upward cycles in study area commonly start with the deposition of coarse-medium sandstone (facies COSD). This may be attributed to random change in the depositional mechanism [1] manifested by the development of some kind of channel system after phases of peat accumulation.  
As the Barakar cyclothems are non-marine and fluvial in nature, the cyclothems might have been formed by sedimentary control theory in the form of sedimentary distributive mechanism of lateral migration of streams across the alluvial plain [41, 6, 7] or drainage diversion [42] caused in response to intrabasinal differential subsidence or repeated slow and rapid subsidence of the depositional basin as suggested recently [43]. 
7. Markov Reversibility and Marginal Homogeneity 	Comment by Reviewer: Table reference required for symmetry or quasi-symmetry test results.
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Complex model for contingency tables have received an increasing interest in recent years from researchers especially in biological, physiology and geological sciences play important roles, as they highlight relationships between categorical variables [44]. Contingency tables with the same row and column classification are often called square contingency table and arise in many fields such as social mobility data, biomedical research and lithological data in geology and so on. Typically, the analysis of square contingency tables considers the symmetry issue rather than independence because observations tend to concentrate on or near the main diagonal. Therefore, many statistician and geologists have considered various symmetry (S), quasi-symmetry (QS) and marginal homogeneity (MH) models, and symmetry is one of the important topics for the analysis of square contingency tables and there are number of well described examples of tables that have modeled as quasi-symmetry [45, 46,47, 48].The model of quasi-symmetry (QS) requires that the expected marginal total of any row of the square table not the same as the expected marginal total for the corresponding column. [46] provided a sample test (chi-square statistics) for marginal homogeneity (MH) which indicates the equivalence of marginal probabilities. [49] developed quasi-symmetry (QS) based on without requiring knowledge of the limiting probabilities which has since become widely accepted for the analysis of square contingency tables are illustrated in the geological study. The quasi-symmetry (QS) model bridges symmetry (S) and marginal homogeneity (MH) in square tables. If the symmetry model holds, then the marginal homogeneity model holds. However, the inverse is not always true. The quasi-symmetry model can be used to show that the symmetry (S) model holds if and only if both (QS) and (MH) models hold than the underlying process is a reversible. Thus acceptance of a simple Pearson chi-square test for symmetry (S) model of the tally matrix is sufficient to show the absence of Markov cyclicity in a sedimentary succession 
An important feature of the finite Markov chain is the property of reversibility generally found in cyclical lithologic transitions in stratigraphic succession [56, 47]. A direct relationship between reversible Markov chain model and quasi-symmetry (QS) model has been previously noted; this relation is not easily understood until quasi-symmetry (QS) model is considered as an unequivocal mathematical property. In geological words, a Markov chain sequence is reversible if and only if the tally count matrix of transition counts possess quasi-symmetry (QS) or satisfies balance equation of Kolmogorov criterion.
In this paper we illustrate the use of the quasi-symmetry (QS), symmetry (S) and marginal homogeneity (MH) models in the analysis of square categorical data that summarized the constituents lithologic of cyclothems. Furthermore, in order to understand the nature of sedimentary successions and in particular to identify the presence or absence of cyclical sequences, quite a number of sedimentary successions have been counted to determine their Markov property. In reviewing classical examples of different geological ages around the world of  these published tabulations of sedimentary successions, it quickly become clear that most of these tabulations have marginal homogeneity (MH) and the square tables are either symmetric (S) or non-symmetrical and the sequence confirms to a reversible or non reversible Markov process.
7.1 Marginal Homogeneity. The marginal homogeneity model (MH) is defined by	Comment by Reviewer: You have many methods in results. Restructure.
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                                                    fi+ = f+i                        (i =1,2,3……..r)   
where fi+= ∑j=1 fij   (i.e. row sums ) and f+i = ∑j=1 fji   (i.e. column sums). The MH model indicates that the marginal distribution of the row variable is identical to the marginal distribution of the column variable.  When r = 2, the MH model equivalent to the symmetry (S) model. In fact MH model must hold provided that the succession of sedimentary states forms a continuum in which each state is assessable from at least one other state. This is commonly encountered condition because sedimentary sections encountered during detailed stratigraphic traverses or from long continuous lithological profiles. 
If there is any doubt, a chi-square test (χ2) can be used to check for identity between row and column sums for the Continuous Time Markov chain (CTMC), that is:
                                           χ2 = ∑ (fi+─ f+i) 2 / ( fi++f+i ─2 fii)                      (1)                                                  
This statistics test asymptotically distributed, under the assumption of marginal independence, as χ2 with n-1 degrees of freedom. Acceptance of the hull hypothesis H0: fi+ = f+i (i.e. the two samples have the same marginal distribution) at least 5% confidence level. If only transitions between sates have been counted, then the diagonal elements of the tally matrix are either absent or zero i.e. Discrete Time Markov chain (DTMC) so that the above χ2 test reduces to:
                                         χ2 = ∑+ (fi+─ fi)2 / (fi++  f+i)                                                    (2)
According to [49, 50] the above chi square test that it is only an approximation but it should be adequate for most instances encounter in study of cyclic successions [46, 47].
7.1.2 Quasi-Symmetry. Caussinus [51] developed quasi-symmetry model (QS) which bridges symmetry (S) and marginal homogeneity (MH) models in square contingency tables. The quasi-symmetry (QS) model defined as the probability that an observation falls in i and j cell. The QS model requires that the expected marginal total of any row of the matrix not the same as the expected marginal total for the corresponding column. 	Comment by Reviewer: Lack structure
Move all statistical tes equations and chi-square formulas to methodology.
Consider an n χ n square contingency table with the same row and column classifications. Let X and Y denotes the row and column variables, respectively, and let fij denotes the probability that an observation will fall in the cell (i, j) of the square table. The symmetry (S) model which is defined as   f ij = fji for i =1, 2, 3….R; j =1, 2, 3…. R indicates symmetry structure of cell probabilities. Additionally MH model indicates the equivalence of marginal probabilities and is defined as   fi+= f+i for  i=1 ,2, 3….R where  fi+= ∑j=1 fij  and  f+i= ∑j=1 fji  [49]. The quasi-symmetry (QS) model is defined as 
                                   fij fjk fki= fik fkj fji          for any i, j , k   with 1≤ i, j, k ≤ n                  (3)
The above inequality can be simply stated as a Markov sequence is reversible if and only if the tally matrix transition counts possess quasi-symmetry and conversely Markov sequence is irreversible.
In the case where the transition counts matrix (fij ) possess marginal homogeneity and the entries in the square contingency table are subject to random error, a Pearson chi-square test is available for testing for the complete symmetry model (S) pij= pji, i ≠ j is tested by calculating following test statistics as applied by [45, 46, 47]
                                              χ2 = ∑ ∑ (fij – fji)2 /    (fij  +   fji)                                       (4)
                                                         i>j
This is asymptotically distributed as χ2 with n (n-1) /2 degrees of freedom. Following the convention of Fisher, acceptance of the null hypothesis will be assumed at the 5% confidence level and rejection of the null hypothesis at the 1% confidence level.
7.3.1. Geological Application. From among a large number of published Finite Markov chain analyses (DTMC) the following table of 2378 transition counts from 32 borehole logs were counted from the Lower Permian coal-measures of the Tanzanian Mchuchuma basin [25] were selected to demonstrate the application of marginal homogeneity (MH) model, quasi-symmetry (QS) and symmetry (S) model in geological data.	Comment by Reviewer: See previous comments
Tally Count Matrix of Tanzanian Mchuchuma basin (f ij)
	facies
	A
	B
	C
	D
	E
	E+F
	fi+

	A
	0
	435
	120
	46
	22
	06
	629

	B
	315
	0
	284
	86
	25
	08
	718

	C
	26
	155
	0
	134
	16
	37
	468

	D
	48
	41
	34
	0
	36
	98
	257

	E
	32
	19
	08
	06
	0
	41
	106

	E+F
	99
	56
	17
	04
	24
	0
	200

	f+i
	520
	706
	463
	276
	123
	190
	n++= 2378



A=coarse sandstone, B= medium sandstone, C. fine sandstone, D. shale, E. mudstone and E+F= coal=mudstone
The visual inspection of the entries in the square contingency table shows that the transition count matrix has lack of perfect marginal homogeneity indicating the lithofacies states profiles have not properly counted and this is not confirmed by tested for marginal homogeneity (equation 2), the result gives χ2 =12.667 where χ2 (95%) = 11.09 for 5 degrees of freedom but not statistically significant. Presence of perfect marginal homogeneity is therefore statistically not established and the sedimentary section has not been properly counted. If the square tally count table is then tested for symmetry (S) by chi-square test (equation4), the quantitative result gives χ2 = 1407.041 where χ2 (1%) =37.70 and degree of freedom=15 and is on the basis of chi-square result it is a case of quasi-symmetry (QS). Consequently, the  Lower Permian coal-measures of the Tanzanian Mchuchuma basin conforms to a non-reversible Markov process, hence the  coal-measures succession possess Markovian mechanism, and that the sequence represents cyclic sedimentation corroborating inferences deduced by earlier workers on the basis of subjective approach. 
Next consider a coal-bearing Barakar sedimentary sequence of Saharjuri sub-basin of Koel-Damodar Valley Gondwana master basin of peninsular India, normally consists of five lithologies, were condensed into three different lithologic states as follows: sandstone (A), shale (B) and coal (C) [19]. The condensation of lithologies was necessary to avoid risk of error which is not unlikely if lithologies are subdivided minutely and arbitrary as in the given borehole logs. A traverse along such a sedimentary sequence of 102 counts will then yield the following transition count matrix following Continuous time Markov chain (CTMC).
Transitional Count Matrix Barakar Formation, Saharjuri (f ij )
	Lithofacies
	sandstone
	shale
	Coal 
	fi+

	sandstone
	19
	15
	04
	38

	shale
	11
	13
	09
	33

	coal
	07
	08
	16
	31

	f+i
	37
	36
	29
	n++ =102



Simple inspection of the row and column sums is sufficient to show nearly perfect marginal homogeneity suggesting a properly counted sequence. A scrutiny of the non-diagonal entries also shows that the square table is symmetrical and formal testing by equation (3) confirms the result with χ2 =2.571 where χ2 =5.99 (5%) is with 2 degree of freedom. Consequently the coal bearing Barakar sequence conforms to a reversible Markov process indicating that the reverse and forward sequences are same.
Now consider the cyclothems presented [20] for a thick Paleocene section of alluvial sediments forming Polecat Beach Formation in Bighorn basin, Wyoming. The reported Paleocene alluvial sequence can be treated as a simplified four unit’s cyclothems. The units are A. sandstone, B. mudstone, C. limestone and D. lignite. The observed square tallies are as follows: 
Transition Count Matrix of Polecat Beach Formation
	Litho-units
	A
	B
	C
	D
	fi+

	A
	0
	37
	03
	02
	42

	B
	21
	0
	41
	14
	76

	C
	20
	25
	0
	00
	45

	D
	01
	14
	01
	0
	16

	f+i
	42
	76
	45
	16
	n++ =179



Observe first of all that the square tally table has perfect marginal homogeneity (MH) indicating the cyclothymiacs units have been properly counted. So a test for marginal homogeneity is not required. Furthermore inspection indicates the table in non-symmetrical and formal testing confirm the result with χ2 =22.19 where χ2 (5%) =12.59, (1%) =16.81 and 6 degree of freedom. Thus this Paleocene sequence cannot be a reversible Markovian sequence; hence the statistical result supports the geological interpretation that Polecat Bighorn Formation possesses cyclicity.
8.  Markov Reversibility	Comment by Reviewer: Theorems are not clearly formatted or separated from explanations.
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Markov chains are a versatile probabilistic tool for modeling stochastic processes that have achieved widespread application in the quantitative sciences. A Markov sequence is a series of states generated by mathematical process in which transitions from one state to another state within a finite number of possible events. It is collection of different states and probabilities of a variable, where its future state is substantially dependent on its immediate previous state. In the case of a Markov reversibility process, a tally matrix of the sequence of states in the forward direction is indistinguishable from the tally matrix counted in the backward direction.
Reversible Markov Chain: A Markov process is called a reversible markov chain or process if it satisfies the detailed balance equations. These equations require that the transition probability matrix P for the Markov process possess a stationary distribution π such that
                                                           πi P ij =  π j P ji                      (Balance equation)
where P ij  is the Markov transition probability from state i  to state j  , i.e. P ij = P (X t = j │ X t-1 = i ), and π i and  π j  are the stationary probabilities of being in state  i  and j, respectively. When Pr (X t-1 = i) = πi for all i , this is equivalent to the joint probability matrix, Pr (X t-1 = i,│ X t = j) being symmetric in i and j, or symmetric in t-1 and t.
The above discussion can be summarized in the form of a theorem.
Theorem 1: A stationary process if and only if there exist a positive collection of number (π i) to unity such that πi P ij = π j P ji for all i and j, whenever such collection does not occurs, the Markov process is reversible.
The above detailed balance equation means that the probability of seeing a transition from lithological state i to lithological state j equals as seeing a transition from lithological state j  to i lithological state. In the case i = j the two sides of the balance equation are identical and hence carry no geological information. Thus, the detailed balance equation allows us to determine if a finite Markov process is reversible (non cyclical sequence) or irreversible (cyclic sequence) based on the transition probability matrix and the stationary probabilities.
Theorem 2.  A finite Markov chain with transition matrix P is reversible if π x P is symmetrical, where x means component-wise multiplication.

Proof.     Let R = π x P
                                                               π1      π2        π3                                                                                    
                                                 π  =       π1        π2          π3         
                                                                π1      π2        π3                                     
	
     	
                                                               p11      p12      p13 	
                                            *              P =     p21     p22        p23	                                                                                                                                                          1                                                                                  p31     p32        p33
                                                                              
                                                               π1p12     π2p12     π3p13  	
                                             π * P    =   π2p11     π2p12      π2p23  
                                                               π3p11    π3p12     π3p23  	
	
 If we get π * P a symmetric matrix, i.e., πi P ij =   π j P ji   for all i, j, then the detailed balance equation                                                                               
 is satisfied. Then the transition matrix P is reversible (cyclic), otherwise n0n-reversible.
8.1 Geological Application: To illustrate the use of detailed balance equation in geological studies, an example is taken from the Barakar coal measures of Bellampalli coal basin, Pranhita-Godavari Valley Gondwana Basin, Andhra Pradesh. The Barakar Formation comprising a spectrum of sedimentary facies including gritty sandstone, sandstone, siltstone, argillaceous and carbonaceous shale and coal. The following table of transition count matrix and transition probability matrix obtained by DTMC method of aforesaid sedimentary succession [52].	Comment by Reviewer: 
  (A).Transition count matrix of Barakar Formation (f ij)  
	lithofacies
	A
	B
	C
	D

	A
	0
	08
	113
	35

	B
	08
	0
	03
	01

	C
	78
	03
	0
	65

	D
	59
	01
	79
	0


 
(A). Coarse-medium sandstone; (B) Interbedded sequence of argillaceous shale and fine sandstone; (C) carbonaceous shale, and (D) coal.
   (B).Transition probability matrix (pij)
	lithofacies
	A
	B
	C
	D

	A
	0
	0.051
	0.724
	0.224

	B
	0.666
	0
	0.250
	0.083

	C
	0.534
	0.020
	0
	0.445

	D
	0.424
	0.007
	0.568
	0



The stationary distribution vector of transition probability matrix (pij) is π = (0.332, 0.016, 0.400, and 0.252). Now component wise calculation using relation R = π * P we get following reversibility matrix.
(C )Reversibility matrix of Barakar Formation (R)
	lithofacies
	A
	B
	C
	D

	A
	0
	0.016
	0.240
	0.074

	B
	0.012
	0
	0.004
	0.001

	C
	0.213
	0.008
	0
	0.178

	D
	0.106
	0.001
	0.142
	0



Simple inspection of rows and column of the reversibility matrix shows that table lack symmetry. By theorem 1 if the reversible transition matrix is non symmetrical then the succession possess Markov cyclicity. The table is non symmetrical and formal testing by chi square test (equation 3) as applied by [47] confirm the result with χ2 =88.112 where   χ2 (5%) = 12.59, χ2 (1%) =22.45 with degree of freedom =6. Thus the statistical result support above contention that the geological interpretation that the Barakar succession is a cyclothems i.e. deposited as Markovian clock.
Theorem3. (Kolmogorov Criterion). An n X n Markov chain is reversible if and only if the product of one-step transition probabilities along any finite closed path of length more than two is the same as the product of one-step transition probabilities along the reversed path. In other words
                                                                   Pij Pjl Plk Pki = Pik Pkl Plj Pji
For all finite sequences of state
This is the definition of reversibility introduced by Andrei Kolmogorov and known as Kolmogorov criterion as a necessary and sufficient condition for Markov chain or discrete time Markov chain (DTMC) to be reversible directly from its transition probability matrix. The criterion requires that the products of probabilities around the loop i to j to l to k returning to i must be equal.
8.2. Geological Application:  A practical geological application of the Kolmogorov criterion can be illustrated by the following table of transition counts for alluvial sediments of Beaufort Group of the Karoo basin, South Africa [54].
   Transition count matrix of Beaufort Group (f ij)  
	
	A
	B
	C
	D
	E

	A
	0
	39
	05
	21
	03

	B
	26
	0
	28
	27
	01

	C
	01
	30
	0
	06
	04

	D
	10
	26
	16
	0
	06

	E
	01
	04
	00
	03
	0



A= Mudstone clast conglomerate, B= structure-less sandstone, C= plane bed sandstone, D= cross-bedded sandstone, E= mudstone
Transition probability matrix of Beaufort Group (pij)
	
	A
	B
	C
	D
	E

	A
	0
	0.573
	0.073
	0.309
	0.044

	B
	0.317
	0
	0.341
	0.329
	0.012

	C
	0.024
	0.731
	0
	0.146
	0.097

	D
	0.172
	0.448
	0.276
	0
	0.103

	E
	0.125
	0.500
	00
	0.375
	0



Now substitute values of in Kolmogorov criterion of above inequality, Pij Pjl Plk Pki = Pik Pkl Plj Pji  we have
                            0.573x0.341x0.146x0.103x0.125 = 0.375x0.276x0.731x0.317x0.044
From A 5x5 transition probability matrix, it turnout that only one detailed balance equation has checked and found to be equal suggesting that the probability matrix is reversible which in turn supports’ the geological interpretation of cyclical deposition of Beaufort Group within the Banksgaten Sandstone of Karoo Group as elaborated discussed by [54].
 Theorem 4. A stationary Markov chain is reversible if and only if the matrix of transition probabilities can be written as the product of a symmetric and a diagonal matrix i.e., P =SD where S is a symmetric matrix and D is a diagonal matrix such that ∑j pij =1
Proof: 
                          π1      0        0                                          p11      p12      p13           
Let D =               0       π2      0                     and    P =      p21       p22      p23           
                          0        0       π3                                         p31      p32      p33             

Then according to above theorem        S   =       P    D-1
                                                               
                                       p11       p12      p13                                1/ π1        0        0        
                        =             p21       p22      p23                     χ           0        1/ π2      0       
                                       p31       p32      p33                                  0           0        1/ π3         
                                        	      
                                                       p11/ π1       p12/ π2       p13/ π3  
                                                       p21/ π1          p22/ π2         p23/ π3      
                                                       p31/ π1       p32 / π2       p33/ π3     
As we have shown above that if πi pi j = πj pj i, (balance equation) then the Markov chain is reversible. Thus we get
                                                                           p11/π1      p21/π2           p31/π3     
                                                         S =             p21/π1      p22/π2            p32/π2      
                                                                           p31/π1     p32/π2            p33/π3      

This is clearly a symmetric matrix. Since S =PD-1, we get P = S D as required.  
8.3. Geological Application: To illustrate the use of Theorem 4 consider the late orogenic middle molasses Siwalik sequence which consists of a spectrum of fluvial dominated depositional units of COSD (coarse sandstone), MFSD (medium to fine sandstone), SLSD (interbedded sequence of siltstone and fine sandstone) and MDST (mudstone). Given as, the following observed transition count and transition probability matrices [55],           	Comment by Reviewer: 
Transition count matrix (f ij)  
	
	COSD
	FMSD
	SLSD
	MDST
	fi+

	COSD
	0
	28
	05
	02
	35

	FMSD
	17
	0
	23
	05
	45

	SLSD
	10
	07
	0
	14
	31

	MDST
	07
	10
	04
	0
	21

	f+i
	34
	45
	32
	21
	n++ = 132



Note that the observed transition matrix has perfect marginal homogeneity indicating a properly counted sequence. Simple inspection suggests that the observed table lacks symmetry and this is confirmed by testing with chi-square equation (3), the result gives χ2 =22.19 (which is greater than the critical value), where χ2 (15) = 16.81 with 6 degrees of freedom.	Comment by Reviewer: 
Transition probability matrix (pij)
	lithofacies
	COSD
	FMSD
	SLSD
	MDST

	COSD
	0
	0.800
	0.142
	0.057

	FMSD
	0.377
	0
	0.511
	0.111

	SLSD
	0.322
	0.225
	0
	0.452

	MDST
	0.333
	0.476
	0.190
	0


Now calculate out its stationary probability (π) from probability matrix (pij). The values are
 (π) = (0.346, 0.318, 0.197, and 0.138)
Substituting the values in equation S = PD-1, we have
0        0.800      0.142      0.057                                 1/0.346   0            0            0  
0.377    0          0.511         0.111          χ                    0       1/0.318       0           0
0.322    0.225      0             0.452                                0             0        1/0.197    0
0.333    0.476    0.190         0                                      0             0          0       1/0.138
                                                                                0      2.512     0.721     0.413
                                                                     S =     1.894     0      2.588     0.804
                                                                                0.934   0.707      0       3.275
                                                                                0.963   1.497   0.964      0
The above result shows that S matrix is a non-symmetrical hence P is a non reversible matrix suggesting that the Siwalik molasses succession of the study area possess Markov cyclicity hence supporting unreservedly Khan’s [55] geological interpretation based on the DTMC and entropy analyses.	Comment by Reviewer: Ensure consistent symbols and matrix formatting for readability.
9. CONCLUSIONS	Comment by Reviewer: 
Finite Markov chain stochastic process together with binomial functions has been used to objectively distill the actual lithofacies transition trend which was masked by several erosion truncation surfaces in the coal bearing Karharbari and Barakar sandstone. The transition pattern was found to be Markovian clock, indicating quantitatively link between the underlying and overlying lithofacies, in turn, and the environments of deposition. The high frequency fining upwards cycle shown by the logged boreholes data indicated deposition in alluvial-fluvial braided river systems. Hattori’s entropy functions indicate that cycles are mostly asymmetrical in nature and developed in alluvial- fluvial environments.  Fining upward cycles correspond to the development of basal channel bars, changing into levees, then into back swamps which are topped by coal swamps are of auto-cyclic in nature. The statistical results concur with observed sedimentological evidence of depositional environment. Finite Markov chain stochastic process and Entropy functions has been shown in this study to be an appropriate quantitative methods for defining lithofacies trend with precision. of The asymmetric cyclic sequence with coal as terminal facies, lateral pinching and splitting of coal seam are features which suggest allocthonous origin Permian Gondwana coal. It is suggested, therefore that the methods be applied in oil well lithofacies data analysis to determine and define lithofacies cycles or trends. When such cycles are established in a well they can be further used for local and field-wise correlation. They would also be useful to predict stratigraphy in unexplored geologically areas in a basin.
Contingency tables highlight relationships between categorical variables. Typically, the symmetry or marginal homogeneity of a square table is evaluated. If transition counts are made and tabulated among different discrete and or continuous lithofacies within a careful measured section or borehole data, the resulting tally matrix will have matching row and column sums which are identical or nearly identical. Such a transition count matrix is said to have marginal homogeneity. If it is found that the tally matrix lacks marginal homogeneity, even when tested by a chi-square test, the results should be discarded and the procedure for collecting the data carefully reviewed. The most likely cause of failure is a bias through compilation of counts from a large number of disjoint borehole data. If the transition tally matrix has marginal homogeneity a s9imple chi-square test for symmetry model is sufficient to determine if the sedimentary successions follows a reversible or a nonreversible Markov sequence. If the sequence is nonreversible then the forward and backward succession are definitely different and such a distinction cannot be made if the sequence is reversible. A new method Kolmogorov criterion is introduced for checking transition matrices of reversible or nonreversible Markov process without requiring knowledge of the stationary probabilities of observed transition probability matrix.
The methods should be considered as a means of achieving unbiased results or, at the very least, constraining geological interpretation of relationship between observable lithofacies that are more often very difficult to perceive physically from stratigraphic or borehole sections.	Comment by Reviewer: The conclusion is too wordy- having awkward phrases and grammatical errors. There is no clear structure and has contradictory statements. It has unclear transition between topics and and weak recommendations.
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