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Abstract

In a paper of the present author, solutions of inhomogeneous and homogeneous
Heun’s differential equations, are obtained with the aid of nonstandard analysis.
By using the solutions of homogeneous Heun’s differential equations given there,
polynomial solutions of homogeneous Heun’s differential equations are derived.

Keywords: Heun’s differential equation; nonstandard analysis; complementary solution; polynimial
solution
2020 Mathematics Subject Classification: 34E18; 26A33; 34M25; 34A08

1 Introduction

In a series of papers, Morita and Sato [1, 2] and Morita [3, 4, 5, 6] studied the problem of obtaining
solutions of inhomogeneous and homogeneous differential equations by using the Green’s function
and nonstandard analysis.

In the preceding paper [6], solutions of inhomogeneous and homogeneous Heun’s differential equation
are given.
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In the present paper, it is shown how polynomial solutions of homogeneous Heun’s differential equation
are obtained from the solutions of homogeneous Heun’s differential equation given in [6].

We give here some notations to be used in the following sections. Z is the set of all integers, R and
C are the sets of all real numbers and all complex numbers, respectively, and Z>a = {n ∈ Z | n > a}
and Z<b = {n ∈ Z | n < b}.

We use (z)k for z ∈ C\Z<1 and k ∈ Z>−1, which denote (z)k =
∏k−1
l=0 (z + l) = Γ(z+k)

Γ(z)
for k ∈ Z>0

and (z)0 = 1 for k = 0.

We use the step function H(t) for t ∈ R, which is equal to 1 if t > 0, and to 0 if t ≤ 0, and hk, which
denotes hk = 1 if k ∈ Z>−1, and hk = 0 if k ∈ Z<0.

2 Heun’s Differential Equation

Before writing homogeneous Heun’s differential equation, we present a related differential equation
given by

p(RDt, t)u(t) := {(t− t3)(t− t1)(t− t2)
d2

dt2

+[γ3(t− t1)(t− t2) + γ1(t− t2)(t− t3) + γ2(t− t3)(t− t1)]
d

dt
+(α1β1t− q2)}u(t) = 0, (1)

where t1, t2, t3, γ1, γ2, γ3, α1, β1 and q2 are constants.

We express this equation as follows:

p(RDt, t)u(t) = [(A0 +A1t+A2t
2 +A3t

3)
d2

dt2
+ (B0 +B1t+B2t

2)
d

dt
+(C0 + C1t)]u(t) = 0, (2)

where

A0 = −t3t1t2, A1 = t3t1 + t1t2 + t2t3, A2 = −t3 − t1 − t2, A3 = 1,

B0 = γ3t1t2 + γ1t2t3 + γ2t3t1, B1 = −γ3(t1 + t2)− γ1(t2 + t3)− γ2(t3 + t1),

B2 = γ3 + γ1 + γ2, C0 = −q2, C1 = α1β1. (3)

Homogeneous Heun’s equation is a special one of Equation (1), in which t1 = 1, t3 = 0 and γ2 =
α1 + β1 + 1− γ1 − γ3.

As a consequence, hompgeneous Heun’s equation is expressed by the equation:

pHe(t,RDt)u(t) := [(A1t+A2t
2 +A3t

3)
d2

dt2
+ (B0 +B1t+B2t

2)
d

dt
+ (C0 + C1t)]u(t)

= {[t2t− (1 + t2)t2 + t3]
d2

dt2
+ [γ3t2 +B1t+ (α1 + β1 + 1)t2]

d

dt
−q2 + α1β1t}u(t) = 0, (4)

where

B1 = −[γ3(1 + t2) + γ1t2 + γ2] = −(γ3t2 + γ1t2 − γ1 + α1 + β1 + 1). (5)
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Remark 2.1. In the preceding paper [6], we used α1β1q1 in place of q2 in Equations (1), (3) and (4),
following [7]. Here we use q2, following [8].

Comparing Equation (4) with Equation (1.1.1) in [8], variable t and constants t2, γ1, γ2, γ3, α1, β1 and
q2 appear in the present paper, in place of z and a, δ, ε, γ, α, β and q in [8]. In [7], αβh appears in
place of q in [8].

3 Complementary Solutions

In Section 4 of [6], if γ3 /∈ Z<1, a complementary solution u(t) of Equation (4) is expressed in three
ways, as follows:

u(t) = p0

∞∑
k=0

p̃k
1

k!
tkH(t) = p0

∞∑
k=0

Pk
1

(γ3)kk!
(
t

t2
)kH(t) = p0

∞∑
k=0

akt
kH(t), (6)

where p0 is any number, and p̃k for k ∈ Z>−1 satisfy p̃0 = 1 and

p̃k =
1

t2(k − 1 + γ3)
[p̃k−1Qk(0)− hk−2p̃k−2Rk(0)], k ∈ Z>0, (7)

where Qk(0) and Rk(0) are given by

Qk(0) :=Qk(0, 0) = [(1 + t2)(k − 2)−B1](k − 1) + q2

= [(1 + t2)(k − 2 + γ3)− γ3 − γ1 + γ1t2 + α1 + β1 + 1](k − 1) + q2, k ∈ Z>0, (8)

Rk(0) :=Rk(0, 0) = [[(k − 3) + α1 + β1 + 1](k − 2) + α1β1](k − 1)

= (k − 2 + α1)(k − 2 + β1)(k − 1), k ∈ Z>1. (9)

Equation (6) shows that Pk are related with p̃k by Pk = tk2(γ3)kp̃k for k ∈ Z>−1. By using these
relations in Equation (7), we see that P0 = 1 and

Pk = Pk−1Qk(0)− t2(k − 2 + γ3)hk−2Pk−2Rk(0), k ∈ Z>0. (10)

Equation (6) shows that ak are related with p̃k by ak = p̃k
1
k!

for k ∈ Z>−1. By using these, we confirm
that ak satisfy a0 = 1 and

ak =
1

k!
p̃k =

1

k!
· 1

t2(k − 1 + γ3)
[(k − 1)! · ak−1Qk(0)− hk−2(k − 2)! · ak−2Rk(0)].

=
1

(k − 1 + γ3)kt2
[ak−1Qk(0)− 1

k − 1
hk−2ak−2Rk(0)]. (11)

Equation (11) is given by Equations (8.3)∼(8.5) in [7] and by Equations (3.3.1)∼(3.3.3c) in [8].
Theorem 3.1. We choose n ∈ Z>0 and put α1 = −n+ 1, β1 = −n and

q2 = −n[(n− 1 + γ1 + γ3)t2 − n+ 1− γ1]. (12)

By using these in Equations (8) and (9), we obtain Rn+1(0) = Rn+2(0) = 0 and Qn+1(0) = 0, and
then by using these in Equation (11), we confirm an+1 = an+2 = 0. As a consequence, we have
al = 0 for l ∈ Z>n. When we adopt these values, the solution given by Equation (6) is a polynomial
of degree n.
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3.1 Complementary solution, II

In Section 4.1 of [6], if γ3 /∈ Z>0, another complementary solution u(t) of Equation (4) is expressed
in three ways, as follows:

u(t) = p0

∞∑
k=0

p̃k
1

Γ(2− γ3 + k)
t1−γ3+kH(t) = p0

1

Γ(2− γ3)
t1−γ3

∞∑
k=0

p̃k
1

(2− γ3)k
tkH(t)

= p0

∞∑
k=0

Pk
1

tk2k! · Γ(2− γ3 + k)
t1−γ3+kH(t) = p0

1

Γ(2− γ3)
t1−γ3

∞∑
k=0

akt
kH(t), (13)

where p0 is any number, and p̃k for k ∈ Z>−1 satisfy p̃0 = 1 and

p̃k =
1

t2k
[p̃k−1Qk(1− γ3)− hk−2p̃k−2Rk(1− γ3)], k ∈ Z>0, (14)

where Qk(1− γ3) and Rk(1− γ3) are given by

Qk(1− γ3) :=Qk(1− γ3, 0) = [(1 + t2)(k − 1− γ3)−B1](k − γ3) + q2

= [(1 + t2)(k − 1)− γ3 − γ1 + γ1t2 + α1 + β1 + 1](k − γ3) + q2, k ∈ Z>0, (15)

Rk(1− γ3) :=Rk(1− γ3, 0) = [[(k − 2− γ3) + α1 + β1 + 1](k − 1− γ3) + α1β1](k − γ3)

= (k − 1− γ3 + α1)(k − 1− γ3 + β1)(k − γ3), k ∈ Z>1. (16)

Remark 3.1. We see that the second member of Equation (13) is obtained from the second member
of Equation (6), by replacing k by k + 1 − γ3, where k! = Γ(k + 1) is replaced by Γ(k + 1 − γ3) and
p̃k given by Equation (7) with Equations (8) and (9) is replaced by p̃k given by Equation (14) with
Equations (15) and (16).

Equation (13) shows that Pk are related with p̃k by Pk = tk2(γ3)kp̃k for k ∈ Z>−1. By using these
relations in Equation (14), we see that P0 = 1 and

Pk = Pk−1Qk(1− γ3)− t2(k − 1)hk−2Pk−2Rk(1− γ3), k ∈ Z>0. (17)

Equation (13) shows that ak are related with p̃k by ak = 1
(2−γ3)k

p̃k for k ∈ Z>−1. Then we confirm
that ak satisfy a0 = 1 and

ak =
1

(2− γ3)k
pk =

1

(2− γ3)kt2k
[p̃k−1Qk(1− γ3)− hk−2p̃k−2Rk(1− γ3)]

=
1

t2k(k + 1− γ3)
[ak−1Qk(1− γ3)− 1

k − γ3
hk−2ak−2Rk(1− γ3)], k ∈ Z>0. (18)

Theorem 3.2. We choose n ∈ Z>0 and put α1 = γ3 − n, β1 = γ3 − n− 1 and

q2 = (γ3 − n− 1)[(n+ γ1)t2 + γ3 − n− γ1]. (19)

By using these in Equations (15), (16) and (18), we obtain Rn+1(1 − γ3) = Rn+2(1 − γ3) = 0,
Qn+1(1− γ3) = 0, and an+1 = an+2 = 0. As a consequence, we have al = 0 for l ∈ Z>n. When we
adopt these values, the solution given by (13) is a polynomial of degree n, multipied by t1−γ3 .
Remark 3.2. When γ3 = 1, the solution given by (13) agrees with that given by Equation (6).

4 Conclusion

In Sections 3 and 3.1, we obtain two complementary solutions of Heun’s equation. They are expressed
in three formats. The complementary solution in one format is in agreement with a solution presented
in the past, given in [7] and [8].
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We show that we can construct a series of polynomial solutions of homogeneous Heun’s equation, in
Section 3, and a series of solutions of homogeneous Heun’s equation, each of which is a polynomial
multiplied by t1−γ3 , in Section 3.1.
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