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Fixed point results in generalized fuzzy metric
space using compatible maps of type (K)

ABSTRACT

In this manuscript, we established some common fixed-point (FP) theorems in
generalized-fuzzy metric spaces (M-FMS) by considering compatible self-maps of
type (K). FP theory is widely extended and know-legible concept for research in
various metric spaces and generalized fuzzy metric spaces in the similar sense, these
results improve some existing theorems of literature. Some related examples are
also proved.
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1. INTRODUCTION

Fixed point theory (FPT) is one of the most expanding fields in pure and applied mathematics.
Many new nonlinear problems have been encountered in various branches of mathematics
and sciences domain. FPT for solving various kind of problems in sense of uniqueness and
existence of solution is very wide and interesting field. The theory of fuzzy set was initially
introduced by Zadeh [16] (1965). Many authors, extend fuzzy set-in different sense like fuzzy
differential operator, fuzzy integral norm and fuzzy metric space (FMS). FMS was initially
defined by Kramosil and Michalek [6] (1975) using t-conorm, further by George and
Veeramani [1] (1994), the modified form of the FMS was given.

Jungck [4] (1986), introduced compatible maps and proved some results in the context of
metric space (MS) and in FMS given by Mishra et al. [8] (1994). Sedghi and Shobe [13] (2006),
introduced a new space as M-FMS (Generalized FMS) and prove some FP results. Pant [9]
(1994), established CPT for map which are non-commutative. Compatible maps of type (4)
was firstly given by Jungck et al. [5] (1993). Pathak et al. [10] (1996), established common FP
(CFP) results for compatible maps of type (P). Many mathematicians gave FP theorems in
FMS in different topological properties (ref: [2], [11], [14]). Manandhar et al. [7] (2014), in FMS
gave some FP results compatible maps of type (E).

Jha et al. [3] (2014), prove CFP theorems for compatible maps of type (K) in MS, further Rao
and Reddy [11] (2016), extend the work in FMS for compatible maps of type (K).
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In this paper, we extend FP results of Swati et al. [15] (2016), in generalized FMS for
compatible of type (K) and prove FPT for self-map in M-FMS with some examples.

2. Preliminaries

Definition 2.1: [12] A continuous t-norm (t-conorm) is a binary operation &:[0,1]?> - [0,1]
which satisfies the following conditions for all d,, b, b5, d, € [0,1]:

(T1) & is continuous, commutative and associative,

(TZ) @(bl' 1) =0y,

(T?) &(by,d,) < &(d3,d4) Whenever by < b, and d; < d,.

Definition 2.2: [1] The 3-tuple (%, M, &) is known as FM space if & is an arbitrary set, S is a
t-conorm, M is a fuzzy set in % x A x [0, ) satisfies the following axioms for every @, w, ¢ €
Aand s, > 0:

(FM1) M(w,w, %) > 0,

(FM2) M(w,w,t) = 1ifand only if o = wr,

(FM3) M(w,w,t) = M(w, @, 1),

(FMs) & (M(w,w, 1), M(w, 6,5)) < M(w, &t + 8),

(FMs) M(w,w,) : [0,00) — [0,1] is continuous.

Definition 2.3: [8] A pair of self-maps (,T) of a FMS (%, M, &) is said to be compatible if
lim M(@Tpm TPpm t) =1 for £ >0, whenever sequence {p,,} from A s.t. lim Tp,, =

m-—oo

lim @yp,, = @, for some w € A.

m—oo
Definition 2.4: [5] A pair of self-maps ($,T) of a FMS (%, M, &) is said to be compatible of
type (A) if lim M(£Tp,,, TTpn, t) =1 and lim M(T@p,, §@pm,t) = 1 for £ > 0, whenever

m-—oo m-—oo
sequence {p,,} from A s.t. lim Tp,, = lim Pp,, = @, for some @ € A.

m-oo m-oo
Definition 2.5: [10] A pair of self-maps ($,T) of a FMS (%, M, &) is said to be compatible of
type (P) if lim M(@@p,, TTp,, t) =1 for £ >0, whenever sequence {p,} from ¥ s..
m-—0oo

lim Tp,, = lim @p,, = @, for some @ € A.
m-—oo m—oo
Definition 2.6: [7] A pair of self-maps ($,T) of a FMS (%, M, &) is said to be compatible of
type (E) if lim M(@@pn, @§Tpm t) = Tw and lim M(TTp,, THp,, ) = pw, for all ¢ >0,

mooo m—oo
whenever sequence {p,,} from A s.t. lim Tp,, = lim Pv,, = @, for some w € A.

m—oo m—oo

Definition 2.7: [11] A pair of self-maps (£, T) of a FMS (%, M, &) is said to be compatible of
type (K) iff lim M(@pp,,, Tw,£) =1 and lim M(TTp,, Hw,¢) = 1, for any £ > 0, whenever

m—oo m—oco
sequence {p,,} from A s.t. lim Tp,, = lim Pp,, = @, for some w € A.

m-—oo m-—oo

Definition 2.8: [13] A 3-tuple (%, M, §) is said to be a generalised FMS (M-FMS) if A # {9},
S is a t-conorm, M is a fuzzy set on U3 x (0,00) satisfies the following axioms for
every w,w,§,u € A and 8, > 0:
(Mem1) M (w, w, &, %) > 0,
(Mev2) M (w,w,&,8) =1 w=w = ¢,
(Memz) M (@, w, &, 1) = M (p{w, w, &}, %) where p is a permutation,
(Mema) & (M(w, w,u, ), My, &, 5)) < M@, w, &t + 38),
(Mevs) M (w, w, €,7) = (0,0) - [0,1] is continuous.
Lemma 2.9: [13] If (A, M, &) be a generalized M-FMS then M (w, w, €, ¢) is non-decreasing
with respect to £, for all # > 0.
Definition 2.10: [13] Let (%, M, &) be an M-FMS, for some @ € A and {p,,,} be a sequence
in A. Then
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(i) A sequence {p,,} is said to converge to w if for every £ > 0,
lim ( !

mooo \M (pm,@,@,t)

(i) A sequence {p,,} is said to be a Cauchy sequence if for all #+ > 0 and n € N we have

lim < - ! - 1) = 0.

M= \M (P4 Pms P £)
(i) M-FMS (¥, M, &) in which every Cauchy sequence is convergent is said to be complete.
Lemma 2.11: [13] Let (%, M,&S) be a generalized M-FMS and if 30 < k <1 satisfying
M (w,w, & kt) > M (w,w,&, 1), for every w,w, & € Aand £ € (0,0) thenw = w = €.

—1)=0i.e., lim p,, > worp,, > wasm — oo,
m—-0oo

3. Main Results:

In this section, we firstly state compatible maps of type (K) in M-FMS (%, M, &) and we prove
CFP results in M-FMS (%, M, ) for the compatible of type (K) map.

Definition 3.1: A pair of self-maps (®,T) of a M-FMS (%, M, &) is said to be compatible of
type (K) iff r}li_r}go M(@@pn, Tw, Tw,t) =1 and r}li_r}go M(TTp, Pw, pw,t) = 1, for every £ > 0,
whenever sequence {p,,} from A s.t. Jim Tp, = Jim Pv,, = @, for some w € A.

Example 3.2: Consider %A = [—1,6] be a complete in M-FMS and two self-maps $,T: A - A

3 ifwmel[-13]-{} fw ifwe[-17)

° 3 ifw =2
be defined as: p(w) =< 6 ifw = % and T(w) = i Te
_ 6 1
2 ifw e 36] z @€ (2]
6 le ifw € (2,6]

Now, consider a sequence p,, = 3 + i from U, for each non-negative integer m then

Jli_r}gog%pm=r}liﬂog5(3+6im) = lim l(1—6%1) =%and

m—oo 6

lim Tp, =7}li_r:207'"(3 +2) =1;li£20%(3 +)=1

Thus, both yp,, and Tp,, converges to % ie., Jlifgo Pom = rllifio Tp, = % As, P (%) =6 and
T (%) = 3, therefore Jliirio T@Pm = r}liflo T (3 + ﬁ) = 7}11530 T (% - ﬁ) = %
Jim BTy, = lim BT (3+ 1) = lim (5 + ) =3
Jim BHvn = lim 55 (3+5) = lim p(z--) =3="7(3).
Jim TTom = lim 77 (3+ ) = lim 7 (5 + 55.) = 6 = 8 5):

Hence, the maps are compatible of type (K) but not compatible, compatible of type (A), (P)
and (E).

Theorem 3.3: Consider (%, M,E) be a complete M-FMS (generalized-FMS) defined the
41,82, 03, 4ar As @and A4 be six self-maps on ¥ s.t. they satisfies the following property:
(A331) 51(91) c A5€3(91) and (Z(QI) c AaQ(QI),

(A332) 0104 = {41, G203 = {302, {306= Ag{5, and {4As= As{y,
(A333) (¢4, A504), ({5, Asl3) are compatible of type (K) where one of them is continuous,

(A334) for all m, w, £ € Aand 0 < A < 2 there exists constant 0 < k < 1 s.t.:
. ~'7\;[((1ZU, fowr, S, kt) .
> min {M(ASQ(H, ?113': (1w, 1), M (As{3wr, (Z’W’ fow, 1), M (As{yw, Ag{swr, Ag{swr, t)'}_
h M (LGzw, § @, @, A1), M (As{y@, {wr, (g/w' (=1+2)%)
Then, six self-maps {3, {3, {3, {4, As and A, have unique CFP in 2.
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Proof: Suppose p, € %A From given hypothesis (A332): () < A385(A), () < 468, (%),
then 3 p;,p; € As.t. & (pg) = Ass(po) = 90 and &, (p) = Aela(p2) = a1
Now, we generate two-sequences {p,,} and {q,,} from 2 in such a way that

$1(P2m) = BsC3(P2ms1) = Gzm AN G (P2me1) = B6Ca(P2msz) = Gzmer- (3.1)
for each non-negative integermand 1 = —pu + 1, where 0 < u < 1.

Now, we show that {q,,,} is Cauchy in . From (A334), we have

M(Q2m+1' G2m» G2m, kt) = ]\;[(quv G2m+1 G2m+1, kE) = M((ﬂ%m: {2P2m+1s $2P2m+1, k1),
Therefore, one can have

. M(Qpva {2p2m+1f§2p2m+1’ kt)
M (Ds58aP2ms $1P2ms S1P2ms ), M (B6{3P2m+15 $2P2ms $2P2ms 1),
2 min { M (As{4P2m Be3P2m+1, B6G3P2ma1, £) M (B63P2m+1, S1P2ms S1P2m, AL, ¢
M (AsaP2ms $2P2m+1s $2Pame1, (—A4 + 2)1)
M (2m-1, G2m> 92m> £ ) M (G20m> G2m+1) G2m+1, 1),
M (G2m+1) G2ms G2ms k£) = min{ M (G2m-1, G2ms G2ms £)s M (G2, G2ms G2m, (= + 1),
' M (G2m-1, G2m+1> G2m+1, W + 1)E)
By equation (2.1), we get
. M (@z2m-1, G2ms G2ms £)s M (2 G2mes 1, G2mars 1),
M(qu+1. G2 Goms kt) > mm{ 2m ’1 2mr Y2m 2my H2m+1 M2m+1 ,
) M (92m-1, G2m+1s G2m+1s (u+1D1)
, M 1 , 1), M ) , 1),
M Gamstr Goms Qam k) = min{ qum 1 G2ms G2m, ) €Q2m d2m+1 92m+1 )}
) M (G2m-1) G2m> G2ms 1)y M (G2m, G2ms G2ms UE)
Letting as u assumes to 1 and using M -FMS axioms, we obtain
M (G2m+1) G2ms G2m, kKt) = min{M(qu_l, G2m> G2ms )y M (G2im) G2m+1 G2mer1s t)} (3.2)
Replacing # with £ /k in equation (3.2), we have
M(Q2m+1’ G2m» G2m, ) = min {M (qu 1 92m» 92mo ): (Qme dQ2m+1 q2m+1:_)
M(q2m+1' 92m> 92m» kt)

}
= min {M(C{Zm 1 2m Gzm, £), M (qu 1 G2ms G2m» ) }’
J

t
M(q2m+1' dQ2m> 92m.» kt) = min {M(qu 1 92ms Q2m» t) M (qul Qom+1 A2m+1» E) ’
ie., M(Q2m+1: G2ms G2ms KT)
o (o . t . t
= min {M(Q2m—1: G2m> G2ms ), M (qu—b 92m> G2m» k_z) M (qu' 92m+1, G2m+1 kz)}l
P . - . t
M (92m+1) G2ms G2m, k) = min {M(qu—lr G2m> G2ms 1), M (Q2m» A2m+1 G2m+1s k_z)}
Similarly, one can get
. . - . t
M(q2m+1' qu' dQ2m» kt) = min {M(qu—ll AQ2m> 92m. ’f), M (qut 2m+1 92m+1 k_m }
As, limit m tending to oo, we have
M (G2m+1> G2ms G2ms k) = min{M(qu_l, A2ms G2ms 1), 1}-

M (a2m+1) G2ms G2ms kt) > M (G2m-1, G2ms G2m, t) for £ > 0.
Thus, for every m and ¢ > 0, we say M (Gm+1, G G k%) = M (G Gm1, Gm—1, £)- Therefore,
4

t
k
t

Azm G2m+1 Q2m+10 3,

M(qm+1t Om> Am. t) = M (qm; Om-1 A9m-1» E)

. p . t
>M (Qm—u CIm—ZICIm—z:k_z) > >M (‘h:%'%'k_m)-
lim M (q41) G Gmo £) = 1 for £ > 0.

m-oo

For any p integer, we have

M(qm: Dm+pr Sm+p» t)
t\ . t . t
2 6 (Qm' Om+1 Am+1 k) M <qm+1: Om+2> Gm+2, E) s M <Qm+p—1: Om+p» Am+p» E)

lim M (qme1) G G £) = S(1,1,,1 ..., ...,1,1) = 1 for £ > 0.
m—o0o
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Hence, {q,,} is Cauchy sequence in U, which is complete M-FMS. Therefore, there exists ¢ €
Aand 'Ebe sub-sequences {{; (P2m)} {A5¢3 (P2me1)} {2 (Pame1)}s {8604 (P2m+2)} @lSO cOnverges
to & e .

T}lilrgo (1(pam) = T}lllrgo Asl3(Pam+1) = 1}11120 G(Pame1) = JLI_YBO Aela(Poms2) = ¢ (3-3)
Case (i) ({1,As¢,) is compatible of type (K) and either A{, or ; is continuous. Now, we have
lim ¢ (pom) = lim A5y (pomy2) = ¢ 1€, lim &3 (Pom) = lim As{y(pom) =,

since, ({3, {s{,) is compatible of type (K), we get
1}3120 {161 (P2m) = As{4€ and 1}112}0 As{4As5Cs(Pom) = Gi€-
Now, if map ¢; is continuous then ,}liirlo 0 (pom) =€ 16, TLiirgo GG Pem) = GE.
Therefore, (& = As{,€.
Similarly, if Ag{, is continuous, then 1}3120 Al (pom) =€ e, TLiirgo A A5l (Pom) = As(4E.
Therefore, {;& = As{,€. (3.4)
Considering ¢ = w and w = py,44 i (A334), one can have
i M(Gf» (sz,m+1' {oP2m1, kt)
M (D5848,618,618,1), M (D683P2m415 $2P2ms1s S2P2me1s ),
= min {M(Asﬁf: Del3Pame1 BelsP2me1, 1), M (D6laPoms, $1€ GiE, /H’),}.

M (D584, $aPame1s (oP2mar (A + 2)1)
Since by equation (2.4), we get

i M(Gf: (2p,2m+1» {aPamer, kt)
M ($1§,61€,618,£), M (A683P2m+15 $2P2mr 1 $2P2mr 1, £))
> min { M (§1€, Ds{3P2m+1, A6G3P2me1, 1) M (BssPamer G1& 1, AE), ¢
]\;[,((15» $aPamr1 $2Pamer, (4 + 2)T)
) M($1§, $oP2mers (2p2m+1' kt)
> min {1' M (A683P2m+15 $2Pam+1, $2P2m1 £)s M (G4, B6l3P2m+1, B3 P2ms1s t)'}

M (B6G3Pam+1, $1€r $a&, A1), M(81E, &oPomars CaPamer, (A + 2)1)
by letting limit m tend to oo, we arrive at

M(G€,§,€ k)
> min{1, M (§,§,§,4), M(G1€,§,6,4), M(§, 816, 61E, M), M (G1€,6,6, (=1 + 2)1)}.
Since by from equation (2.3), when A tend to 1, one can get
M(6:€,€,€ kt) = min{1,1, M (G1€,€,6,4), M(§, 16,616, 4), M(G€,6,6, )},
M(G1€,§,¢, kt) = min{1,1, M (5:6,4,§, 1)},
M (616,88 kt) = M(§16,6,8,%).

From using Lemma 2.11, we say (;¢ = ¢.
Therefore, (& = Ag(, ¢ =¢. (3.5)
Case (ii) (¢, As¢3) is compatible of type (K) and either A,{; or ¢, is continuous. Now, we get

T}lifgo $o(P2me1) = T}ll_rgo D68 (Pame1) =,

since, ({3, A¢{3) is compatible of type (K), then we get

nl'liirgo {282 (P2m+1) = {6¢5¢ and T}ll_rgo A6d30603(Pam+1) = §2€.
Now, if ¢, is continuous then liirio O (Pamer) =€ ie, “E}o 00 (Pamer) = €.
Also, if A¢{5 is continuous, wénobtain "

T}lifgo Ael3(Poms1) =< i€, nlllfgo A6830605(P2m+1) = Aed5¢.

Therefore, {;& = As{,€. (3.6)
Put ¢ = @ = w in (A334), one can have

, M (618,06, 06 kt)

> min {M(Asc4f, GE 081D, M (Bea8, 628 58,8, M (Bs8a€, AsGad, Aeds, t),}_

M(A6(3 f' (151 (lél At)' M(A5<4E' ZZE' ZZE’ (_A + Z)t)
Since by equation (3.5) and (3.6), we obtain
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J\;[(f, {lfv {1€v t)v M((Zf! (Zf! (Zf! t)! M(f! (2'5! (2'5! t)}

MG, 0,8, 0,6 k) = mi , >
(§,02€, 8¢ ) = mln{ M((,&,&,&,24), M (§,0,¢,0,¢, (=1 + 2)%)

as A tend to 1, we have
M(E, (25' ZZE' kt) 2 min{l,l, J\;[(f, {ZEv {2€v t)! M((Z'S! f! f! t)! M('S! (Zf: (2'5: t)}!

M‘(f' (25: 62 fl kt) = M‘(f; (Z 51 (Z 51 t):
by using Lemma 2.11, implies that {,¢ = ¢.

Therefore, {;§ = As{4é = $€ = D38 =¢. (3.7
Now, put é = w and w = (3¢ in (A334), we obtain

. M((l fl 62 63 5',(2 (3 f’ kt)
M (D548, 618,61€,), M (8603038, 02058, (2058, 1),
= min M (8584¢, D60305€, M358, 1),

M (8663638, 61§, 616, A1), M (854a€, 2058, (2038, (A + Z)f)
from given (A332), we get

; M((l fl 63 62 fﬂ,(3 (2 f’ kt)
M(A5¢4€' (lfr (16! t): M((3A6{3$1 (3(251 (3(26! t)x
= min M (Bs534€,30603€, $30603€, 1),

M (8306038, 818,8&, A1), M (D504, 03028, 03028, (A + 2)1)
By equation (3.7), one can have

M(f' 53 E' (36! kt) 2 min {

Considering as A1 tend to 1,
M(E' 6351 (35! kt) = min{l, M(f. (35! (35' t)}v i-e-1 M(f; 6355 (35' kt) = M(f, 635! (36' ’t)-
Form Lemma 2.11, we have
§=0¢and & = AgdEie., § = Ag.
Therefore, & = (3¢ = A€ (3.8)
Again, if we put {,é = w and w = & in (A334), we obtain
, M (§1648, 62§, 68, et)
M (A584Ga8, 6104, 61848, £), M (L6838, 028, (26, 1),
= min

M(f: fl f' t)' M((3§' (355 (355 t)' M(f‘ 635' (35' t)'}
M((3 f! sz, sz’ A’f), M(f: (3 E! {351 (_A + 2)4'-) .

M (8584848, 86838, 86038, 1),

M (86038, 8104€, 81 00E, A1), M(A5C4 048, 358, 86, (A + Z)t)
By, given hypothesis (A332), one can get

MGG 08 G k)
M ($485848, 84818, Ca1€, 1), M (86058, {26, {26, 1),
= min{ M (485048, D0633€, D6 33E, 1), }
M (86038, 4818, 0401 €, 28), M ($4D504E, 858, 0o€, (A + 2)1)

From equation (2.7), we get
v : M((Alfl (461 (46' 7[7), M((4E, f: f: t)) M((Al—f) fl El t)r
M 45,595 k = - - .
- HGsssk = mm{ M08, 48,20, T (G856, (—2+ 2)0) |
M(Z‘lf' f! E' kt) = min{llll M((4€; 61 fl ’ff), M(f, (451 (45) At)) M((‘l—fl El El (_A + Z)f)},
as A assumes to 1,

M((4E' E' SI' kt) 2 min{l, M({4€! f! ft t)}r i.e., M({4€' E' E' kt) = M((A{-El E' E! t)
By, considering Lemma 2.11, we get
§=08and & = A8 0e., & =48
Thus, & = (& = A&, . (3.9
Using equations (3.7), (3.8) and (3.9), one can obtain
§ =068 = A5 = 08 =058 = (8 =46
Hence, ¢ is CFP of six self-maps {3, {5, {5, {4, As and A,.
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Uniqueness: To show uniqueness of FP, let u, be another FP of six self-maps {3, {5, (5, {4, As
and Ag i.e., (u, = {u, = (u, = {u, = Agu, = Agu, =u,. Put & =@ and u, = w in (A334),
one can have

. ,M(Qf’ {ou,, Qu,, kt) .
M (85848, 618, 61€,), M (D310, $olty, $olty, £), M (A504E, Asfaut,, AsQalt,, t):}

M(A6(3um (15: (15' At), M(Asﬁf, (Zuaﬂ (Zual (_A + 2)4’—)
Letting as 4 — 1, we obtain

M (& u,,u,, kt) = min{

= min{

M(Asf' fi fi t)' ]\;[(AGU'W Uy, Uy, t)! M(AS'E: Aeum A6um t):}
. M(A6uzy"€' f’ t)' M(Asf‘ 1{0‘ uzy' t) '
M(§,8,8,4), M (uy, u,,1,,£), M(§, 15,1, t),}
M(uzy' f’ f’ t)' M(f' 110,, uo'l t) .
Then, M (£, u,,u,, k) = min{1, M (£, u,,u,,£)} i.6., M u,,u,, kt) = M (E,u,,1,,%).
Hence, & = u,.
Thus, we established the uniqueness of CFP ¢.

M (& u,,u,, kt) = min{

Example 3.4: Let A = [—3,3] be a complete in M-FMS and two self-maps $,T: A — A be
(6 ifo =2 )
_ B ) ) 1 ifw e [-3,2]
defined as: p(w) ={ @ ifw€[-3,2]— {5} and T(w) = [,33 _ .
() — ifw € (23]
89 ifwe (23]

Now, consider a sequence p,, = 2 + ﬁ from ¥, for each non-negative integer m. Letting as,

m tends to o, both $yp,, and Tp,, converges to% i.e., lim @p,, = lim Tp,, = % Since, G) =
m—oo m—oo

6 and T (%) = % thus, one can obtain

Jliggos?@vm=7}liggog555(2 + D) =1m p(i-)=1=7(2),

m-—oo 3 36m. 3

lim 7Tp,, = lim 77 (2+ =) = lim 7 (3+-=) =2+ 5(3) =6,

m-oo m-oo m-oo 3em. 3

lim @Tpm=rlli_r>rgog’57'"(2 +$)= lim fo(§+ﬁ)= lim (1+L)=1,

m—oo m—oo m-oo \3 36m. 3

lim Tfapm=rlli£rgonJ(2 +$)= lim T(l— ! )=1.

m—oo m—oo 3 36m 3

Hence, the maps not compatible of type (K) in .

Corollary 3.5: Consider (%, M,&) be a complete M-FMS. If {;,{,,{; and {, are self-maps
on ¥ s.t. they satisfies:
(3%%) 1 (A) < G(A), G (A) < & (A);
(A%52) (4, 04), ({5, {3) is compatible of type (K) where one of them is contionus;
(A353) for allm,w,f € Wand 0 <1< 2,30<k <1s.t:
. ]\;[(,(113, fowr, Sy, kt) )

> min {M(Qw: (1@, @, 1), M ({yw, {2”’”: fow, 1), M ({3@, {w, {w, ’t):}_

B M ((yw, {@, § @, /M');M(Qw:fzw' ow, (=1 + 2)t)
Then, self-maps {3, {5, {3 and {, have unique CFP in 2.
Proof: If we consider A;= A;= 1 in Theorem 3.3, one can easily do the proof.

Corollary 3.6: Consider (%, M, &) be a complete M-FMS. If {;,{, and ; are three self-maps
on U s.t. they satisfies:

(A361) ¢ () < G (A) N ¢5(A);

(A%%2) (¢4, 0,), (¢4, {3) is compatible of type (K), where {; is contionus;

(A36:3) for every w,w,§ EAand 0<1<2,30<k<1s.t:
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277

278
279
280
281
282
283
284
285
286
287
288
289

300

301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

, ﬁ(gl w, {1’11)’, {1’1/0’, kt) ;
M(ZZZD—' {107, {107, t)’ M({3’L()’, {1’1/0’, (lw! t)! M((Zw! (3’1«0’, (3w! t)!}
M({Al—w' {107, {113', /’H")! M({Z}U! (1’1«0’, (1’1«0’, (_/1 + Z)t)
Then, self-maps {;, {, and {5 have unique CFP in L.
Proof: By considering {; = {, = I in Corollary 2.2, one can have the proof.

= min{

4, CONCLUSION

In the manuscript, we established CFP theorems in M-FMS for self-maps by using compatible
of type (K) with some examples, since FP theory has many applications in various branches
of mathematics and generalized-FMS. These results extend and generalized some FP
theorems existing in the literature.

ABBREVIATIONS
FMS: Fuzzy metric space; FPT: Fixed point theory; CFP: Common Fixed point; s.t.: Such that.
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