
Abstract
A deterministic field theory of the Dirac equation along lines that Einstein, and possibly Dirac, may
have approved of, was given by Toyoki Koga. In this paper, we work out some relevant properties
of Koga’s solution to the Dirac equation. In particular, we consider his claim that the solution
contains a term representing a rotating field. We confirm his claim and find additional information
on coordinate transformations using the Hopf map.
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1 Introduction

The basic structure of Quantum Mechanics was developed in the 1920s. In 1927 Pauli extended the
theory of Schrödinger to deal with the magnetic moment of the electron by introducing (apparent)
spin as an axiom. The following year, Dirac proposed an equation for the electron field ψ(x, y, z, t)
which took special relativity into account.

As for the interpretation of the equations of Quantum Mechanics, there was a near consensus.
Most physicists accepted the view of Heisenberg and Bohr, which became known as the Copenhagen
Interpretation. The electron was believed to be a sizeless particle whose properties like momentum
and energy were to be found by applying certain operators to the field ψ. The result of applying an
operator corresponded to a “measurement”. Ideas like wave-particle duality, the uncertainty principle
and the role of the observer were introduced.

Among the founders of Quantum Theory, a few like Einstein, Schrödinger and de Broglie did
not accept these ideas initially. Most of them eventually gave up their opposition; an exception was
Einstein. In Einstein’s opinion, Quantum Mechanics, e.g., the solution of the Schrödinger equation,
was a purely statistical theory; it applied only to the average behaviour of an ensemble. He believed
that there ought to be an underlying deterministic theory which would yield Quantum Mechanics on
averaging over ensembles. However, Einstein was unable to provide such a theory.
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During the 1970s, Toyoki Koga published the results of his study of the foundations of Quantum
Mechanics ((T. Koga , 1972), (J. Mehra , 1973), (T. Koga , 1975), (T. Koga , 1975), (T. Koga , 1976), (T.
Koga , 1980), (T. Koga, 1983)). As a consequence of his efforts to remove the various inconsistencies
that he found, he developed a deterministic theory of the electron. Specifically, he found solutions
to the Schrödinger, Klein-Gordon and Dirac equations which represent localised fields around a
singularity at the centre of the electron ((T. Koga , 1972),(J. Mehra , 1973), (T. Koga , 1975), (T. Koga
, 1975)), Chapters IV and V of (T. Koga , 1980) and Chapter V of (T. Koga, 1983)). He then developed
a theory of the electron field which involves the internal gravitational field of the electron ((T. Koga ,
1976), Chapter VI of (T. Koga , 1980)). This implies both the Dirac theory and Maxwell’s equations
as limiting cases. Koga applied these ideas to various phenomena in quantum electrodynamics and
particle physics (Chapters VII-IX of (T. Koga , 1980)). We are not concerned with all this here.

As a justification for his solutions, Koga showed that a de Broglie wave could be obtained by
averaging over an ensemble of his solutions to the Schrödinger equation, which he called elementary
fields in his books (earlier, in his journal articles, he used the term wavelets).

Thus, Koga’s theory partly agrees with Einstein’s ideas. However, Koga showed that the Schrödinger
equation itself has a solution which can be interpreted as a localised field with deterministic motion,
contradicting Einstein’s view that the implication of this equation was solely statistical.

The first textbook of Quantum Mechanics was possibly “The Principles of Quantum Mechanics”
by Dirac ((Dirac , 1958)), first published in 1930. The preface of this book shows that Dirac was at
that time in total agreement with the Copenhagen Interpretation.

By 1970, however, Dirac had virtually made a U-turn in this matter. In that year, a symposium on
twentieth century physics was held at ICTP, Trieste, Italy. In his talk “Development of the physicist’s
conception of nature” ((J. Mehra , 1973), Chapter 1) Dirac asserted that many physicists were
uncomfortable about having indeterminacy in the basic laws of physics and he was one of them;
he accepted it only tentatively as “the best that one can do in our present state of knowledge”.

In this paper we study some properties of Koga’s solution to the Dirac equation. In particular,
we consider his claim that the solution represents a rotating field. We confirm his claim and find
additional information. This is of both physical and mathematical interest.

2 The Klein-Gordon and Dirac Equations
This paper can be considered a sequel to (K.V. Didimos et.al. , 2017) on deterministic Pauli spin
theory.

We first briefly describe Koga’s solution.
Suppose Φ(x, y, z, t) is a solution to the Klein-Gordon equation for a free electron with no external

forces acting on it (this is the only case treated here),(
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Here Φ can be a complex-valued scalar map or an n-tuple of such maps, for any n.
We take n = 4 in order to use Φ to get a solution Ψ to the Dirac equation.
Then the Klein-Gordon equation can be written as
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Here β, α1, α2 and α3 are certain 4 × 4 matrices; following Koga, we choose them to be the
matrices which were first given by Dirac. The Dirac equation is nothing but

D0Ψ = 0

and hence a solution to it is given by Ψ = D1Φ.

3 Solutions to the Dirac equation
Suppose we consider a free electron at rest in our inertial frame with its centre at the origin of our
coordinate system. This case suffices for our purposes; there is no loss of generality. There exists a
(complex) scalar solution to the Klein-Gordon equation, given by

φ = a exp (iS/ℏ)

where

a = exp (−κr)/r,
S = −Ect

with

r = |r|,
E2 = m2c2 − ℏ2κ2

where κ is a positive constant, r = position vector, cE = energy, (the value of κ is not given by the
theory and is to be chosen to make the result conform to reality).

This solution was given by Koga in (T. Koga, 1983). It is very similar to his solution to the
Schrödinger equation. He then took, as a 4-dimensional solution to the Klein-Gordon equation,
Φ = (φ1, φ2, φ3, φ4)

T with
φj = a exp (iS/ℏ)Aj

where Aj are arbitrary complex constants.
Koga wrote down a 4-dimensional solution to the Dirac equation, Ψ = (ψ1, ψ2, ψ3, ψ4)

T , by
evaluating D1Φ with Φ = (φ1, φ2, φ3, φ4)

T . He then tried to demonstrate that this solution, with
arbitrary A1, A2, A3, A4, represents a rotating field, similar to a spinning top. He was not very
successful, probably because he did not assign specific, suitable values to the constants Aj as we
shall do in this paper, but kept them arbitrary.

Pandey and Chakravarti ((S.K. Pandey et.al. , 2009)) translated the complex scalar solution
of the Klein-Gordon equation ψ = a exp (iS/ℏ) into Geometric Algebra and got a solution to the
Dirac equation, but did not interpret the terms properly. One purpose of this paper is to correct
the error in their paper. It turns out that although Geometric Algebra was initially very helpful in
finding a solution, it did not clearly display some other solutions and the relation between them; the
conventional approach makes things clear.

We will assume, with no loss of generality, that the electron is at rest in our inertial frame:

u = 0.

Then r′ = r and E2 = m2c2 − ℏ2κ2. Koga’s solution to the Dirac equation is as follows. He
defined

R = (r − ut)

(
1

|r − ut|2 +
κ

|r − ut| (1− u2/c2)1/2

)
which reduces, when u = 0, to

R = r
(

1

r2
+
κ

r

)
, where r = |r|.
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Now the solution Ψ, with arbitrary constants Aj , has components

ψ1 = a exp (iS/ℏ)
[
A1 (Ec+mc2)−A4 iℏc (Rx − iRy)−A3 iℏc Rz

]
,

ψ2 = a exp (iS/ℏ)
[
A2 (Ec+mc2)−A3 iℏc (Rx + iRy) +A4 iℏc Rz

]
,

ψ3 = a exp (iS/ℏ)
[
A3 (Ec−mc2) +A2 iℏc (Rx − iRy) +A1 iℏc Rz

]
,

ψ4 = a exp (iS/ℏ)
[
A4 (Ec−mc2) +A1 iℏc (Rx + iRy)−A2 iℏc Rz

]
.

These expressions were obtained by putting u = 0 in the solution given by Koga.

4 The choice of the coefficients

Not all such solutions can be expected to be physically realistic; Koga mentioned that the arbitrary
coefficients Aj need to be appropriately chosen. But he did not make any choice and tried to prove,
using arbitrary Aj , that the solution represents a spinning field. Note that Ec stands for energy.

We propose four possible solutions, each obtained by taking one Aj to be 1 and the others to be
0.

Taking A1 = 1, A2 = A3 = A4 = 0 gives the solution corresponding to that obtained by Pandey
and Chakravarti:

Ψ = a exp (iS/ℏ)


Ec+mc2

0
iℏcRz

iℏc(Rx + iRy)

 .

This can be written as the sum of four column vectors, the second term being the zero vector:

Ψ = a exp (iS/ℏ)


Ec+mc2

0
0
0



+ a exp (iS/ℏ)


0
0

iℏcRz

0



+ a exp (iS/ℏ)


0
0
0

iℏc(Rx + iRy)

 .

The three nonzero vectors can be interpreted as follows: since Ec + mc2 is constant, the first
vector is a solution to the Klein-Gordon equation which represents a field without spin. The second
vector is a field which has rotational symmetry about the z-axis. Finally, the last vector represents a
spinning field with angular velocity

ω = Ec/ℏ.

This can be verified by observing that if we take a rotating frame with the same origin, z-axis and
angular velocity ω, the field is a constant field in this frame. We do this in the next section. Both the
second and third nonzero vectors are needed to describe the effect of rotation of axes.

At this point it can be mentioned that Pandey and Chakravarti S.K. Pandey et.al. (2009) made
the error of mixing the last two components. In the present approach, it is impossible to do this.
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Similarly, if we take A2 = 1 and A1 = A3 = A4 = 0 we get

ψ1 = 0,

ψ2 = a exp(iS/ℏ)(Ec+mc2),

ψ3 = a exp(iS/ℏ)iℏc(Rx − iRy),

ψ4 = a exp(iS/ℏ)(−iℏcRz).

Again there are three nonzero column vectors. They can be interpreted exactly as in the previous
case (but in a different order) except that the direction of rotation is reversed because Rx − iRy is the
complex conjugate of Rx + iRy (their arguments are the negatives of each other). If the first solution
is defined to be spin up, then the second is spin down.

Two similar choices can be made, A3 = 1 and A4 = 1. The solutions are similar to the ones
described above. But the Klein-Gordon term contains Ec −mc2 instead of Ec +mc2. Later on, the
first two solutions are denoted by Ψf and Ψs restpectively.

These four solutions have some common features. Each has three nonzero components: a
constant component, a component independent of x and y with the same magnitude in all four, and a
component giving a rotating field with angular velocity |Ec/ℏ|. The first two solutions have a constant
component of the same magnitude, |Ec +mc2|. Similarly for the last two. It was mentioned earlier
that E satisfies E2 = m2c2 − ℏ2κ2. If we assume the positive root for E in the first two solutions
and the negative root in the last two, the constant component has the same value in all four. All this
suggests that these solutions really represent the electron. The last two can be considered negative
energy solutions. We will not say any more about them.

If we delete the third and fourth components of these vectors, we get analogues of solutions of
the Pauli equation.

5 Verification of the rotating field

It suffices to consider the first solution A1 = 1, A2 = A3 = A4 = 0. Let F = F (x, y, z, t) be a vector
field. Suppose a point with coordinates (x, y, z, t) in our inertial frame has coordinates (x′, y′, z, t) in
a rotating frame with the same z-axis and angular velocity ω. Let x + iy = ρeiθ where ρ = |x + iy|.
Then x′ + iy′ = ρei(θ−ωt). The condition

F (x, y, z, t) = F (x′, y′, z, 0) for all points

is equivalent to the statement that the field F is rotating with an angular velocity ω relative to the
inertial frame.

Now suppose F = ψ4 and the angular velocity is ω = Ec/ℏ. Then, using S = −Ect and
x′ + iy′ = exp(−iωt)(x+ iy) we get

ψ4(x, y, z, t) = a exp (iS/ℏ)


0
0
0

iℏc(Rx + iRy)



= a exp (−iωt)(iℏc)
(

1

r2
+
κ

r

)
0
0
0

x+ iy


and
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ψ4(x
′, y′, z, 0) = a(iℏc)

(
1

r2
+
κ

r

)
0
0
0

x′ + iy′


= ψ4(x, y, z, t).

This shows that ψ4 is a rotating field.

6 Rotation of axes
As we are studying an electron in its rest frame, the only possible coordinate transformation is a
rotation of axes. Suppose n = (n1, n2, n3) ∈ R3 with n2

1 + n2
2 + n2

3 = 1. We can describe the
components of n using spherical coordinates:

n1 = sin θ cosϕ,

n2 = sin θ sinϕ,

n3 = cos θ

where θ is unique if we assume 0 ≤ θ ≤ π, and ϕ is unique modulo 2π.
We define the Hopf map f . The following definition and several equivalent ones are given in

Socolovsky. M (2001); this one is the most convenient for us.
A general point P ∈ S3 can be described as

P = eiξccos(θ/2) (6.1)

eiϕ sin(θ/2)
(6.2)

where 0 ≤ θ ≤ π. Here θ is unique and ϕ can also be made unique by putting suitable bounds on it;
ξ is arbitrary. Let

f(P ) = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ S2. (6.3)

We see that

(i) f is continuous, independent of ξ and depends only on the ratio of the components of P ,
eiϕ tan(θ/2),

(ii) every point of S2 is f(P ) for some P ∈ S3,

(iii) fc10 = (0, 0, 1) (the north pole of S2),

(iv) fc01 = (0, 0,−1) (the south pole of S2), and

(v) f(P ) uniquely determines P (except for the value of ξ).

As a consequence of (i), we can extend the domain of f to all the points of C2 except the origin.
There is also an S2-valued map f(ψ) where ψ = cψ1ψ2 is a solution of the Pauli equation (K.V.
Didimos et.al. , 2017). It should be noted that f(ψ) depends on t alone; for a free electron, f(ψ) is
constant. Thus, f is a candidate for the direction map. But is f compatible with the Pauli spin theory?
In other words, for a free electron, do f(ψ) and the spin angular momentum vector s have the same
direction in R3? By properties (iii) and (iv), f(ψ) gives the spin direction of a spin-up or spin-down
electron.
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Then we have

n = f

(
cos(θ/2)

eiϕ sin(θ/2)

)
and

-n = f

(
sin(θ/2)

−eiϕ cos(θ/2)

)
.

Let

Ψn = cos(θ/2)Ψf + eiϕ sin(θ/2)Ψs.

In this section we shall explain how Ψn can be transformed into a Dirac field with spin-up axis n.
The idea is to consider what happens when we rotate the n-axis to make it coincide with the

z-axis. Corresponding to this, there is a unitary linear operator T on C2, i.e., a 2 × 2 unitary matrix,
which takes(

cos(θ/2)

eiϕ sin(θ/2)

)
to
(
1
0

)
and

(
sin(θ/2)

−eiϕ cos(θ/2)

)
to
(

0
−1

)
We apply T to the first two components of Ψn and, separately, to the last two components. This

amounts to multiplying the column vector Ψn by the 4× 4 matrix

M =

(
T 0
0 T

)
.

.
We will show that after rewriting appropriately, the result is an expression identical to Ψf . The

rewriting consists of replacing the components of R by expressions in the new components. This can
be done as soon as the new coordinate axes have been chosen.

In the operator D0 which defines the Dirac equation, we have to change the matrices αj and β in
such a way as to preserve the commutativity relations. So we replace αj with MαjM

−1 and β with
MβM−1. This yields a new Dirac equation of which MΨn is a solution.

Now we analyse the effect of applying T . The first two components of Ψn form a constant multiple

of
(

cos(θ/2)

eiϕ sin(θ/2)

)
. It therefore suffices to consider the effect on the last two components of Ψn.

There is a useful simplification. The desired change of axis can be obtained by composing two
computationally far simpler rotations as follows.

The vector n can first be taken into the xz-plane by a rotation through the angle ϕ about the
z-axis. This amounts to assuming that θ = 0. In this case, Rz is unchanged and the polar forms for
Rx + iRy and Rx − iRy help in finding the new components of R.

Assume that this has been done. Then, by a rotation about the y-axis through the angle θ, we
can take n (which is now in the xz-plane) to the z-axis. In this case we have ϕ = 0 and Ry doesn’t
change. It helps to use the polar forms for Rx + iRz and Rx − iRz.

This shows that it is enough to consider only the spin up solution Ψf .

7 Conclusion
We have given a complete description of what Koga tried to obtain.

7

UNDER PEER REVIEW



The Hopf map plays the same role in the non-relativistic and relativistic cases, but the Schrödinger
equation has to be replaced by Klein-Gordon equation.

It would be of interest to obtain the relation between the solutions given here and Dirac’s spinor
solution. We expect that the latter is an ensemble average of the former.
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