

Organization of cross-functional (DevOps·PM) teams in e-commerce: processes for teamwork

Abstract. The article examines the features inherent in the process of organizing cross-functional teams in the field of e-commerce, combining DevOps and PM processes with the inclusion of system engineering and quality assurance practices. Based on the generalization of empirical data, classic Waterfall, Agile and DevOps models, as well as the analysis of advanced techniques from scientific and practical literature, the unified team structure is analyzed, which includes a Product Owner, a business analyst, a UX/UI designer, Tech Lead, developers, QA specialists and system analysts. It shows how Agile processes and the CI/CD pipeline merge with project management processes (PMBOK), and how incremental system architecture, traceability of requirements, automated testing, and DevSecOps practices ensure a balance between release speed and platform reliability. Tables describing the distribution of roles and the matching matrix of DevOps and PM processes are presented. The information obtained during the analysis can serve as a methodological basis for building highly effective teams in e-commerce projects that strive to maximize time-to-market acceleration without compromising quality and scalability. The materials reflected in the article will be of interest to researchers of organizational behavior and academic experts in the field of sociotechnical systems seeking to analyze the mechanisms of cross-functional (DevOps·PM) teams in the context of e-commerce, as well as to DevOps managers and project managers responsible for the development and optimization of continuous integration processes, delivery and product management.
Keywords: e-commerce, cross-functional team, DevOps, Project Management, system engineering, CI/CD, software quality.

Introduction
In the current environment, shaped by the rapid growth of electronic commerce (e-commerce), the ability to swiftly deploy new features while maintaining platform stability becomes a critical factor for sustaining competitive advantage. Traditional lifecycle models (Waterfall) often lead to delays during design and testing phases, making it difficult to respond promptly to changing market and user demands [2]. In contrast, Agile and DevOps methodologies are oriented toward continuous delivery of working code and close collaboration between development and operations teams, reducing time-to-market and improving product quality [1].
This article aims to analyze the characteristic features of the process of organizing cross-functional teams in e-commerce to ensure coordinated operation.
The scientific novelty lies in the formalization of communication, planning, and change management procedures.
The author’s hypothesis is based on the premise that DevOps·PM teams formed on the principles of self-organization and cross-functionality—equipped with unified communication protocols and collaborative tools—can reduce the "idea-to-production" cycle and improve release stability.
The methodology is based on a review of academic publications addressing the characteristics of organizing and managing cross-functional DevOps·PM teams in e-commerce, as well as articles focusing on communication, planning, and operational practices within such teams.

Materials and methods
In recent years, researchers in the academic community have increasingly emphasized the need for deeper integration of systems engineering into Agile and DevOps programs. They argue that without a holistic systems approach, organizations risk fragmenting architecture and processes, thereby reducing product delivery efficiency. A. Hira [1] notes that "traditional" DevOps practices often focus solely on CI/CD automation while overlooking system requirements and architectural decisions, which leads to increased technical debt and hinders scalability. A.A. Popov [7] emphasizes that the success of corporate strategies directly depends on the synergy between educational, scientific, and industrial engineering practices. It is the interdisciplinary approach that ensures the sustainability and adaptability of digital projects.
Existing automation practices in cloud environments are discussed in a number of empirical studies. For instance, R. Kyadasu et al. [2] describe in detail the migration to AWS and Azure using "infrastructure as code" and continuous delivery pipelines, demonstrating that standardizing Terraform and Ansible templates can reduce deployment time by 30%. In turn, Rajkumar Kyadasu, Sandhyarani Ganipaneni, Sivaprasad Nadukuru, Om Goel, Niharika Singh [3] demonstrate how Kubernetes, when combined with data stream automation tools (Spark, Kafka), enables horizontal scaling of analytical tasks without sacrificing fault tolerance. I. Karamitsos, S. Albarhami, and C. Apostolopoulos [4] further develop the topic of seamless ML pipeline integration by introducing "infrastructure as code" practices for training and deploying models, which simplifies experiment reproducibility and accelerates the feedback loop between developers and data scientists.
The transition to intelligent automation is examined by Ng K. K. H. et al. [5], who in their systematic review identify three levels of intelligence—from rule-based automation to self-learning agents—pointing to the need to align theoretical models with practical implementations in large corporations. A. K. Tyagi et al. [6] emphasize that the core of Industry 4.0 lies in the integration of IoT devices, robotics, and intelligent control systems, with the DevOps approach enabling rapid software updates in distributed production networks without shutting down production lines.
The organizational and methodological aspects of cross-functional Dev·Ops–PM teams are reflected in comparisons between Agile and Waterfall models in the following works: A. Sinha and P. Das [8] show that in the traditional SDLC, QA departments often act as "bottlenecks," whereas Agile practices allow testing to be incorporated early in the process, improving release quality and speeding up feedback cycles. D. Russo [9] develops the theme of large-scale transformations by proposing a mixed Agile Success Model, where not only processes but also change culture, leadership, and continuous learning across all organizational levels play key roles. A. Hemon-Hildgen, F. Rowe, and L. Monnier-Senicourt [10], studying the case of large European enterprises, find that job satisfaction and risk perception are directly tied to the transparency of communication, knowledge sharing, and workload management within DevOps teams.
Thus, current research demonstrates a rich diversity of methodological and technical approaches to the organization of DevOps practices and their integration into business architecture. At the same time, there is a noticeable contradiction in the literature: on the one hand, the emphasis is placed on technical automation [2, 3]; on the other hand, on cultural and organizational factors [9, 10]. However, practical aspects of collaboration between DevOps engineers and project managers in the context of e-commerce remain underexplored. There is a lack of empirical case studies on e-commerce startups, where iteration speed and distributed teams are particularly critical. Mechanisms for measuring team efficiency and coordination tools (e.g., specialized PM platforms tailored to DevOps processes), as well as the influence of industry regulations (such as payment security and data protection) on the organization of cross-functional teams, are insufficiently addressed.
Turning now to the theoretical foundations, it should be noted that e-commerce projects require the integration of DevOps and project management (PM) practices into a single cross-functional team capable of rapidly and reliably launching new features and promotional campaigns into production [1]. In the traditional approach, the DevOps function is responsible for continuous integration and delivery (CI/CD), while PM ensures planning, deadline control, and budget management. The synergy of these roles helps eliminate silos and accelerate response to market changes [3, 4]. Figure 1 below provides a visual overview of the Dev·Ops·PM team composition.

Description of the Dev·Ops·PM Team

DevOps Engineer

Project Manager (PM)

Data Analyst Quality Assurance

Quality Assurance

Marketing Liaison (Business Leader)

Fig.1. Description of the DevOps·PM team (compiled by the author based on [1, 7, 8]).

Effective organization of a cross-functional Dev·Ops·PM team is impossible without well-established communication, planning, and decision-making processes. In e-commerce environments, where promotional campaigns can generate thousands of transactions per hour, timely information exchange and flexible planning become critically important. The fundamental principles for building an effective team include:
1. Self-organization: the team independently distributes tasks and assesses risks, accelerating the decision-making process.
2. Cross-functionality: each team member has a basic understanding of adjacent roles (Dev, Ops, PM, QA, Data), which minimizes the "handoff gap" between workflow stages [10].
3. Shared goals and metrics: such as release time, fault tolerance, and ROI of promo campaigns, which align the team under a unified direction [2, 5].
In cross-functional teams, the responsibilities of roles often overlap, reducing the risks associated with manual task transitions. For instance, a business analyst works with the product owner to clarify requirements, then collaborates with the UX designer to build a prototype. The tech leadsupports testers and developers in embedding non-functional requirements (e.g., load, security), while the system analyst ensures that new functionality does not violate overarching business rules.
To illustrate this, Table 1 provides a structured summary of key roles, their responsibilities, skills, and contributions to DevOps and PM processes.

Table 1. Roles and areas of responsibility in the cross-functional e-commerce team [1, 2, 5]
	Role
	Key Responsibilities
	Key skills
	Participation in DevOps/PM Processes

	Product Owner
	Backlog prioritization, roadmap planning, stakeholder communication
	User story mapping, negotiation skills
	Release planning, dependency management

	Business Analyst
	Detailed requirement gathering/documentation, writing acceptance criteria
	BPMN, process modeling
	Requirement clarification during sprint review

	UX/UI designer
	Prototyping, usability testing, conversion optimization
	Prototyping (Figma, Sketch), usability methods
	Design integration in CI, design system validation

	Tech Lead
	System architecture, code review, mentoring
	Architectural patterns, leadership skills
	CI/CD pipeline setup, tool selection

	Developers
	Feature implementation, unit/integration test coverage
	Programming languages, TDD
	GitOps workflows, participation in release processes

	QA Engineers
	Test case design, functional and load testing automation
	Selenium, JMeter, TestRail
	Building and maintaining CI test pipelines

	System Analysts
	End-to-end business process modeling, integration validation, requirement traceability
	UML/BPMN, data analysis
	Architecture validation, continuous integration control

The key points of intersection and mechanisms of interaction between DevOps and project management are outlined below. Agile ceremonies (sprint planning, daily stand-ups, reviews, retrospectives) not only provide team transparency but also align with PMBOK processes (PMI, 2017) in the following ways:
· Sprint Planning ↔ Schedule Management: detailed task estimation, creation of a comprehensive micro-schedule [1].
· Daily Stand-Ups ↔ Communications Management: prompt identification and resolution of blockers, change coordination [9].
· Sprint Review ↔ Quality Management: evaluation of completed work, demonstration of functional features, stakeholder feedback gathering [8].
· Retrospectives ↔ Risk Management: root cause analysis of issues, determination of corrective actions for the next cycle [10].
The DevOps pipeline (Continuous Integration / Continuous Delivery) automates build, testing, and deployment processes, accelerating time-to-market and reducing human error. From the PMBOK perspective, this aligns with:
· Integration Management, which ensures compatibility between system components and overall architecture [1].
· Scope & Schedule Management, where automated synchronization with the release calendar minimizes potential downtime [5].
Combining DevOps metrics (DORA metrics: Lead Time, Deployment Frequency, Change Failure Rate, Mean Time to Recovery) with PM KPIs (Budget Variance, Schedule Variance, Earned Value) enables comprehensive project control [1, 7]. In e-commerce teams, regular data exchange is practiced between DevOps tools (Jenkins, GitLab CI/CD) and PM systems (Jira, MS Project) to maintain a unified management dashboard.
Below is a summary table 2, demonstrating how key DevOps processes relate to PMBOK processes and areas, as well as emerging conclusions.
Table 2. Compliance of DevOps practices with PMBOK processes [1].
	DevOps Practice
	Description
	PMBOK Area
	Key Output

	Sprint Planning
	Decomposition of features into user stories and tasks
	Schedule Management
	Sprint Backlog

	Daily Stand-up
	Status synchronization, identification of blockers
	Communications Management
	Issue Log, Daily Status Report

	Sprint Review
	Demonstration of completed increment, feedback collection
	Quality Management
	Product Increment, Customer Feedback Report

	Sprint Retrospective
	Analysis of problems and improvement proposals
	Risk Management
	Action Plan (Sprint Improvement Backlog)

	Continuous Integration
	Automatic build and unit tests triggered by every commit
	Integration Management
	Build Artifacts, CI Logs

	Continuous Delivery
	Releases are always deployment-ready
	Scope & Schedule Management
	Release Candidate, Deployment Pipeline Definition

	Infrastructure as Code
	Declarative description of server and network infrastructure
	Resource Management
	IaC Scripts, Environment Manifests

	Automated Testing (E2E)
	End-to-end testing of functional and non-functional requirements
	Quality Management
	Test Reports, Test Coverage Metrics

	Monitoring & Logging
	Collection of performance metrics and production errors
	Risk & Communications Management
	Monitoring Dashboards, Incident Reports

This coordination between DevOps and PM processes calls for a DevOps Coordinator or Scrum Master, who monitors CI/CD pipeline synchronization with the release plan and manages data integration between version control systems, CI servers, and PM tools. This approach ensures that every step of the process is both measurable and manageable while retaining the flexibility inherent in DevOps culture.

Results and Discussion
As previously noted, forming an interdisciplinary team implies the inclusion of the following roles: Data Engineer, responsible for designing ETL processes and maintaining the data warehouse; Data Scientist/ML Engineer, engaged in the development and support of predictive models; DevOps Engineer, handling CI/CD setup, Infrastructure as Code implementation, and infrastructure automation; SRE/Platform Engineer, responsible for monitoring, automatic scaling, and service self-healing; PM/Scrum Master, coordinating tasks, conducting CAB sessions, and managing the release cycle; and Product Owner/Analyst, collecting business requirements and defining success metrics [2]. For comprehensive promo campaign analysis, data from marketing, sales, supply chain, and IT must be unified in a common format. Integrating systems engineering (SE) practices into DevOps workflows, along with rigorous quality assurance methods, helps strike a balance between incremental delivery and high reliability levels [1].
Unlike the classical Waterfall model, in which most architectural work is completed at the outset, the Agile/DevOps approach distributes system design efforts more evenly throughout the project lifecycle. This is achieved through:
· Architecture Runway – maintaining a "track" for future changes so that new features can be smoothly integrated into the existing platform.
· Incremental Architectural Reviews – regular lightweight evaluations of each microservice or module design before integration into the overall system.
The Agile methodology implies continuous refinement of requirements: user stories are clarified and expanded in each sprint, with business analysts and system analysts jointly ensuring traceability from high-level business requirements to specific code. The following practices are widely used:
· Definition of Ready / Done – clear criteria for readiness to develop and for acceptance after implementation;
· Traceability Matrix – an automated matrix linking requirements, test cases, and test results [1, 5];
· Continuous Integration – each commit triggers unit and integration tests, enabling early detection of integration issues.
The DevSecOps approach extends traditional DevOps by incorporating security practices "to the left" of the CI/CD pipeline (shift-left security). Key measures include:
· Automated Testing (unit, integration, E2E) with code coverage threshold ≥ 80% [8];
· Performance & Load Testing – regular stress testing (JMeter, Gatling) to ensure SLA compliance in response time and throughput;
· Threat Modeling & SAST/DAST – architectural threat analysis (STRIDE) and static/dynamic code analysis (OWASP ZAP, SonarQube) aligned with NIST SP 800-160 recommendations;
· Continuous Monitoring – collection of performance and incident metrics (Prometheus, Grafana) for rapid response to system degradation.
To better illustrate these concepts, Table 3 below summarizes the core practices applied in systems engineering and quality assurance.
Table 3. Main practices of system engineering and quality assurance [1, 7, 8]
	Practice
	Description
	Tools/ Methods
	Expected Outcome

	Incremental Architecture Review
	Lightweight architectural assessments before integrating new modules
	Architecture Runway, C4 Model
	Design integrity retention

	Definition of Ready/Done
	Clear criteria for user story readiness and acceptance
	Confluence, Jira
	Reduced number of incomplete tasks

	Requirement Traceability
	Automated linking of requirements to tests and code
	Traceability Matrix, Jira
	Full coverage overview

	Automated Testing
	Unit, integration, E2E testing at each build stage
	Jenkins, Selenium, Cypress
	Early defect detection

	Load Testing
	Performance validation against non-functional requirements
	JMeter, Gatling
	SLA compliance assurance

	Threat Modeling & SAST/DAST
	Architecture threat analysis and vulnerability scanning
	OWASP ZAP, SonarQube, STRIDE
	Reduced security risks

	Continuous Monitoring & Incident Management
	Metric collection and visualization, automated alerts on anomalies
	Prometheus, Grafana, Alertmanager
	Fast system degradation response

To ensure transparency in team coordination, it is advisable to conduct daily stand-ups, use shared boards (e.g., Jira or Azure DevOps) to track progress, hold weekly CAB sessions with pre-announced agendas, and conduct adaptive retrospectives after each release to continuously improve practices [1, 9].
It is also recommended to adopt a unified tool ecosystem, which includes: GitLab or a combination of GitHub and Jenkins for source control and CI/CD management; Terraform and Ansible for infrastructure as code (IaC); Airflow or Luigi for orchestration of ETL processes; cloud data warehouses such as Snowflake or BigQuery; monitoring and alerting systems like Prometheus and Grafana; feature flag platforms and A/B testing tools (e.g., LaunchDarkly).
The following key performance indicators must be continuously tracked: MTTR (Mean Time to Recovery); Lead time from commit to production; Precision and recall of predictive models; Percentage of successful releases without rollback; Response time to critical alerts.
A culture of continuous learning and knowledge sharing is supported through: regular incident post-mortems, internal technical talks, pilot proof-of-concept (PoC) projects for evaluating new tools, and mentorship programs to accelerate onboarding and integration of new specialists.
[bookmark: _heading=h.3z5eanuubly2]The application of these recommendations, based on proven practices, enables a balance between release velocity and service reliability, contributing to the sustainable development of Dev·Ops–PM teams.

Conclusion
In the highly competitive e-commerce market, companies are under increasing pressure to accelerate the delivery of new features without compromising platform reliability and security. This paper substantiates the necessity and demonstrates practical mechanisms for forming cross-functional teams that integrate DevOps and PM approaches with systems engineering and quality assurance.
The integration of DevOps ceremonies (Sprint Planning, Daily Stand-Up, CI/CD, IaC) with PMBOK processes, reinforced by a compliance matrix, results in a synergistic effect: accelerated development cycles while maintaining control over timelines, resources, and risks. Special attention is given to the collection and alignment of DevOps metrics (DORA) and PM KPIs, as well as to the role of the DevOps Coordinator in maintaining a unified dashboard.
Overall, the integrated approach to team organization—combining the flexibility of DevOps and the structured nature of project management with incremental systems engineering and advanced quality assurance practices—enables e-commerce organizations to significantly reduce time-to-market without compromising product reliability, scalability, or security.

COMPETING INTERESTS DISCLAIMER:

Authors have declared that they have no known competing financial interests OR non-financial interests OR personal relationships that could have appeared to influence the work reported in this paper.

References
1. Hira A. Are Agile/DevOps Programs Doing Enough Systems Engineering? //Journal of Cost Analysis and Parametrics: Volume. – 2022. – Vol. 10. – No. 3. – pp. 44-63.
2. Kyadasu R. et al. DevOps Practices for Automating Cloud Migration: A Case Study on AWS and Azure Integration //International Journal of Applied Mathematics & Statistical Sciences (IJAMSS), 2020, vol. 9, No. 4, pp. 155-188.
3. Rajkumar Kyadasu, Sandhyarani Ganipaneni, Sivaprasad Nadukuru, Om Goel, Niharika Singh Leveraging Kubernetes for Scalable Data Processing and Automation in Cloud DevOps // Iconic Research and Engineering Journals. – 2023. – Vol.7 (3). – pp. 546-571.
4. Karamitsos I., Albarhami S., Apostolopoulos C. Applying DevOps practices of continuous automation for machine learning //Information. – 2020. – Vol. 11. – No. 7. – p. 363.
5. Ng K. K. H. et al. A systematic literature review on intelligent automation: Aligning concepts from theory, practice, and future perspectives //Advanced Engineering Informatics. – 2021. – Vol. 47. – pp. 1-9.
6. A. K. Tyagi K. et al. Intelligent automation systems at the core of industry 4.0 //International conference on intelligent systems design and applications. – Cham : Springer International Publishing, 2020. – Pp. 1-18.
7. A.A. Popov А. Engineering as the key to successful business strategies: the synergy of education, science and business // Current research. – 2023. – No. 18 (148) [Electronic resource] Access mode: https://apni.ru/article/6116-inzhiniring-kak-klyuch-k-uspeshnym-biznes-strategiyam-sinergiya-obrazovaniya-nauki-i-biznesa (date of request: 04/25/2025)
8. Sinha A., Das P. Agile methodology vs. traditional waterfall SDLC: A case study on quality assurance process in software industry //2021 5th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). – IEEE, 2021. – Pp. 1-4.
9. Russo D. The agile success model: a mixed-methods study of a large-scale agile transformation //ACM Transactions on Software Engineering and Methodology (TOSEM). – 2021. – Vol. 30. – No. 4. – Pp. 1-46.
10. Hemon-Hildgen A., Rowe F., Monnier-Senicourt L. Orchestrating automation and sharing in DevOps teams: a revelatory case of job satisfaction factors, risk and work conditions //European Journal of information systems, 2020, vol. 29, No. 5, pp. 474-499.

