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ABSTRACT  13 
 14 
The Poisson-Pratibha distribution is derived by compounding the Poisson distribution with the Pratibha 
distribution and the proposed distribution has the capability to capture the skewness and the over-
dispersion of the dataset. The distribution has a tendency to accommodate the right tail and tends to zero 
at faster rate. A general expression for the  th factorial moment of Poisson-Pratibha distribution has been 
obtained and hence its first four moments about origin and central moments have been derived. The 
proposed distribution is unimodal, has increasing hazard rate and over-dispersed. Moments based 
descriptive measures have been derived and studied. The reliability properties including hazard function, 
reverse hazard function, cumulative hazard function, second rate of failure and Mills ratio of the proposed 
probability model have been discussed.  A simulation study has been done to test the performance of 
maximum likelihood estimates. Finally, the goodness of fit of the proposed distribution and its comparison 
with other one parameter over-dispersed discrete distributions including Poisson-Lindley distribution 
(PLD), Poisson-Garima distribution (PGD) and Poisson-Sujatha distribution (PSD) on two datasets are 
discussed and presented. The result shows that the PPD has greater flexibility and applicability in 
modeling real over-dispersed count data and thus provides its suitability for practical applications.  
 15 
Keywords: Pratibha distribution, compounding, moments, statistical properties, Maximum likelihood estimation, 16 
Simulation, goodness of fit. 17 

18  
19  
20 1. INTRODUCTION  
21  
22 The Poisson distribution is the first classical count distribution and is suitable for modeling for equi-dispersed (mean equal 
23 to variance) count data. Count data appear in several fields of knowledge including biological sciences, insurance, 
24 medicine and agriculture, some among others. But in real life situation, it has been observed that most of the datasets 
25 being stochastic in nature are either over-dispersed (variance greater than mean) or under-dispersed (variance less than 
26 mean). Various statistical techniques are proposed to deal with over- dispersed count data such as weighted discrete 
27 distributions and the mixture of discrete distributions. A well-known and widely used technique to capture over-dispersion 
28 in count data is the mixed Poisson distribution.  During recent decades an attempt has been made by different 
29 researchers to derive over-dispersed one parameter discrete distribution by compounding Poisson distribution with one 
30 parameter positively skewed continuous lifetime distributions. One of the important characteristics of the Poisson mixture 
31 of lifetime distribution is that the resultant distribution follows some characteristics of its mixing distribution.  A popular one 
32 parameter over-dispersed discrete distribution is the Poisson-Lindley distribution (PLD) proposed by Sankaran (1970). 
33 The PLD is the Poisson mixture of the Lindley distribution introduced by Lindley (1958). Some statistical properties and 
34 different methods of estimation of the parameter of PLD have been discussed by Ghitany and Al-Mutairi (2009). Further, it 
35 has been observed that this one parameter discrete distributions are not suitable for some over-dispersed datasets due to 
36 their levels of over-dispersion. Shanker and Hagos (2015) have detailed discussion on applications of PLD for data arising 
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from biological sciences, as the data from biological sciences are, in general, over-dispersed. It has been observed by 37 
Shanker and Hagos (2015) that there are data from biological sciences where PLD does not provide better fit and hence 38 
there is a need for another over-dispersed discrete distribution.  To overcome the problem of goodness of fit by PLD, 39 
Shanker (2017) proposed Poisson-Garima distribution (PGD), the Poisson compound of the Garima distribution 40 
introduced by Shanker (2016a)).  Shanker (2016b) also proposed Poisson-Sujatha distribution (PSD), the Poisson 41 
compound of the Sujatha distribution of Shanker (2016c) to model over-dispersed data.  Further, it has also been 42 
observed by Shanker (2017)  and Shanker and Hagos (2016) while testing the goodness of fit by PGD and PSD on count 43 
data arising from various fields of knowledge that there were some datasets where both PGD and PSD failed to provide 44 
satisfactory fit. This necessitates the search for another one parameter over-dispersed count distribution which would 45 
provide better fit over PLD, PGD and PSD and for this firstly we have to search one parameter positively skewed 46 
continuous distribution. Keeping this point in mind, Shanker (2023) introduced a one parameter lifetime distribution, 47 
named Pratibha distribution to model positively skewed data defined by its probability density function (pdf) and 48 
cumulative distribution function (cdf) 49 
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Pratibha distribution is also a convex combination of exponential   distribution, gamma  2, distribution and gamma 52 

 4, distribution with respective mixing proportions 
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function is monotonically increasing which makes it suitable for representing scenarios where the probability of failure 54 
increases over time. The positive skewness of Pratibha distribution makes it suitable for modeling phenomena where the 55 
majority of values are clustered towards the lower end of the range, with a tail extending towards higher values.  Prodhani 56 
and Shanker (2024a, 2024b) have proposed weighted Pratibha distribution and power Pratibha distribution and discussed 57 
their statistical properties and applications in different fields of knowledge. Pratibha distribution and its related forms offer 58 
more flexibility compared to simpler distributions like exponential distribution, Lindley distribution and Sujatha distribution. 59 
They can better capture the shape and characteristics of various datasets, leading to more accurate models. Pratibha and 60 
its related distributions have applications in diverse fields including life sciences for modeling survival time data, in 61 
reliability engineering for modeling component failure times and other areas where positively skewed data is encountered.  62 
 63 
The main purpose of this paper is to derive an over-dispersed discrete distribution which is the compound of Poisson and 64 
Pratibha distribution because it has the capability to capture both the skewness and over-dispersion of the dataset. 65 
Descriptive statistical constants including coefficients of variation, skewness, kurtosis and index of dispersion have been 66 
studied. Over-dispersion, unimodality and increasing hazard rate of the derived distribution has been discussed. Important 67 
reliability functions expressions including hazard function, reverse hazard function, second rate of failure, cumulative 68 
hazard rate function and Mills ratio of the proposed distribution has been derived and discussed. Method of moments and 69 
the method of maximum likelihood estimation have been explained to estimate parameter of the proposed distribution. 70 
Simulation has been presented to examine the consistency of maximum likelihood estimate.  Goodness of fit of the 71 
proposed probability model and its comparison with other one parameter over-dispersed discrete distributions are 72 
presented. 73 
. 74 
 75 
2. POISSON-PRATIBHA PROBABILITY MODEL 76 
 77 

Definition1: A random variable X is said to be Poisson-Pratibha distribution (PPD) if it follows the stochastic 78 
representation 79 

             | PoissonX    and  | Pratibha    for 0, 0   . 80 

We would denote the unconditional distribution of the stochastic representation as PPD   . 81 

Theorem 1: If  PPDX  , then the pmf of X can be expressed as 82 
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Proof: If  | PoissonX   distribution and  | Pratibha   distribution, then the probability mass function (pmf) 84 

of the unconditional random variable X can be obtained as 85 
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where  ,f   is the Pratibha distribution with parameter  .  87 
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 Since this is the compound of the Poisson with the Pratibha distribution, we would call this probability model as Poisson-93 
Pratibha distribution (PPD). The pmf of PPD for different values of parameter   are presented in figure 1. As the value of 94 

 increases, the pmf of PPD becomes highly positively skewed. 95 
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 96 

Fig.1: Pmf of PPD for varying values of parameter 97 

The PPD distribution is skewed to the right, unimodal and decreasing which is supported by the nature of the pmf of the 98 
PPD and mathematically shown in theorems 2 and 3. In theorem 4, it has been shown that PPD is also a two-component 99 
mixture of negative binomial distributions in fixed proportions with different parameter (number of successes) and for the 100 
same probability of success. Theorem 5 is useful for deriving moments from probability generating function and moment 101 
generating function.   102 
 It can be easily shown that PPD has increasing hazard rate (IHR) and is unimodal. Since 103 
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 is a decreasing function of x for a given  ,104 

 ;P x  is log-concave. This implies that PPD has an increasing hazard rate and is unimodal. Grandell (1997) has 105 

detailed discussion about relationship between log-concavity, IHR and Unimodality of discrete distributions.  106 
 107 

Theorem 2: The  ;Q x   is decreasing function of x  for given  . 108 

Proof: We have 109 
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Differentiating it partialy with respect to x , we get 111 
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. Since  ; 0Q x   ,  ;Q x  is decreasing function of x  112 

for given  .  113 
 114 

Theorem 3: The pmf  ;P x   of PPD is log-concave 115 

Proof:  We have 116 
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This gives                   118 

           2 3 2 3log ; 3log log 4 2 2 3 log 2 3 log 1P x x x x                        Assuming119 

   ; log ;g x P x   and differentiating it partially with respect to x , we have 120 
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This means that the pmf of PKD is log-concave.  123 
 124 
Theorem 4: The PPD is a three-component mixture of negative binomial distributions and can be expressed as 125 

                      1 1 2 2 3 3 1 2 3; ; ; ; ; 1P x p P x p P x p P x p p p         ,  126 

where  ;iP x   is the pmf of the negative binomial distribution(NBD) with parameter the number of successes i  and 127 
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 Proof:  We have 130 
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This completes the proof.  138 
Although the PPD is a three-component mixture of negative binomial distribution but the existence of the three modes 139 
cannot be observed in any of the pmf’s in the figure 1for the selected values of the parameter . This suggests that the 140 
three modes which come from the three sub-populations must be located very close to each other. As observed by 141 
Tajuddin (2022) that if the modes of the sub-populations are located very close to each other, the population will have 142 
single mode.  This suggests that if the existence of the modes of the sub-populations is certain, then the true distribution 143 
can be considered as one of the candidates to model over-dispersed count data.  144 
 145 
Theorem 5: The probability generating function and the moment generating function of PPD are given by 146 
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Proof: We have 149 
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Taking tt e  in the RHS, the moment generating function of PPD can thus be obtained as 156 
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This completes the proof. 158 
 159 
3. DESCRIPTIVE STATISTICS BASED ON MOMENTS 160 
 161 
It is very tedious and cumbersome to find the moments of PPD directly. However, using the result (2.1), the factorial 162 
moments can be obtained easily and then using relationship between factorial moments and moments about the origin, 163 
moments about the origin can be obtained. Finally, using the relationship between moments about the mean and the 164 
moments about the origin, moments about the mean can be obtained. In theorem 6, a general expression for the factorial 165 
moment has been presented. The theorem 7 shows that the PPD is always over-dispersed and thus can be one of the 166 
important discrete distributions to model over-dispersed count data. 167 

Theorem 6: The r th factorial moment about origin  r   of PPD is given by 168 
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Proof: Using (2.1),  r   can be obtained as  170 
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Taking x r y  , we get 173 
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The first four factorial moments of PPD are thus obtained as 177 
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Using the relationship between factorial moments and moments about the origin, the first four moment about the origin of 180 
the PPD are given by  181 
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The moments about the mean, using relationship between moments about the origin and moments about the mean, of 186 
PPD can thus be obtained as 187 
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. 190 

The moments based descriptive constants including coefficient of variation (CV), coefficient of skewness (CS), coefficient 191 
of kurtosis (CK) and the index of dispersion (ID) of PPD are thus obtained as 192 
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Behaviour of coefficient of variation (CV), coefficient of skewness (CS), coefficient of kurtosis (CK) and index of dispersion 197 
(ID) of PPD for changing values of parameter are shown in figure 2. The CV, CS and CK are increasing and the ID is 198 

decreasing for increasing values of the parameter  .  199 
 200 
 201 
 202 
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Fig. 2. CV, CS, CK and ID of PPD for varying values of parameter 255 
 256 

Theorem 7: The PPD is over-dispersed, that is, 2 1   257 

Proof: We have  258 
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This gives 2 1  . This completes the proof.  263 

 264 
4. RELIABILITY PROPERTIES 265 
  266 
Various interesting and useful reliability properties including reverse hazard rate function, second rate of failure, 267 
cumulative hazard function and Mills ratio of a distribution depends on cumulative distribution function, survival function 268 
and hazard function of the distribution. The following theorem 8 deals with the cumulative distribution function (cdf), 269 
survival function and the hazard function of PPD. The expression for reverse hazard rate function, second rate of failure, 270 
cumulative hazard function and Mills ratio of PPD have also been obtained.  271 
 272 
Theorem 8: The cumulative distribution function (cdf), survival function and the hazard function of PPD are given by 273 
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The survival function of PPD can be obtained as 284 
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The hazard function of PPD can be expressed as 286 
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The natures of cdf, survival function and hazard function of PPD for varying values of parameter are shown in the 288 

following figure 3 and it is obvious from the figure that the PPD has a valid cdf since   1F x   as x . Further, the 289 

hazard rate function shows an increasing pattern with a limiting value of  , which means that  lim
x

h x 
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 293 
Fig. 3. cdf, survival function and hazard function of PPD for varying values of parameter 294 
 295 

The reverse hazard rate function  ;Rh x  and the second rate of failure  ;SRF x  of the PPD can be obtained as 296 
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The cumulative hazard function  ;H x   and Mills ratio  ;M x   of PPD are given by 301 
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 305 
5. ESTIMATION OF PARAMETER 306 
 307 
5.1. Method of Moment Estimation 308 
 309 

Let  1 2, , , nx x x  be a random sample of size n from the PPD.  Since PPD has one parameter, equating the population 310 

mean with the corresponding sample mean, the method of moment estimate (MOME) of PPD is the solution of the 311 
following fourth degree polynomial equation in   312 

              4 3 2 2 1 6 0x x x         , where x being the sample mean. 313 

This fourth-degree polynomial equation in   can be solved using Newton-Raphson formula 314 

                              
 
 1 ; 0,1,2,3,...n

n n
n

f
n

f


 

   


 315 

The Newton Raphson formula has quadratic convergent where the initial value of 0 can be selected as follow: Suppose 316 

   4 3 2 2 1 6f x x x          , where x is the sample mean of the dataset  for which we are estimating the 317 

value of the parameter. Now we have to guess two values of  , say 1  and 2  such that    1 2 0f f   . Then, we 318 

can select any value of   say 0  between 1  and 2  as initial value of   in the Newton-Raphson formula.  319 

 320 
5.2. Method of Maximum Likelihood Estimation 321 
 322 

Let  1 2, , , nx x x  be a random sample of size n from the PPD. Let xf  be the observed frequency in the sample 323 

corresponding to X x  ( 1, 2,3,...,x k ) such that 
1

k

x
x

f n


 , where k is the largest observed value having non-zero 324 

frequency. The likelihood function, L , of the PPD is given by 325 
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The log likelihood function and the log-likelihood equation are thus given by  327 
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The maximum likelihood estimate, ̂  of   is the solution of the equation 
log

0
L







 and is given by the solution of the 330 

following non-linear equation 331 
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where x  is the sample mean. Since the log-likelihood equation is non-linear and cannot be expressed in closed form and 333 

it is tedious to solve by direct method. Therefore, the MLE of the parameter   can be computed iteratively by solving log-334 
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likelihood equation using Newton-Raphson iteration available in R-software, until sufficiently close values of the parameter 335 
  is obtained. The initial value of the parameter   can be taken as the value given by MOME.  336 
 337 
6. A SIMULATON STUDY 338 
 339 
To assess the effectiveness of the maximum likelihood estimator (MLE) for the PPD, we conducted an extensive 340 
simulation analysis. Using the inverse transform method, we generated random samples based on the distribution. The 341 
simulations were repeated 10,000 times for each sample size tested (50, 100, 200, 300, 400 and 500) to ensure robust 342 
statistical evaluation of the estimator's properties. We measured both the bias and the mean squared error (MSE) to 343 
examine how accurately and consistently the estimator performs. Simulation results, summarized in table 1 confirmed that 344 
both the bias and the MSE decline as sample size increases which indicates improved reliability of the MLE with 345 
increasing sample size. Additional simulations using different true parameter values (0.5, 1.5, 2.5, and 3.5) showed that 346 
the estimator remained consistently accurate across all tested scenarios. The formulas for the bias and the MLE are  347 
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Table1: Simulation result of PPD 349 

 
 

  0.5 

n BIAS MSE 

50 0.0423 0.0053 
100 0.0402 0.0033 
200 0.0380 0.0023 
300 0.0374 0.0019 
400 0.0376 0.0018 
500 0.0372 0.0017 

 
 

  1.5 

n BIAS MSE 

50 0.1656 0.0741 
100 0.1491 0.0439 
200 0.1399 0.0299 
300 0.1371 0.0255 
400 0.1354 0.0235 
500 0.1344 0.0220 

 
 

  2.5 

n BIAS MSE 

50 0.2652 0.3790 
100 0.2044 0.1662 
200 0.1688 0.0844 
300 0.1579 0.0619 
400 0.1559 0.0516 
500 0.1520 0.0456 

 
 

  3.5 

n BIAS MSE 

50 0.4166 1.3932 
100 0.2724 0.5375 
200 0.1897 0.2296 
300 0.1620 0.1534 
400 0.1578 0.1162 
500 0.1451 0.0973 

 350 

7. APPLICATIONS 351 
 352 
As we know that there are two conditions for the applications of Poisson distribution for count data, namely, the 353 
independence of events and equi-dispersion. But in real life situations these two conditions rarely satisfied because, in 354 
reality, events are dependent and the data are either over-dispersed or under-dispersed. For example, in biological 355 
science and medical science, the occurrence of successive events is dependent. The negative binomial distribution is a 356 
possible alternative to the Poisson distribution when successive events are possibly dependent and the data are over-357 
dispersed. NBD, being two-parameter distribution and having lower index of dispersion does not provide better fit in most 358 

UNDER PEER REVIEW



 

of the over-dispersed datasets. The PLD, PGD and PSD are three important over-dispersed one parameter distribution 359 
proposed for count data and it has been observed that these discrete distributions also do not provide satisfactory fit. The 360 
PPD has been found to provide quite satisfactory fit over PLD, PGD and PSD. The theoretical and empirical justification 361 
for the selection of the PPD to describe biological science and medical science data is that PDD is over dispersed (362 

2  ) and is suitable for data arising from mechanism where events are dependent. For testing the goodness of fit of 363 

PPD over PLD, PGD and PSD, two count datasets have been considered and the parameter of these considered 364 
distributions are estimated using maximum likelihood estimation. The mean and the variance of dataset in table 2 and 3 365 
are (0.75, 1.31) and (0.78, 1.24) respectively and it is quite obvious that the datasets are over-dispersed. The goodness of 366 
fit measures in table 2 and 3 shows that PPD provides much better fit over PD, PLD, PGD and PSD and thus PPD can be 367 
considered as one of the important distributions for count over-dispersed data where events are dependent.  368 
 369 

Table 2: The distribution of Pyrausta nublilalis in 1937 and reported by Beall (1940) 370 

 371 

No of 
insects 

Observed 
frequency 

PD PLD PGD PSD PPD 

0 33 26.45 31.52 31.68 31.47 31.84 
1 12 19.45 14.15 13.98 14.17 13.82 
2 6 7.44 6.08 6.01 6.13 5.98 
3 3 1.86 2.53 2.54 2.55 2.55 
4 1 0.35 1.03 1.06 1.03 1.07 
5 1 0.06 0.69 0.73 0.65 0.84 

total 56 56 56 56 56 56 
 ( )SE  0.7500 

(0.1157) 
1.81153 
(0.3068) 

1.6950 
(0.3912) 

2.2415 
(0.3167) 

2.0031 
(0.2487) 

 -2logL 143.1647 133.9691 133.8999 133.9588 133.8232 

 2  4.6119 0.4396 0.3776 0.4462 0.3147 

 d.f 1 1 1 1 1 
 P value 0.09966 0.8027 0.8280 0.8000 0.8544 

 372 
Table3: Distribution of mistakes in copying groups of random digits and available in Kemp and Kemp (1965) 373 
 374 

No of 
error 
per 

group 

Observed 
frequency 

PD PLD PGD PSD PPD 

0 35 28.34 33.06 33.27 32.97 33.35 
1 11 21.26 15.27 15.07 15.31 14.93 
2 8 7.97 6.74 6.65 6.82 6.65 
3 4 1.99 2.88 2.88 2.91 2.92 
4 2 0.37 2.05 2.13 1.99 2.15 

total 60 60 60 60 60 60 
 ( )SE  0.7833 

(0.1143) 
1.7434 

(0.2809) 
1.6284 

(0.2831) 
2.1678 

(0.2907) 
1.944 

(0.2282) 
 -2logL 155.0912 146.7021 146.6855 146.6046 146.5718 
 2  7.8112 1.7731 1.6588 1.7819 1.5608 

 d.f 1 1 1 1 1 
 P value 0.0201 0.4121 0.6461 0.4103 0.6683 

 375 

8. CONCLUSION 376 
 377 
In this paper the Poisson compound of the Pratibha distribution called Poisson-Pratibha distribution (PPD) has been 378 
suggested. The expressions of statistical constants including coefficients of variation, skewness, kurtosis and index of 379 
dispersion have been obtained and their behavior for varying values of parameter has been studied. It is observed that the 380 
PPD is unimodal, has increasing hazard rate and over-dispersed. Various reliability properties of the PPD are derived and 381 
discussed. Both the method of moment and maximum likelihood estimation has been discussed for the estimation of the 382 
parameter of the PPD. A simulation study has been done to test the performance of maximum likelihood estimates of the 383 
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PPD. Finally, the goodness of fit of the PPD and its comparison with the goodness of fit of other one parameter over-384 
dispersed discrete distributions including Poisson-Lindley distribution (PLD) and Poisson-Garima distribution (PGD) and 385 
Poisson-Sujatha distribution (PSD) on two datasets have been presented. The goodness of fit result shows that the PPD 386 
provides greater flexibility in modeling over-dispersed count data and hence can be considered an important over-387 
dispersed discrete distribution. 388 
 389 
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