
 

 

ABSTRACT 
 

Over the last two years, several cases of severe acute respiratory syndrome with unknown etiology 

were reported in December 2019 in Wuhan City, China. The coronavirus, part of a large family of 

viruses, was the main cause of this outbreak. Two notable types of coronaviruses are SARS-CoV-

1 and MERS-CoV, which caused outbreaks in 2003 and 2012, respectively. The novel coronavirus 

is the third type in this family that resulted in a massive pandemic and was designated as COVID-

19 by the World Health Organization. To help mitigate the impact, an increasing number of 

prediction methods have been developed. Despite the growing sophistication of these methods, 

our literature review found that research exploring the impact of Artificial Neural Networks and 

Autoregressive Integrated Moving Average predictive methods is limited. Consequently, this work 

combines ARIMA and ANN models. To achieve this objective, we began by analyzing the ability 

of the two models (Artificial Neural Network and Autoregressive Integrated Moving Average) to 

predict COVID-19 cases for the next 30 days. The results of both approaches are compared for 

predictive accuracy and variability. We evaluate the results using mean squared error (MSE), mean 

absolute error (MAE), and mean absolute percentage error (MAPE). The findings indicate that for 

prediction purposes, neural networks should be considered, and for efficiency with large samples 

and significant training data, the neural network should also be taken into account. 
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1.0 Introduction 

Several cases of severe acute respiratory syndrome with unknown etiology were reported in 

December 2019 in Wuhan City, China (Tang K, McCall B, Song PX, 2020). The coronavirus, a 

large family of viruses, was the main cause of this outbreak (Zhao S, Wan H, 2020). Two notable 

types of coronaviruses, SARS-CoV-1 and MERS-CoV, caused outbreaks in 2003 and 2012, 

respectively (Al-qaness, 2020). The novel coronavirus is the third type in this family, which has 

led to a massive pandemic known as COVID-19, as designated by the World Health Organization. 

The origins of this virus are still unknown, but it is most likely related to bats (Du Z, 

Anastassopoulu, 2020). This disease has an incubation period of over 14 days, a mortality rate 

between 2% and 3% (Ahmadi, 2020), and is transmitted through respiratory droplets and contact 

with contaminated surfaces (Al-qaness, 2020). COVID-19 spread rapidly in China (Song PX, 

2020) and across the globe (Nishiura H, 2020). As of February 12, 2021, the total confirmed cases 

and deaths from this virus were 107,686,655 and 2,368,571, respectively, affecting over 223 

countries (WHO, 2020). The first case of COVID-19 in Nigeria was discovered in Lagos on 

February 17, 2020, after which the disease spread rapidly throughout the country (Muniz, 2020). 

The total number of confirmed cases and deaths in Nigeria reached 167,200 and 2,127, 

respectively, on June 1, 2021 (NCDC, 2020). Awareness of disease trends is crucial for making 

decisions about preventive interventions; modeling to predict the number of new cases in the 

coming days offers valuable insight into these trends. Numerous studies have confirmed the 

superior performance of machine learning algorithms compared to more traditional models 

(Mozhgan, 2017). However, neither ARIMA nor ANN has been definitively proven to be more 

accurate than the other across different medical fields; thus, studies continue to compare them 

(Hue H, 2018). This comparison will also be part of this study to determine the most accurate 

model for forecasting the spread of the coronavirus in Nigeria. Chen (2015) compared the 

performance of a Probabilistic Neural Network with a GMM-Kalman Filter and a random walk 

approach for predicting the direction of return on the market index of the Taiwan Stock Exchange. 

They concluded that PNN has stronger forecasting power than both the GMM–Kalman filter and 
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random walk models due to PNN's superior ability to identify erroneous data and outliers, as well 

as its independence from prior information about the underlying probability density functions of 

the data. Tansel et al. (2010) compared the effectiveness of linear optimization, ANNs, and genetic 

algorithms (GAs) in modeling time series data based on accuracy, convenience, and computational 

time. The study showed that linear optimization techniques provided the best estimates, while GAs 

yielded similar results when the parameter boundaries and resolution were carefully selected, with 

NNs providing the least accurate estimates. The study by Sehwan et al. (2007) also compared the 

forecasting performance of ARIMA and ANN models in predicting the Korean Stock Price Index, 

showing that the ARIMA model generally produced more accurate forecasts than the back-

propagation neural network (BPNN) model, particularly for mid-range forecasting horizons. 

Stergiou (2017) used the ARIMA model on a 17-year time series data set (from 1964 to 1980, 

comprising 204 observations) of monthly pilchard catches (Sardina pilchardus) from Greek waters 

to forecast up to 12 months ahead, comparing the forecasts with actual catch data from 1981, which 

was not used to estimate parameters. Since the outbreak of COVID-19 in Nigeria, no researcher 

has compared the performance of machine learning algorithms to traditional models, thus this 

study aims to evaluate the predictive ability of the Artificial Neural Network and ARIMA model 

using COVID-19 data. In particular, the specific objectives are to fit ARIMA and ANN models, 

use each of the two methods for forecasting, and finally determine the better model. 

2.0 MATERIALS AND METHODS 

The results reported in this research work are based on secondary data obtained from the Our 

World and NCDC websites, which span from April 1st, 2020, to February 28th, 2021. 

2.1 Auto-regressive integration Moving Average (ARIMA) 

The Autoregressive Integrated Moving Average (ARIMA) model is a combination of the 

differenced autoregressive model with the moving average model. Which is expressed as; 

𝑦′
𝑡

=  𝐼 + 𝜑1𝑦′
𝑡−1

+  𝜑2𝑦′
𝑡−2

+ ⋯ +  𝜑𝑝𝑦′
𝑡−𝑝

+  𝑒𝑡 +  𝜃1𝑒𝑡−1 + 𝜃2𝑒𝑡−2 + ⋯

+  𝜃𝑞𝑒𝑡−𝑞                                                                                                          (2.0) 

The AR part of ARIMA shows that the time series is regressed on its own past data. The MA part 

of ARIMA indicates that the forecast error is a linear combination of past respective errors. The I 
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part of ARIMA shows that the data values have been replaced with differenced values of d order 

to obtain stationary data, which is the requirement of the ARIMA model approach. 

2.2.1 Box-Jenkins ARIMA process of Model Analysis 
 

ARIMA models are a class of models that have capabilities to represent stationary as well as non-

stationary time series and to produce accurate forecasts based on a description of historical data of 

single variable. Since it does not assume any particular pattern in the historical data of the time 

series that is to be forecast, this model is very different from other models used for forecasting. In 

time series analysis, the Box-Jenkins method named after the statisticians Gorge Box and Gwilym 

Jenkins, applies Autoregressive Moving Average ARMA or Autoregressive Integrated Moving 

Average ARIMA models to find the best fitted model to past values of a time series.  

Box-Jenkins forecasting models consist of a four-step iterative procedure as follows;  

a) Model Identification,  

b) Model Estimation,  

c) Model Checking (Goodness of fit) and  

d) Model Forecasting.  

Model Identification  

Model identification involves determining the orders (p, d and q) of the AR and MA components 

of the model. Basically it seeks the answers for whether data is stationary or non- stationary? 

What is the order of differentiation (d), which makes the time series data stationary?  

First stage of ARIMA model building is to identify whether the variable, which is being forecasted, 

is stationary in time series or not. By stationary we mean, the values of variable over time varies 

around a constant mean and variance. The ARIMA model cannot be built until we make this series 

stationary, one whose values vary more or less uniformly about a fixed level over time. This can 

be achieved by applying a technique of "regular differencing", a process of computing the 
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difference between every two successive values, computing a differenced series which has all the 

overall trend removed. 

Suppose a single differencing does not achieve stationarity, to have an ARIMA (p, d, q) model 

with “d” as the order of differencing used. In that case, it may be repeated, although rarely, if ever, 

are more than two regular differencing required. Caution is to be taken in differencing as over-

differencing will tend to increase in the standard deviation, rather than a reduction. The best idea 

is to start with differencing with lowest order (of first order, d=1) and test the data for unit root 

problems.  

The major tools used in the identification stage are plots of the series, correlogram of 

autocorrelation (ACF), and partial autocorrelation (PACF). The decision is not straight forward 

and in less typical requires not only experience but also a good idea of experimentation with 

alternative models (as well as technical parameters of ARIMA). However, a majority of empirical 

time series patterns can be sufficiently approximated using one of the 5 basic models that can be 

identified based on the shape of Autocorrelation (ACF) and partial autocorrelation (PACF).  

 

The Autocorrelation Function (ACF) 

For a covariance stationary time series  {𝑌𝑡} the autocorrelation function 𝜌𝑘 is given by 

𝜌𝑘 = 𝐶𝑜𝑟𝑟 (𝑌𝑡, 𝑌𝑡−𝑘)𝑓𝑜𝑟 𝑘 = 1, 2, 3, . . .                                                 (2.1) 

ACF is a good indicator of the order of the MA (q) model since it cuts off after lag q (i.e. 𝜌𝑘   = 0 

for k > q). On the other hand the ACF tails off for AR (p) model. 

The Partial Autocorrelation Function (PACF) 

If {𝑌𝑡} is normally distributed time series, then the PACF at lag k is given by  

∅𝑘𝑘 = 𝐶𝑜𝑟𝑟(𝑌𝑘, 𝑌𝑡−𝑘| 𝑌𝑡−1, 𝑌𝑡−2, . . . , 𝑌𝑡−𝑘+1)                                    (2.2) 

PACF is a good indicator of the order of the AR (p) model since it cuts off after lag p (i.e. ∅𝑘𝑘  = 

0 for k > p). On the other hand the PACF tails off for MA (q) model.  
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The Extended Autocorrelation Function (EACF) 

For a mixed ARMA model, ACF and PACF have infinitely many nonzero values, making it 

difficult to identify mixed models from the sample ACF and PACF. The extended autocorrelation 

function (EACF) (Tsay, R. and Tiao, G., 1984) is a graphical tool used to identify the ARMA 

orders. 

According to (Cryer, J. and Chan, K., 2008) Let 

𝑊𝑡,𝑘,𝑗 =  𝑌𝑡 −  Φ1𝑌𝑡−1− . . . − Φ𝑘𝑌𝑡−𝑘                                                       (2.3)                  

be the autoregressive residuals are defined with the AR coefficients estimated iteratively, assuming 

the AR order is k and the MA order is j. The sample autocorrelations of 𝑊𝑡,𝑘,𝑗  are referred to as 

the EACFs. Tsay, R. and Tiao, G. (1984) suggested summarizing the information in the sample 

EACF by a table with the element in the kth row and jth column equal to the symbol X if the lag j 

+ 1 sample correlation of 𝑊𝑡,𝑘,𝑗   is significantly different from 0. In such a table, an ARMA (p,q) 

process will have a theoretical pattern of a triangle of zeroes, with the upper left-hand vertex 

corresponding to the ARMA orders. 

Stationarity Analysis  

Hipel and McLeod mentioned a simple algorithm (developed by Schur and Pagano) for 

determining the stationarity of an AR process. For AR (1) model 

𝑦𝑡 = 𝑐  ø1𝑦𝑡−1 +  𝑒𝑡                                                                          (2.4) 

𝑦𝑡  is stationary when |∅1| < 1, with constant mean 𝜇 =  
𝑐

1− ∅1
 and a constant variance 𝛾0 =  

𝜎2

1− ∅2
1
 

Augmented Dickey-Fuller (ADF) Test of Unit Root 

In Dickey-Fuller's test, null hypothesis (𝐻0) is that the series has unit root / not stationary while 

alternative hypothesis (𝐻1 ) is that the series has no unit root / stationary. The hypothesis is then 

tested by performing appropriate differencing of the data in order and applying ADF test to 

differenced time series data. First order differencing (d=1) means we generate a table of 

differenced data of current and immediate previous one 
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i.e  𝑌𝑡 =  𝑋𝑡 −  𝑋𝑡−1                                                            (2.5) 

This test will enables us to go further in steps for ARIMA model development i.e. to find suitable 

values of p in AR and q in MA in our model. For that, we need to examine the correlogram and 

partial correlogram of the stationary (order of differenced) time series. 

Model Estimation 

Once a model is identified, the next stage for the Box-Jenkins approach is to estimate the 

parameters.  There are several methods for estimating the parameters. All of them should produce 

very similar estimates, but may be more or less efficient for any given model. In general, during 

the parameter estimation phase, a function maximization algorithm is used (i.e. the so-called 

Quasi-Newton method; refers to the description of the Nonlinear estimation method) to maximize 

the likelihood (probability) of the observed series, given the parameter values.  

The estimate statement is used to specify the ARIMA model and to estimate the parameters of that 

model. Now the question may arise, how do we know whether the identified model is appropriate 

or not? One simple way to answer is diagnostic checking on residual term obtained from ARIMA 

model applying the same ACF and PACF functions. Obtain ACF and PACF of residual term up 

to certain lags of the estimated ARIMA model and then check whether the coefficients are 

statistically significant or not with either Box-Pierce Q or LJung-Box (LB) statistics.  

If the result obtains from the model is purely random, then estimated ARIMA model is correct or 

else we have to look for alternative specification of the model. Similarly, diagnostic checking can 

also be done through Adjusted , minimum of Akaike Information Criterion (AIC), minimum of 

Bayesian information Criterion (BIC), Root Mean Square Error (RMSE), Schwarz Bayesian 

Criterion (SBC) and lowest mean absolute percent error (MAPE) values. However, for this project 

work AIC, BIC and RMSE will be used to choose the best fitted model.  

AIC Criterion  

Akaike’s (1973) information criterion (AIC) plays a major role for selecting the best order of the 

ARIMA (p, d, q) model when we have several models that all adequately represent a given set of 

time series.  
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Suppose {𝑌𝑡} is a Gaussian autoregressive ARMA (p,q) process with coefficient vector 𝜓 = (𝜙, 𝜃). 

For a zero- mean causal invertible ARMA ( p, q) process, In the general case, the AIC is calculated 

as; 

𝐴𝐼𝐶 (𝜓) =  −2 𝐼𝑛𝐿𝑥  (𝜓, 𝑆𝑥

𝜓

𝑛
) + 2𝑘                                       (2.6) 

 

Where;  

𝐿𝑥  (𝜓, 𝑆𝑥
𝜓

𝑛
)  is the likelihood function 

n is the sample size  

k is the total number of parameters I. e k = p + q + 1 

For fitting autoregressive models, Jones, R. (1975) and Shibata, R. (1976) suggested that AIC has 

a tendency to overestimate p. The AIC is a biased estimator. Hurvich and Tsai (1989) showed that 

the bias can be approximately eliminated by adding another nonstochastic penalty term to the AIC, 

resulting in the corrected AIC, denoted by AICc and defined by the formula 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +  
2(𝐾 + 1)(𝐾 + 2)

𝑁 − 𝐾 − 2
                                                         (2.7) 

BIC Criterion  

Schwarz's Bayesian information criterion (1978), known as (BIC) is another criterion that attempts 

to correct the over fitting nature of the AIC. For a zero-mean causal invertible ARMA (p, q) 

process, the BIC is given by: 

𝐵𝐼𝐶 (𝜓) =  −2 𝐼𝑛 𝐿𝑥  (𝜓, 𝑆𝑥

𝜓

𝑛
) + 𝑘 log(𝑛)                                           (2.8) 

As a rule of thumb, we would expect as small value as possible for all of these criteria to select the 

most appropriate autoregressive model. 
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Model Checking (Goodness of Fit) 

In this step, the model must be checked for adequacy by considering the properties of the residuals, 

specifically whether the residuals from an ARIMA model follow a normal distribution or are 

random. An overall assessment of the model's adequacy is provided using the Ljung-Box statistic. 

The AIC and BIC are measures of the goodness of fit for an estimated statistical model. Given a 

data set, several competing models may be ranked according to their AIC or BIC, with the model 

having the lowest information criterion value being the best. After estimating the parameters of 

the ARIMA model, the next step in the Box-Jenkins approach is to check the adequacy of that 

model, commonly referred to as model diagnostics. Ideally, a model should extract all systematic 

information from the data. The diagnostic check is employed to determine the adequacy of the 

chosen model. One assumption of the ARIMA model is that the residuals should constitute white 

noise. A series 𝜀𝑡 is said to be white noise if 𝜀𝑡 is a sequence of independent and identically 

distributed random variables with a finite mean and variance. Additionally, if 𝜀𝑡 is normally 

distributed with a mean of zero and a variance of 𝜎2, then the series is termed Gaussian White 

Noise. For a white noise series, all ACF values should be zero. In practice, if the model's residuals 

are white noise, the ACF of the residuals will be approximately zero. If the assumptions are not 

met, a different model for the series must be explored. A statistical tool such as the Ljung-Box Q 

statistic can be used to determine whether the series is independent. 

The partial autocorrelation function (PACF) identifies the appropriate lag p in an extended ARIMA 

(p,d,q) model. Both ACF and PACF are also used to verify whether the model selected based on 

AIC, BIC, and RMSE criteria is suitable. This involves testing whether the estimated model 

conforms to the specifications of a stationary univariate process. Specifically, the residuals should 

be independent of one another and constant in mean and variance over time. The unexplained part 

of the data (i.e., the residuals) should be minimal. Plotting the mean and variance of residuals over 

time, performing a Ljung-Box test, or plotting the autocorrelation of residuals are helpful methods 

for identifying misspecification. For this project work, the Ljung-Box Q statistic will be applied 

for the diagnostic checking of the selected model for the series. The Ljung-Box statistic is defined 

as: 

𝐿𝐵=𝑛  𝑛+2  𝑘−1𝑚𝜌2𝑘𝑛−𝑘 ~ 𝜒2𝑚                                   (2.9) 
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Where n= sample size and m is the lag length. 

Ljung-Box Q statistic: 

The Box-Ljung test (1978) is a diagnostic tool used to test the lack of fit of a time series model. 

The test is applied to the residuals of a time series after fitting an ARMA (p,q) model to the data. 

The test examines m autocorrelations of the residuals. If the autocorrelations are very small, we 

conclude that the model does not exhibit a significant lack of fit.  

In general, the Box-Ljung test is defined as:  

H0: The model does not exhibit lack of fit 

H1: The model exhibits lack of fit 

The test statistic is given by 

𝑄 = 𝑛 (𝑛 + 2) ∑
�̂�2

𝑘

𝑛 − 𝑘
                                                                  (2.10) 

𝑚

𝑘=1

 

Where �̂�𝑘 is the estimated autocorrelation of the series at lag k, and m is the number of lags being 

tested. The Ljung Box test rejects the null hypothesis, indicating that the model has significant 

lack of fit, if 𝑄 >  𝜒2
1−𝛼,ℎ

 

Where 𝜒2
1−𝛼,ℎ

 is the chi – square distribution table value with h degrees of freedom and 

significance level α. Because the test is applied to residuals, the degrees of freedom must account 

for the estimated model parameters so that h = m – p − q, where p and q indicate the number of 

parameters from the ARMA (p,q) model fit to the data. 

Model Forecasting 

Once the model has been selected, the estimated residual of the model is carefully examined to 

follow a white noise process (a random process of random variables that are uncorrelated, having 

mean zero and finite variance). The parameters of the model are tested for significance and the 
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final model estimated; then forecasting is done. Forecasting with this system is straight forward; 

the forecast is the expected values, evaluated at a particular point in time. 

2.3 Artificial Neural Network (ANN) 

 

Artificial Neural Network (ANN) is an extension of Generalized Linear Models (GLM). This data 

mining algorithm is so popular for modeling nonlinear associations. ANN is comprised of three 

layers: an input, output and hidden layer(s). Each layer is formed from Neurons and Synapses. The 

neurons in the input layer are previous observations used for forecasting future values in the output 

layer. Other layers within input and output are called hidden layers. An artificial neural network 

(ANN), usually called neural network (NN) is a computational model which is inspired by the 

structure and the functionality of biological neurons. They are used as statistical data modeling 

tools in order to model complex relationships between inputs and outputs. 

 

 

 

 

 

 

 

 

 

Their high performance in modeling relationships between inputs and outputs makes NNs reliable 

tools, which can also be used in the development of forecasting models. In this project, in addition 

to models developed by using linear regression, intelligent models were created by using NNs.  In 

Figure 1 & 2., the interconnected structure of a neural network is showed by indicating its 

simple internal processors.  
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Each processor in the NN receives information from an upper level and each processor in the NN 

transfers output to a lower level. Information (inputs) can be received from other neurons or 

directly from the environment. The pattern of information given to the input processing units gives 

an indication of the problem being presented to the NN. The output can be transferred to other 

neurons or directly to the environment. The pattern of outputs transferred by the output processing 

units represents the result of the computations performed by the NN. The neurons in the input 

buffer of the NN work as the dendrites of a biological neuron which is responsible of receiving 

information from environment or other neurons. The neurons in the hidden layers connect input 

buffer and output layer like cell body of the biological neuron which is responsible from carrying 

processed information to other neurons. The neurons in the output layer works as the axon part of 

the biological neuron by carrying processed information to other neurons or directly environment. 

The understanding of the hidden layer requires knowledge of weights, bias, and activation 

functions. Weights in an ANN are the most important factor in converting an input to impact the 

output. This is similar to slope in linear regression, where a weight is multiplied to the input to add 

Figure 1: The network plot showing input layer, Hidden layer and output layer 

Figure 2: Neural Network Model 
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up to form the output. Weights are numerical parameters which determine how strongly each of 

the neurons affects the other. For a typical neuron, if the inputs are x1, x2, and x3, then the synaptic 

weights to be applied to them are denoted as w1, w2, and w3. 

Output is  

𝑦 = 𝑓(𝑥) =  ∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠                                     (2.11) 

Simply, this is a matrix multiplication to arrive at the weighted sum. 

Bias is like the intercept added in a linear equation. It is an additional parameter which is used to 

adjust the output along with the weighted sum of the inputs to the neuron. 

The processing done by a neuron is thus denoted as: output = sum (weights * inputs) + bias 

 

The direction of information flow in a NN, starts from the input buffer, goes through the hidden 

layer(s) and finishes in the output layer. A neural network performs computations by feeding inputs 

through connections with weights. The transfer function (activation function) of a neuron converts 

the input to output which will be transferred to other neurons or the environment. 

A function is applied on this output and is called an activation function. The input of the next layer 

is the output of the neurons in the previous layer, as shown in figure 3: 

Figure 3: How the neuron in Artificial Neural Network works 
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The number of hidden layers in an ANN can be none, one or more. There is no strict definition for 

the number of hidden layers, but it is known that one hidden layer is sufficient for most of the 

applications. 

There are many choices for the type of transfer function (activation function) that can be used. 

Linear, sigmoid or step type transfer functions (activation function) are used in various 

applications of NN models but the sigmoid function is the most popular one. By using sigmoid 

type transfer function, NN models can learn and capture the relation between input and output 

parameters.  The sigmoid function is a mathematical function that produces a sigmoidal curve; a 

characteristic curve for its S shape. This is the earliest and often used activation function. This 

squashes the input to any value between 0 and 1, and makes the model logistic in nature. The 

sigmoid function is defined by the formula; 

𝑓(𝑥) =  
𝑒𝑥

(1 + 𝑒𝑥)
 

After the building of NN model, the next step is training. The Resilient Back propagation is a 

common method of teaching ANNs.  The resilient back propagation method is a local adaptive 

learning scheme, performing supervised batch learning in multilayer perceptron. The basic 

principle of the resilient back propagation method is to eliminate the harmful influence of size of 

the partial derivative on the weight step. 

2.3.1 Step by step Illustration of a neural network 

The step-by-step approach to understand the forward and reverse pass with a single hidden layer 

will be taken. The input layer has 7 neuron (That lags 7) and the output will solve the COVID-19 

new cases for the next one month. Figure 3 shows a forward and reverse pass with a single hidden 

layer: 
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Next, is the step by step operations to be done for network training; 

1. The input will be taken as lags of the output ( that is 7 lags) 

2. The hidden layers will be chosen as (4,2) 

3. The dataset will be normalized to a binary number [0, 1] where necessary. 

4. Date with missing values are removed. 

5. We use the output error to compute error signals for previous layers. The partial derivative 

of the activation function is used to compute the error signals. 

6. Then we build the neural network plots (i.e, Network plot and model) for each of the 

training set 

7. Apply the weight adjustments. 

8. Then we use the model to predict the remaining percentage (Model testing) 

The complete pass back and forth is called a training cycle. The updated weights and biases are 

used in the next cycle. We keep recursively training until the error is very minimal. 

2.3.2 Details of Development of Neural Network 

The data, details of which are explained earlier, were used in NN models development. Feed 

forward neural networks were used to develop ANN models for the prediction of the outcome 

variable. We divide the data into training and test set. Training set is used to find the relationship 

Figure 4: forward and reverse pass of neural network with a single hidden layer 
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between dependent and independent variables while the test set assesses the performance of the 

model.  For the purpose of this work, we use 60%, 80% and 100% of each of the dataset as training 

set and the remaining 40%, 20% as test set. The assignment of the data to training and test set is 

done using Block Sampling.  

Before fitting a neural network, some preparation need to be done. As a first step, we address data 

preprocessing. It is extremely important to normalize the data before training a neural network. 

There are different methods to scale the data (z-normalization, min-max scale e. t. c). For the 

purpose of this research, we chose to use the min-max method and scale the data in the interval [0, 

1] because scaling in the intervals [0, 1] tends to give better results. Without normalization, it is 

not possible to get accurate estimates by using NN models. All neural networks have one hidden 

layer including different numbers of hidden units resulting in one Architectures. The architecture 

is (7:2:1). The input layer has 7 inputs, the hidden layer has 2 neurons and the output layer has a 

single output. 

2.4 Performance measure  

We use three measures to evaluate the performance of each method. The first measure used is the 

Root mean squared error (RMSE), the mean absolute percentage error (MAPE), mean absolute 

error (MAE). 

2.4.1 Mean Square Error (MSE) 

It measures the average squared distance between the response, 𝑦𝑖 and its predicted value �̂�𝑖 The 

MSE is popular, but is sensitive to large prediction errors (that is, large values of  𝑦𝑖 − �̂�𝑖) since 

they are squared. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                                                                           (2.12) 

2.4.2 Mean Absolute Error (MAE) 

The mean absolute error is a measure of difference between two continuous variables. Consider a 

scatter of n points, where point i has coordinates (xi, yi) plot. It is the average vertical distance 

between each point and the (Y = X) line, which is known as one-to-one line. 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1

𝑛
                                                                              (2.13) 
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2.4.3 Mean Absolute Percentage Error 

The mean absolute percentage error also known as mean absolute deviation is a measure of 

prediction accuracy of forecasting methods in statistics. It is usually expressed in of percentage. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

𝐴𝑡 − 𝐹𝑡

𝐴𝑡

𝑛

𝑖−1

                                                                             (3.14) 

Where At is the actual value and Ft is forecast value.  

2.5. Design of data 

The data used for this study is a secondary data downloaded from Our-word website and NCDC 

website, the data span from March, 23, 2020 to April, 23, 2021 of new cases of COVID-19 in 

Nigeria. The two models will predict the possible cases of COVID – 19 for the next month (April 

24 – May 24, 2021) and also the dataset will be divided into (80% train and 20% test), (60% train 

and 40% test), the train data will be used to predict the remaining percentage of the data using the 

two model above. 

3.0 RESULTS AND DISCUSSIONS  
 

This section gives the result of the analysis based on the proposed method reported in chapter 

three. The Autoregressive integrated moving average (ARIMA), artificial neural network (ANN). 

After dividing the dataset into train (100%, 80% and 60%) and test data (20%, 40%), ARIMA 

model and ANN was fitted to each of the train data, the performance of the best model for ARIMA 

and ANN was tested using the test data. The overall performance of the two model was justified 

by considering their error measurement, mean square error (MSE), mean absolute error (MAE) 

and mean absolute percentage error (MAPE).  

3.1 Estimation of Auto regressive Moving Average (ARIMA) 

 

Statistic W P 

Shapiro Wilk 0.80602** < 0.05 

Table 1: Preliminary Test (Normality and Stationarity) 
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Augmented Dickey Fuller test -0.75574 > 0.05 

** Significant at 0.05 

 

From the graph above, it is evident that the dataset is not normal and stationary.  

The Shapiro Wilk test returned a si

5

gnificant value (p < 0.05), which implies that the data are not 

normally distributed and also the ADF test returned a non-significant value, which implies that the 

data is not stationary, the plots in Fig.  shows the graphical visualization of the non-stationary 

data using time plot and qqplot. The ACF and PACF of the raw data can be plotted. 

 

Figure 5: Graph of New case showing time plot, histogram, box plot and qqplot. 
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3.1.1 Differencing  

The Augmented Dickey Fuller statistic return a significant vale (D = -7.7679, p < 0.05) 

Figure 6: The graph of ACF and PACF of the raw dataset 

From Figure 6, the ACF decay rapidly which shows evident of non-stationary. 
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From the graph above it can be show that, the time plot of the differenced dataset has a constant 

mean and variance over time, by differencing the data to be stationary, it can be shown by the 

histogram that the data are now normally distributed with mean zero and a constant variance. 

The ACF and PACF plot shows an evident of a stationary dataset. 

3.1.2 Model identification  

Fitting the ARIMA requires setting the order for the model called the parameter p, d, q for which 

the Autoregressive (AR) part of the model takes the parameter p, the I part which is the integrated 

differencing order takes parameter d and the Moving Average (MA) part takes the parameter q. 

Figure 7: The graph of normalizing and differenced dataset. 
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Model RMSE AIC AICc BIC 

ARIMA (2 , 1, 2) 170.3025 5244.75 5245.21 5280.63 

ARIMA (3, 1, 2) 169.733 5246.14 5246.82 5289.99 

ARIMA (5, 1, 2) 162.4016 5219.02 5220.28 5278.82 

ARIMA (6, 1, 2) 159.7842 5209.97 5211.58 5277.74 

ARIMA (6, 1, 1) 159.7835 5205.97 5207.23 5265.77 

ARIMA (3, 1, 1) 170.9642 5247.84 5248.3 5283.71 

ARIMA (5, 1, 1) 162.7369 5216.78 5217.73 5268.6 

ARIMA ( 3, 1, 4) 166.4121 5231.06 5231.42 5262.97 

ARIMA (2, 1, 3) 168.8116 5241.84 5242.52 5285.69 

ARIMA (2, 1, 8) 157.3634 5206.5 5208.96 5290.21 

 

For this analysis, the parameter d equals to 1 since only one differencing was taken and also, the 

ACF AND PACF plot from the previous section suggested the models in table 2 

3.1.3 Model Estimation 

Table 2: Different combination of ARIMA models 

As stated in the model identification, the model suggested by the ACF and PACF were fitted, AIC 

and RSME were shown in the table 2. By comparison the RMSE, AIC criterion indicates that 

ARIMA (6, 1, 1) model should be fitted for the COVID-19 cases which support the model fitting 

based on the criteria.  
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̂
1 =  −0.835, �̂�2 =  −0.6070, �̂�3 =  −0.5361, �̂�4 =

 −0.4034, �̂�5 =  −0.4911, �̂�6 =  −0.3432, 𝜃1 =  0.1324. We also see that the estimated noise 

variance is 25.628. Noting the p-values, the estimates of all autoregressive and moving average 

coefficients are significantly different from zero statistically, as is the intercept term.  

Coefficients AR (1) AR (2) AR (3) AR (4) AR (5) AR (6) MA (1) Intercept 

 -0.8357 -0.6070 -0.5361 -0.4034 -0.4911 -

0.3432 

0.1324 0.3124 

SE 0.1433 0.1106 0.0956 0.0882 0.0800 0.0691 0.1455 0.0030 

P - value 0.0001 0.0232 0.0007 0.0001 0.0140 0.0005 <0.0001 <0.0001 

Sigma^2 estimated as 25.628: log likelihood = -2066.06 AIC = 5205.97 AICc = 5207.23 BIC = 5265.77 

The estimated model would be written as  

𝑊𝑡 − 0.312 =  −0.8357 (𝑊𝑡−1 − 0.312) − 0.6070(𝑊𝑡−2 − 0.312) − 0.5361(𝑊𝑡−3 − 0.312)

− 0.4034(𝑊𝑡−4 − 0.312) − 0.4911(𝑊𝑡−5 − 0.312) − 0.3432(𝑊𝑡−6 − 0.312)

+ 𝑒𝑡 + 0.1324𝑒𝑡−1 

Where 𝑊𝑡 =  𝑌𝑡 −  𝑌𝑡−1 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑜𝑓 𝐴𝑅𝐼𝑀𝐴 𝑖𝑠 𝜃0 =  𝜇 (1 −  𝜙), 

3.1.4 Model adequacy   

Test of Randomness using LJUNG BOX 

H0:  The model does not show lack of fit  

H1: The model does show a lack of fit 

Model Chi-Square Lag P value 

Maximum likelihood estimation was used and show the results obtained from the R statistical 

software in Table 3. Here we see that 𝜙

Table 3: Maximum Likelihood Estimates from R Software: COVID 19 cases 

Table 4: Box – Ljung test 
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ARIMA (6,1,1) 7.9195 7 0.3397 

ARIMA (6,1,1) 56.206 8 0.2191 

 

In order to test the adequacy of ARIMA (6, 1, 1) the hypothesis above was tested. The decision 

rule is given as: do not reject Ho, if and only if the p-values of box-pierce test at non seasonal lag 

7 and 8 are greater than 0.05, otherwise the null hypothesis will be rejected.  

The p-values are all greater than 0.05 (95% confidence interval) therefore we fail to reject the null 

hypothesis. Hence, the model is good to forecast the future cases of COVID-19 in Nigeria. 

 

The ACF residuals, PACF residuals, standardize residuals, and Box Ljung plot for the various p 

value are shown in Fig. 8

Figure 8: The residuals plot of ACF and PACF of the best model 
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Figure 9: The standardized residual plot, p values for Ljung – Box statistic plot and the ACF 

residuals plot 

In accordance with ARIMA model assumptions of time series: white noise assumes that the 

residuals have zero mean, constant variance and the autocorrelation of any two observations of 

such sequence is always zero (uncorrelated). The Figure 9 of ACF residual plot of the 

standardized residuals shows no significant autocorrelation and it also shows a zero mean and 

constants variance. Also the p-values of the Box-Pierce Statistics for each lag up to 8 are all 

significant indicating that the model is adequate and reliable enough. The normality test using 

Shapiro Wilk test of the residual return a non- significant value, which ascertain the assumption 

that the White noise are normally distributed. The above supporting proves gave reasons to use the 

ARIMA (6, 1, 1) as the best model. Since the model ARIMA (6, 1, 1) has been confirmed to be 
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adequate and its coefficient is significant, we then now proceed to divide the dataset into train and 

test data. 

 

3.2 Fitting Artificial Neural model For COVID 19 cases in Nigeria  

Applying ANN, the percentage of observations for training, which must have the same number of 

observations, 400, as we have in ARIMA for training is determined, we have analyzed 80% for 

training, and 20% for comparison in the prediction. The layers may be described as: Input layer: 

accepts the data vector or pattern; Hidden layers: one or more layers. Output layer: takes the output 

from the final hidden layer to produce the target values. 

In choosing the number of layers, the following considerations are made. Multi-layer networks are 

harder to train than single layer networks. A two layer network (one hidden) can model any 

decision boundary. Two layer networks are most commonly used in pattern recognition.  

Figure 10 : Data and forecasted results of ARIMA (6, 1, 1) models for COVID 19 cases in Nigeria 
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The number of output units is determined by the number of output classes. The number of inputs 

is determined by the number of input dimensions. The network will not model complex decision 

boundaries for few hidden units and it will have poor generalization for too many number of hidden 

units. We started with one hidden layer and end with two layers (first layer with 4 neurons and 

second layer with two neurons). The performance of the algorithm is influence with choosing 

different learning rates. The algorithm may become unstable for high learning rate and might take 

longer time to converge. 

 

 

Figure 11: The net plot for 80% training and 20% testing data 
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Figure 12: The net plot for 60% training and 40% testing data 

Figure 13: The weight plot of the normalized inputs unit 
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R-software is used for fitting ANN model for the time series. Some commands and functions with 

input and output variables have been used. The R library ‘neuralnet’ is used to train and build the 

neural network. The nnet function is used to fit neural networks. The arguments are: size which 

determines the number of units in the hidden layer, and maxit determines the maximum number 

of iterations. The objects are: fitted values is used for the fitted values for the training data and 

residuals is used to show the residuals for the training data (Venables, W. N. and Ripley, B. D., 

2002). 

ARIMA (6, 1, 1) ANN 

RMSE MAE RMSE MAE 

0.857577 98.51822 0.0016430 0.000236677 

 

ARIMA (6, 1, 1) ANN 

RMSE MAE RMSE MAE 

0.822577 57.29007 0.00048898 0.00156544 

 

 

 

MSE is used as stopping criteria in 
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the network. Smaller values of RMSE indicate higher accuracy 

in forecasting. The Neural network result shows that the minimum MSE equals 0.0016430 for 

considering the model with fifteen units in the hidden layer, 7 lags and the learning rate equals to 

0.01. The RMSE for ANN and ARIMA were shown in Table  and 6 respectively. 

Table 5: Model Testing and Comparison for ARIMA and ANN model. (80% Training and 20% 

testing) 

Table 6: Model Testing and Comparison for ARIMA and ANN model. (60% Training and 40% 

testing) 
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80% Training and 20% testing 

Date Actual data Forecast 

ANN ARIMA 

2/1/2021  676 677 701 

2/2/2021  1634 1644 1272 

2/3/2021  1138 1140 997 

2/4/2021  1340 1339 1414 

2/5/2021  1624 1623 1398 

2/6/2021  1588 1589 1022 

2/7/2021  504 500 512 

2/8/2021  643 641 677 

2/9/2021  1056 1060 1148 

2/10/2021  1131 1129 1100 

2/11/2021  938 937 939 

2/12/2021  1005 1009 1242 

2/13/2021  1143 1141 1120 

2/14/2021  520 521 600 

2/15/2021  744 749 749 

Table 7: Actual and predicted results of ANN and ARIMA (6, 1, 1) models for COVID 19 cases 

for the first 15 testing data 
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Obs = Observations, Std. = Standard 

60% Training and 40% testing the first 15 obs 

Date Actual data Forecast 

ANN ARIMA 

11/13/2020  156 156 162 

11/14/2020  112 111 187 

11/15/2020  152 151 158 

11/16/2020  157 158 171 

11/17/2020  152 152 172 

11/18/2020  236 234 174 

11/19/2020  146 145 170 

11/20/2020  143 145 171 

11/21/2020  246 244 173 

11/22/2020  155 158 169 

11/23/2020  56 51 172 

11/24/2020  168 171 171 

11/25/2020  198 190 172 

11/26/2020  169 167 171 

11/27/2020  246 243 245 

Table 8: Actual and predicted results of ANN and ARIMA (6, 1, 1) models for COVID 19 cases 

for the first 15 testing data 
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Obs = Observations, Std. = Standard 

Date ANN  ARIMA 

April, 24 57 56 

April 25 61 42 

April 26 81 76 

April 27 75 79 

April 28 69 79 

April 29 80 75 

April 30 91 62 

May 1 62 56 

May 2 58 57 

May 3 64 66 

May 4 70 69 

May 5 69 71 

May 6 75 68 

May 7 78 64 

May 8 65 60 

May 9 62 60 

May 10 60 63 

Table 9: The predicted values from ANN and ARIMA (6, 1, 1) model for the Next 31 days 

UNDER PEER REVIEW



May 11 70 64 

May 12 55 65 

May 13 62 64 

May 14 63 62 

May 15 66 61 

May 16 61 60 

May 17 67 61 

May 18 60 61 

May 19 69 61 

May 20 62 61 

May 21 65 60 

May 22 60 59 

May 23 64 59 

May 24 58 59 

 

5

The RMSE for ARIMA and ANN equal 0.857577 and 0.0016430 for 80% training and 20% 

testing, an also 0.822577 and 0.00048898 for 60% training and 40% testing respectively (Tables 

 and 6). This result shows that RMSE of ANN is 1.54% of RMSE for ARIMA. In other words, 

the RMSE of ARIMA model is 521.958 times RMSE of the ANN model. This means ANN model 

outperformed ARIMA model and the model is much more accurate and efficient than the ARIMA 

forecasting model. The predicted values of the remaining percentage (20% and 40%) were shown 

in table 4.6 and 4.7. it can be seen that, the predicted values for ANN model were very close to the 

actual value than that of ARIMA model predicted values. Table 9 shows the predicted values for 

the next 30 days. 
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4.0 CONCLUSION  

To the best of our knowledge, this project has proposed two efficient approaches forecasting 

models used in the medical field for the prediction of disease. In the first model artificial neural 

network using a multilayer, is trained by minimizing RMSE and the second model consists of 

using ARIMA model on COVID-19 daily cases in Nigeria. The results of both models reveal that 

ANNs outperform and offer consistent prediction performance compared to ARIMA model and 

hence preferable as a robust prediction model for COVID-19 daily cases in Nigeria.. We hereby 

recommend that; For the purpose of prediction Artificial Neural Network should be considered 

over the conventional Autoregressive Integrated Moving Average. 
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