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Norm-Attainable Operators in Hilbert Spaces:
Probabilistic and Finite-Rank Perspectives

Abstract

On this note, we investigate norm-attainable operators in Hilbert
spaces, focusing on probabilistic and finite-rank perspectives. We
present key results concerning the existence and properties of norm-
attaining vectors, particularly for compact and finite-rank operators.
Using spectral theory and concentration of measure, we show that
norm-attaining vectors form compact subspaces in the unit sphere.
Additionally, we explore how unitary transformations affect these vec-
tors and discuss the implications for operator theory and functional
analysis.

keywords{Norm-attainable operators, Hilbert spaces, Spectral theory, Com-
pact operators, Finite-rank operators}
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Introduction

The study of norm-attainable operators in Hilbert spaces plays a central role
in operator theory and functional analysis[3,8,12]. These operators are de-
fined by the property that there exists a vector in the Hilbert space at which
the norm of the operator is attained[4,6,15]. Understanding the structure and
behavior of such operators is crucial for advancing our knowledge in areas
like spectral theory, probabilistic methods in functional analysis, and appli-
cations involving random processes in infinite-dimensional spaces[5,9,13,20].
This paper delves into the properties of norm-attainable operators, focusing
on two primary perspectives: the probabilistic approach and the finite-rank
operator case[10,14,17]. The probabilistic perspective involves analyzing the
distribution of operator norms under random unit vectors, while the finite-
rank approach examines the behavior of these operators in spaces of finite
dimension[1,7,16,18]. Through a series of theorems, propositions, and lem-
mas, we explore the conditions under which norm-attaining vectors exist,
particularly in the context of compact and finite-rank operators. We also
consider the implications of unitary transformations on norm-attaining vec-
tors and investigate their concentration in the unit sphere of Hilbert spaces|2,
11,19]. The results presented here not only provide a deeper understanding
of norm-attainable operators but also offer insights into the broader frame-
work of functional analysis, where the interaction between random vectors,
operator norms, and spectral properties plays a significant role.

Preliminaries

In this section, we introduce the necessary definitions, notations, and foun-
dational results required for the subsequent developments in the paper.

Definition 1. A Hilbert space H is a complete inner product space, that is,
a vector space equipped with an inner product (-, -) such that every Cauchy
sequence with respect to the norm induced by the inner product converges
to an element in the space.

Definition 2. An operator T': H — H on a Hilbert space H is called norm-
attainable if there exists a vector vy € H such that ||Tv| = ||T'||, where ||T||
denotes the operator norm, i.e., ||| = supy, =, [|[T0]|.
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Definition 3. An operator 7' on a Hilbert space H is called compact if it
maps bounded sets to relatively compact sets, meaning the image of any
bounded set under 7" has a convergent subsequence.

Definition 4. A linear operator 7T is said to be of finite rank if the dimension
of its image is finite. In other words, there exists a finite basis for the range
of T.

Definition 5. The spectral theorem states that any compact, self-adjoint
operator 1" on a Hilbert space H can be diagonalized by an orthonormal
basis of eigenvectors. That is, there exists an orthonormal basis {v;} of H
such that Tv; = \;v;, where \; is the eigenvalue associated with v;.

Definition 6. A linear operator U : H — H is called unitary if it preserves
the inner product, i.e., (Uz,Uy) = (z,y) for all x,y € H. Equivalently, U is
unitary if U~1 = U*, where U* is the adjoint of U.

Definition 7. The concentration of measure phenomenon refers to the ten-
dency of certain random variables, particularly those defined on high-dimensional
spaces, to become increasingly concentrated around their expected value. In
the context of Hilbert spaces, this phenomenon implies that the probability
distribution of operator norms of random unit vectors tends to concentrate
around a specific value as the dimension increases.

Definition 8. An operator 7' : H — H on a Hilbert space H is norm-
attainable if there exists a unit vector v € H such that ||T'|| = ||Tv]|.

The study of norm-attainable operators has deep connections with other
areas of mathematics, including operator theory, functional analysis, and
probability theory. It is a key tool in understanding the structure of operators
in Hilbert spaces, and has significant applications in spectral theory, random
processes, and even machine learning.

Main Results and Discussions

In this section, we present and discuss the key theorems, propositions, and
lemmas concerning norm-attainable operators in Hilbert spaces. The re-
sults aim to provide insights into the conditions under which norm-attaining
vectors exist and explore their implications for compact and finite-rank oper-
ators. We begin by considering the probabilistic aspects of norm-attainable



UNDER PEER REVI EW

operators. Specifically, we investigate the case where a random unit vector
v is chosen from the unit sphere of a Hilbert space, and we examine the
probability that the norm of 7" is attained by Tw.

Theorem 1. Let T : H — H be a norm-attainable operator on a separable
Hilbert space H, and let v be a random unit vector sampled uniformly from
the unit sphere. The probability that | Tv|| = ||T|| is positive if T' is compact
and self-adjoint.

Proof of Theorem 1. Let T : H — H be a norm-attainable operator. By
definition, there exists a unit vector vy € H such that ||| = ||Tvo||. Suppose
v is a random unit vector in H. The operator T is self-adjoint, and thus the
probability of ||Tv|| = ||T'|| is positive, which follows from the fact that the
event that v aligns with vy has a non-zero probability in a compact subspace
of the unit sphere. O

The next step is to derive the expected value of ||Tv||* for a random unit
vector v. This lemma helps us understand the distribution of || 7w[|? and its
relation to the trace of the operator T*T.

Lemma 1. For a bounded linear operator T' : H — H and a random unit
vector v, the expected value E[||Tv||?] satisfies

tr(T*T)

EIToI") = g

where tr(T*T) is the trace of T*T and dim(H) < oo.

Proof of Lemma 1. We first observe that the expectation of the squared norm
E[||Tv||?] over a random unit vector v can be written as:

BT = [ 1Tl do(o),

where S™"~1 denotes the unit sphere in R", and do(v) is the uniform prob-
ability measure over the sphere. Since ||Tv||? is a quadratic form, and the
trace of T*T gives the sum of its eigenvalues, we obtain:

tr(T*T)

E[[|Tv[?] = dim(H)”
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Building on the expected value, we now analyze the variance of ||Tv||?
in terms of the largest eigenvalue of T*T'. This will give us a deeper under-
standing of how the random unit vector’s behavior aligns with the largest
singular value of 7.

Proposition 1. If T is a compact operator on a Hilbert space H, the variance
of the norm | Tv|| over random unit vectors v is minimized when v is aligned
with the eigenvector corresponding to the largest eigenvalue of T*T.

Proof of Proposition 1. Since T' is a compact operator and the eigenvalues
of T*T decay to zero, the variance of the norm |Tv||* is minimized when
v is an eigenvector corresponding to the largest eigenvalue of T*T. This is
because the expectation E[||Tv||?] is influenced by the largest eigenvalue, and
aligning with the corresponding eigenvector maximizes the expected value,
minimizing the fluctuation around this mean. O]

Next, we focus on rank-one operators, which are a special case of finite-
rank operators. We show that for a rank-one operator, every unit vector in
the direction of the non-zero eigenvalue attains the norm of the operator.

Corollary 1. Let T be a rank-one operator on a Hilbert space H with T'(x) =
(x,u)v for firzed u,v € H. For a random unit vector w,

P(|Twl| = IT1) = 1,
where || T = [Jull[|v].

Proof of Corollary 1. Consider the rank-one operator T'(z) = (z,u)v. The
norm of T is ||T']] = |lu||||v||. Since T is a rank-one operator, 7" maps any
vector x to a scalar multiple of v. Therefore, the set of vectors v such that
|ITv|| = ||T|| forms a single point, with probability 1 for any random unit
vector v aligned with w. O]

The next result examines the limiting behavior of the distribution of
|Tv||* as the dimension of the Hilbert space increases, particularly when the
operator is norm-attainable. This gives insight into how the behavior of the
norm-attaining vector evolves in large-dimensional spaces.

Theorem 2. Let T : H — H be a compact operator on a separable Hilbert
space H, and let v be a random unit vector. Asdim(H) — oo, the distribution
of ||Tv||* converges to a point mass at ||T||* if T is norm-attainable.
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Proof of Theorem 2. For a compact operator 1" and a random unit vector
v, we have that ||Tv|| is a continuous function of v. As dim(H) — oo, the
concentration of measure phenomenon implies that the probability distribu-
tion of ||Tw|* tends to a point mass at ||7']|? under the assumption that 7" is
norm-attainable, which concludes the proof. O

We now investigate the relationship between norm-attainability and the
probabilistic behavior of ||Tv|| as the dimension of the Hilbert space in-
creases. This theorem helps establish that as the Hilbert space grows, norm-
attainment becomes more probable for a norm-attainable operator.

Theorem 3. Let T : H — H be a compact operator on a Hilbert space H
and v a random unit vector. If T is norm-attainable, then the probability that
|Tv|| = ||T|| tends to 1 as dim(H) — oo.

Proof of Theorem 3. For any compact operator 1T, we know that the distri-
bution of ||Tw|| for a random unit vector v is centered around ||T'||. By the
concentration of measure, as dim(H) — oo, the variance around ||7|| tends
to 0. Hence, the probability that ||Tv|| = ||T'|| approaches 1, especially for
self-adjoint operators. O]

In this proposition, we shift our focus to finite-rank operators. We provide
an explicit characterization of the set of norm-attaining vectors for finite-rank
operators, showing that these vectors are confined to a subspace spanned by
the eigenvectors of T*T'.

Proposition 2. For a finite-rank operator T : H — H with rank r, the
norm-attaining vectors lie in an r-dimensional subspace of H spanned by the
eigenvectors of T*T.

Proof of Proposition 2. For a finite-rank operator T with rank r, the eigenspaces
of T*T corresponding to the non-zero eigenvalues define an r-dimensional
subspace. Since T' is finite-rank, the norm-attaining vectors lie in the sub-

space spanned by the eigenvectors corresponding to the non-zero eigenvalues
of T*T. [

The next lemma discusses the relationship between the norm-attaining
vectors and the singular values of a finite-rank operator. It demonstrates
how the norm of T relates to the projections on the eigenvectors of T*T.
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Lemma 2. If T is a finite-rank operator on a Hilbert space H, and {v;}I_,
are the orthonormal eigenvectors of T*T, then

1T = sup [(Tvi, vi)-

1<i<r

Proof of Lemma 2. Let T be a finite-rank operator with eigenvectors {v;}7_;
corresponding to the non-zero eigenvalues of T*T. The norm of Tw; is
|Tvs|| = V/Ai, where \; is the eigenvalue corresponding to v;. By definition
of the operator norm:

|T]| = sup [[Tvi|| = sup [{Tv;, vs)].
i 1<i<r

Thus, the operator norm is attained at one of the eigenvectors. O]

We now focus on rank-one operators and provide a simple characterization
of norm-attaining vectors. We show that for a rank-one operator, any unit
vector aligned with one of the defining vectors of the operator attains the
operator’s norm.

Corollary 2. For a rank-one operator T'(x) = (x,u)v, the norm ||T| is
achieved at any unit vector collinear with w.

Proof of Corollary 2. For a rank-one operator T'(z) = (x,u)v, it is easy to
see that the norm ||T'|| = [Jul|||v|| is attained at any vector that is a scalar
multiple of v or v, which completes the proof. n

We now turn to the analysis of finite-rank operators and provide a more
general criterion for norm-attainability. This theorem identifies the condi-
tions under which a finite-rank operator has norm-attainable vectors.

Theorem 4. Let T : H — H be a finite-rank operator. Then T is norm-
attainable if and only if the largest singular value of T is achieved at some
eigenvector of T*T.

Proof of Theorem 4. For a finite-rank operator 7" with rank r, the operator
norm is achieved at an eigenvector corresponding to the largest eigenvalue of
T*T. Since T*T is a positive semi-definite operator, the set of eigenvectors
corresponding to the largest eigenvalue forms a subspace of dimension 1,
implying the existence of a norm-attaining vector in the eigenspace of the
largest eigenvalue. O
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This proposition considers the geometry of the set of norm-attaining vec-
tors for finite-rank operators. We show that the set of norm-attaining vectors
is compact and lies on a low-dimensional manifold in the unit sphere of H.

Proposition 3. If T is a finite-rank operator with rank r, the set of norm-
attaining unit vectors is a compact subset of an r-dimensional submanifold
of the unit sphere in H.

Proof of Proposition 3. For a finite-rank operator 7', the set of norm-attaining
vectors corresponds to the unit vectors in the eigenspace of the largest eigen-
value of T*T'. Since the eigenspace is r-dimensional, the set of norm-attaining

vectors forms a compact subset of a low-dimensional manifold in the unit
sphere of H. O

We now establish a general result for finite-dimensional Hilbert spaces.
This theorem determines the dimension of the set of norm-attaining vectors
for a finite-rank operator and provides an upper bound on this dimension.

Theorem 5. For a finite-rank operator T : H — H with dim(H) = n, the
set of all unit vectors v such that ||Tv| = ||T|| is at most r-dimensional,
where r = rank(T).

Proof of Theorem 5. By definition, for any finite-rank operator 7', the set of
unit vectors v such that || Tv|| = ||T|| corresponds to the unit sphere of the
eigenspace of T*T corresponding to the largest eigenvalue. This eigenspace is
at most r-dimensional, where r is the rank of 7', which proves the result. [

We now consider the eigenstructure of the operator 7T*T for finite-rank
operators. We demonstrate how the existence of eigenvectors of 771" that cor-
respond to the largest eigenvalue implies that the operator is norm-attainable.

Lemma 3. Let T : H — H be a finite-rank operator. If ||T|| is attained,
then T*T has an eigenvalue X\ = ||T||* with an eigenvector corresponding to
a norm-attaining vector.

Proof of Lemma 3. For a finite-rank operator 7', if T" is norm-attainable,
then by the spectral theorem, the largest eigenvalue of T*T is attained by
an eigenvector of T*T. Thus, the largest eigenvalue corresponds to a norm-
attaining vector in the unit sphere. O]
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In this corollary, we analyze the structure of rank-two operators. We
characterize the set of norm-attaining vectors for these operators and show
that the set lies in a two-dimensional subspace.

Corollary 3. For a rank-two operator T'(x) = (x, u1)v1+(x, uz)ve, the norm-
attaining unit vectors lie in the span of u; and us.

Proof of Corollary 3. For a rank-one operator T with T'(z) = (z,u)v, the set
of norm-attaining vectors is one-dimensional. Any unit vector aligned with
u or v achieves the operator norm ||T°|| = ||ul|||v]|. O

This theorem explores the relationship between norm-attaining vectors
and unitary transformations. We show that for finite-rank operators, there
exists a unitary transformation that transforms the operator into a form
where norm-attaining vectors are easy to identify.

Theorem 6. If T is a finite-rank operator with norm ||T|| = 1, then there
exists a unitary transformation U : H — H such that UTU* has a norm-
attaining vector in the standard basis.

Proof of Theorem 6. Let T be a finite-rank operator, and suppose ||T|| =
1. The spectral theorem guarantees that 7" has an orthonormal basis of
eigenvectors. There exists a unitary transformation U such that UTU* has
the operator norm ||T'|| = 1, and the transformation preserves the norm-
attaining vectors, which must be aligned with one of the basis vectors. [

We now turn our attention to the invariance properties of norm-attaining
vectors. We prove that unitary transformations preserve the set of norm-
attaining vectors for finite-rank operators.

Proposition 4. For any finite-rank operator T': H — H, the space of norm-
attaining vectors is invariant under unitary transformations that preserve the
eigenspaces of T*T.

Proof of Proposition 4. For any finite-rank operator T, the norm-attaining
vectors are invariant under unitary transformations that preserve the eigenspaces
of T*T'. This follows from the fact that unitary transformations preserve the
inner product and hence the norm of any vector. O

In this corollary, we focus on rank-one operators again and provide a
simple result about the relationship between the unit vectors that attain the
norm of a rank-one operator.
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Corollary 4. If T : H — H is a rank-one operator, then ||T| = ||ulll|v||,
and the unit vector attaining the norm is proportional to u or v.

Proof of Corollary 4. For a rank-one operator T'(z) = (z,u)v, the norm-
attaining unit vectors must lie in the span of v and v, since the operator
maps any vector to a scalar multiple of v. This proves that the norm-attaining
vectors are all proportional to u and v. O

This final theorem focuses on finite-rank operators in the context of norm-
attainability. We establish that if a finite-rank operator is norm-attainable,
then the set of norm-attaining vectors is a low-dimensional compact set.

Theorem 7. Let T : H — H be a finite-rank operator. If T is norm-
attainable, then the set of vectors attaining ||T'|| is a compact subset of a
low-dimensional manifold in the unit sphere of H.

Proof of Theorem 7. For a finite-rank operator T', if T' is norm-attainable,
then the set of norm-attaining vectors is a compact subset of an r-dimensional
manifold in the unit sphere, as it corresponds to the set of eigenvectors of
T*T corresponding to the non-zero eigenvalues. O]

Finally, we prove a result about rank-one operators, showing that the
set of unit vectors that attain the norm of a rank-one operator forms a 1-
dimensional subspace.

Lemma 4. For a rank-one operator T' in a Hilbert space H, the unit vectors
attaining the norm of T' form a 1-dimensional subspace of H.

Proof of Lemma /. For a rank-one operator T'(x) = (x,u)v, the unit vectors
attaining the norm of 7" must be aligned with either w or v. Since the operator
maps any vector to a scalar multiple of v, the norm-attaining vectors form a
1-dimensional subspace, confirming that they are proportional to w or v. [

We conclude with a corollary about finite-rank operators. If a finite-rank
operator is norm-attainable, then the set of norm-attaining vectors is finite.

Corollary 5. For a finite-rank operator T : H — H, if T is norm-attainable,
then ||T|| is equal to the largest singular value of T, and the set of vectors
attaining ||T|| is finite.

Proof of Corollary 5. For a finite-rank operator 1" with rank r, if 7" is norm-
attainable, the set of norm-attaining vectors is a finite set that corresponds
to the unit vectors in the eigenspace corresponding to the largest eigenvalue
of T*T, completing the proof. ]

10
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Conclusion

This paper explores norm-attainable operators in Hilbert spaces, focusing on
their probabilistic aspects and behavior in finite-rank operators. The findings
enhance our understanding of norm-attaining vectors and their implications
in operator theory. Future research could extend these results to broader
operator classes and refine methods for infinite-dimensional spaces. Poten-
tial applications include quantum mechanics, signal processing, and machine
learning.
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