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Abstract

Graph theory is a core branch of mathematics concerned with representing and analyzing relationships among
discrete elements. These concepts are widely used in fields such as electrical engineering. For example, graphs
play a crucial role in important frameworks including Graph Signal Processing, Electric Circuits, and Bond
Graphs.

A hypergraph generalizes the concept of a traditional graph by allowing edges—called hyperedges—to connect
more than two vertices simultaneously [28]. A superhypergraph further extends this idea by incorporating recur-
sively defined powerset layers, enabling hierarchical and self-referential relationships among hyperedges [192].

In this paper, we extend the frameworks of Graph Signal Processing, Electric Circuits, and Bond Graphs using
hypergraphs and superhypergraphs, and investigate their mathematical properties and illustrative examples.
These extensions enable the representation of hierarchical structures inherent in Graph Signal Processing,
Electric Circuits, and Bond Graphs, providing a more expressive modeling framework. We anticipate that
future research will advance computational experiments and practical applications in these domains.
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1 Introduction

1.1 Hypergraphs and Superhypergraphs

Graph theory is a core branch of mathematics concerned with representing and analyzing relationships among
discrete elements using abstract structures known as graphs, where entities (called vertices) are connected by
links (called edges) [55, 59, 60, 103]. Due to the intuitive and visual nature of graphs, which allows complex
systems to be illustrated clearly, they have been widely applied and actively studied in numerous fields, including
graph neural networks [93, 109, 111], social networks [136, 137, 149], urban networks [16, 18], rail networks
[64, 220], graph algorithm [141, 205, 217], and beyond. Classical graphs are limited to modeling pairwise
relationships, yet many natural and engineered systems involve complex interactions among multiple entities
that cannot be fully described using only binary connections. To overcome this limitation, the theory of graphs
has been expanded to include the framework of hypergraphs and, more recently, superhypergraphs [73, 191].

A hypergraph is a generalization of a traditional graph in which a single edge—called a hyperedge—can
simultaneously connect an arbitrary number of vertices [28, 37, 41, 49, 68]. This structure enables more
expressive modeling of phenomena involving group-level interactions, such as metabolic networks, task teams,
or symptom clusters in medical diagnostics. Furthermore, hypergraphs have been extended and studied
in various forms, including Directed Hypergraphs [92, 126, 150], Regular Hypergraphs [62, 63], Complete
Hypergraphs [26,148,198], Fuzzy Hypergraphs [67,147,183], Intuitionistic fuzzy Hypergraphs [7,57,164,165],
and Neutrosophic Hypergraphs [9,11,135]. Hypergraphs have continued to be the subject of extensive research
in recent years [30, 94, 186, 225].

Building upon the hypergraph concept, a superhypergraph incorporates additional layers of abstraction by
iteratively applying the powerset operation to the vertex set [9, 82, 191, 192]. This results in recursively nested
structures that can capture not only hyperedges over sets of vertices, but also interactions among groups of
hyperedges themselves (cf. [46, 72, 104, 105]). Such higher-order formalisms are particularly suited for rep-
resenting hierarchical, modular, or multi-scale systems in science and engineering (cf. [44, 115, 139, 145]).
Concepts with hierarchical structures such as superhypergraphs are sometimes referred to as SuperHyperstruc-
tures [74, 79, 80, 194].

Table 1 provides an overview of Graphs, Hypergraphs, and Superhypergraphs. Note that let 𝑛 be a natural
number. Furthermore, this paper considers only finite concepts.
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Table 1. Overview of Graph, Hypergraph, and Superhypergraph

Concept Notation Edge Connectivity Structural Extension
Graph 𝐺 = (𝑉, 𝐸) 𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠

𝑣} (binary edges)
Standard graph: edges join
exactly two vertices.

Hypergraph 𝐻 = (𝑉, 𝐸) 𝐸 ⊆ P(𝑉) \ {∅} (hyper-
edges)

Generalizes edges to con-
nect any nonempty subset of
vertices.

Superhypergraph SHT(𝑛) = (𝑉, 𝐸) 𝑉, 𝐸 ⊆ P𝑛 (𝑉0) (super-
vertices and super-edges)

Employs 𝑛-th powersets to
capture hierarchical, nested
connectivity among edges.

1.2 Graphs in Electrical Engineering, Physics, and Chemistry

Graph theory provides a powerful framework that can be applied across a wide range of disciplines, including
electrical engineering, physics, and chemistry (cf. [65, 66, 140]). In this paper, we investigate extensions of
Graph Signal Processing, Electric Circuits, and Bond Graphs through the lens of hypergraphs and superhy-
pergraphs.

Signal Processing involves analyzing, modifying, and extracting information from signals such as sound,
images, or data [17, 108, 143]. Graph Signal Processing extends this concept by analyzing signals defined
on the vertices of a graph using spectral methods [133, 152, 199]. Graph Signal Processing has also been
actively studied in recent years [42, 48, 52, 158]. Electric Circuits model the flow of electrical current through
interconnected components [35, 200, 214, 230]. A related concept known as the Circuit Graph represents
circuits as graphs (cf. [212, 222]). Bond Graphs are graphical models that represent energy exchange across
different physical domains—such as mechanical, electrical, thermal, and hydraulic systems—within a unified
formalism [36, 99]. Bond Graphs have likewise remained an active research topic in recent years [4, 98, 146].

Beyond the concepts mentioned above, many other graph-theoretic models and their applications have been
studied. These include the Chemical Graph [83, 95, 213, 219], which represents molecules and their bonds;
the Interaction Graph, used in dynamical systems and particle interactions [13,142]; and the Feynman Graph,
central to quantum field theory and particle physics [33, 176]. These examples demonstrate the versatility
and broad applicability of graph theory across scientific domains. Moreover, these graph concepts have been
extended beyond classical graphs to include HyperGraphs [38,134,232], Fuzzy Graphs [15], and Neutrosophic
Graphs [31,138], and have been actively studied in fields such as electrical engineering, physics, and chemistry.

1.3 Our Contribution of this paper

As discussed earlier, the principles of graph theory have broad applicability across various domain-specific
models. However, traditional graphs are inherently limited when relationships involve more than two entities
(i.e., non-binary) or when systems exhibit hierarchical, recursive, or group-based interactions.

To address these limitations, we propose that hypergraphs and superhypergraphs provide promising structural
alternatives. These generalized frameworks offer the expressive power needed to model complex interconnec-
tions that are not easily captured by classical graphs.

In this paper, we extend the foundational frameworks of Graph Signal Processing, Electric Circuits, and Bond
Graphs through the lens of hypergraph and superhypergraph theory. We formally investigate their underlying
mathematical structures and provide illustrative examples to clarify their expressive capabilities.

It is important to note that this paper is purely theoretical in nature. Certain procedural flows and implementation
details related to the abstract formalism and its potential applications have been intentionally omitted. We
hope that future research will explore these directions through computational experiments or circuit-based
implementations to validate and expand upon the proposed models.
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1.4 Structure of this paper

This section briefly outlines the structure of the paper. Section 2 introduces the preliminaries and definitions,
including the Power Set, nth Power Set, HyperGraph, SuperHyperGraph, Graph Signal Processing, Electric
Circuits, and Bond Graphs, along with illustrative examples. Section 3 defines and explores the properties
and examples of n-SuperHyperGraph Signal Processing. Section 4 presents the definitions, examples, and
characteristics of Electric HyperCircuits and Electric SuperHyperCircuits. Section 5 investigates the definitions,
examples, and properties of Bond HyperGraphs and Bond SuperHyperGraphs. Finally, Section 6 concludes
the paper and discusses directions for future work.

2 Preliminaries and Definitions

This section provides an overview of the fundamental concepts and definitions essential for the discussions in
this paper. Throughout this paper, we restrict our attention to finite structures.

2.1 Power Set

The powerset of a set is the complete collection of all its possible subsets, including the empty set. The 𝑛-th
powerset is constructed by repeatedly applying the powerset operation 𝑛 times to a base set. We provide the
definitions of the Base Set, the Powerset, and the n-th Powerset as follows.

Definition 2.1 (Set). [107, 117, 131] A set is a well-defined collection of distinct objects, called elements or
members.

Definition 2.2 (Subset). [107,117,131] Let 𝐴 and 𝐵 be sets. We say that 𝐴 is a subset of 𝐵, written 𝐴 ⊆ 𝐵, if
every element of 𝐴 is also an element of 𝐵; that is,

𝐴 ⊆ 𝐵 ⇐⇒ ∀𝑥 (𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵).

Definition 2.3 (Empty Set). [117] The empty set, denoted by ∅, is the unique set that contains no elements.
Formally,

∅ = { } such that ∀𝑥, 𝑥 ∉ ∅.

Definition 2.4 (Base Set). A base set 𝑆 is the foundational set from which complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 | 𝑥 is an element within a specified domain}.

All elements in constructs like P(𝑆) or P𝑛 (𝑆) originate from the elements of 𝑆.

Definition 2.5 (Powerset). [86, 179] The powerset of a set 𝑆, denoted P(𝑆), is the collection of all possible
subsets of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Example 2.6 (Basic Passive Network Configurations via Powerset). Passive components are electronic elements
that do not generate energy, such as resistors, capacitors, and inductors, used in circuits (cf. [162, 170, 202]).
In electrical engineering, selecting combinations of basic passive components is a common design task. Let
the base set of available components be

𝑆 = { 𝑅, 𝐿, 𝐶},

where

• 𝑅 = resistor,

• 𝐿 = inductor,

• 𝐶 = capacitor.
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Then the powerset

P(𝑆) =
{
𝐴 | 𝐴 ⊆ 𝑆

}
= { ∅, {𝑅}, {𝐿}, {𝐶}, {𝑅, 𝐿}, {𝑅,𝐶}, {𝐿, 𝐶}, {𝑅, 𝐿, 𝐶}

}
enumerates all possible one-port network configurations:

• ∅: open circuit (no component installed).

• {𝑅}: simple resistive circuit (cf. [34]).

• {𝐿}: single-element inductor circuit.

• {𝐶}: single-element capacitor circuit.

• {𝑅, 𝐿}: RL network for first-order filtering or transient shaping (cf. [58]).

• {𝑅,𝐶}: RC network used in low-pass or high-pass filters.

• {𝐿, 𝐶}: LC resonant circuit for band-pass or notch filtering (cf. [90]).

• {𝑅, 𝐿, 𝐶}: RLC circuit providing second-order filtering or oscillation behavior.

Thus P(𝑆) systematically captures every combination of basic passive elements, guiding the exploration of
feasible circuit topologies in filter design, impedance matching, and transient analysis.

Definition 2.7 (𝑛-th Powerset). (cf. [70, 86, 188, 193])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), is defined recursively as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) represents the powerset of 𝐻 with the empty set removed.

Example 2.8 (Multi-Stage Filter Design via 𝑛-th Powersets). A multi-stage filter in electronics combines
multiple filter stages to achieve sharper frequency selectivity and improved signal processing performance
(cf. [110, 215]). A common task in electrical engineering is designing cascaded filter stages from basic
one-port modules. Let the base set of available single-stage filters be

𝐻 =
{
𝐹𝑅, 𝐹𝐶 , 𝐹𝐿 , 𝐹𝑅𝐶 , 𝐹𝑅𝐿 , 𝐹𝐿𝐶

}
,

where, for example, 𝐹𝑅𝐶 = {𝑅,𝐶} denotes a first-order RC filter.

First powerset 𝑃1 (𝐻): all possible subsets of single-stage filter modules:

𝑃1 (𝐻) = P(𝐻) =
{
∅, {𝐹𝑅}, {𝐹𝐶 }, . . . , {𝐹𝑅𝐶 , 𝐹𝑅𝐿}, . . . , 𝐻

}
.

Each element of 𝑃1 (𝐻) is a candidate set of modules to be cascaded in one design.

Second powerset 𝑃2 (𝐻): sets of design alternatives, grouping multiple cascade choices:

𝑃2 (𝐻) = P
(
𝑃1 (𝐻)

)
.

For instance, one might select two cascade designs:

𝐷1 = {{𝐹𝑅𝐶 , 𝐹𝑅𝐿}, {𝐹𝐿𝐶 , 𝐹𝑅𝐶 }}, 𝐷2 = {{𝐹𝑅𝐶 , 𝐹𝐿𝐶 , 𝐹𝑅𝐿}},

so that {𝐷1, 𝐷2} ∈ 𝑃2 (𝐻).
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Third powerset 𝑃3 (𝐻): meta-designs across system requirements, grouping multiple sets of alternatives:

𝑃3 (𝐻) = P
(
𝑃2 (𝐻)

)
, 𝑀 = {𝐷1, 𝐷3} ∈ 𝑃3 (𝐻),

where 𝐷3 might be another design alternative set. Here 𝑀 captures several multi-stage filter strategies evaluated
in parallel.

This hierarchy
𝐻 → 𝑃1 (𝐻) → 𝑃2 (𝐻) → 𝑃3 (𝐻)

illustrates how iterated powersets model increasingly higher-order groupings of filter modules, from single-stage
choices to sets of cascade designs to collections of design strategies in complex signal-processing systems.

Example 2.9 (Antenna Beamforming Design via 𝑛-th Powersets). Antenna beamforming is a signal processing
technique that directs signal transmission or reception toward specific angles to enhance performance (cf.
[45, 123, 204]). In advanced wireless systems, one often selects subsets of antenna elements to form beams
with desired patterns. Let the base set of available antenna elements be

𝐻 = { 𝐴1, 𝐴2, 𝐴3, 𝐴4},

where each 𝐴𝑖 is a discrete radiating element in a linear array.

First powerset 𝑃1 (𝐻): all possible subarrays for beamforming:

𝑃1 (𝐻) = P(𝐻) =
{
∅, {𝐴1}, {𝐴2}, . . . , {𝐴1, 𝐴2, 𝐴3}, . . . , 𝐻

}
.

Each nonempty subset represents one candidate subarray.

Second powerset 𝑃2 (𝐻): collections of subarray designs for multi-beam operation. For instance, choose two
subarrays:

𝑆1 = {𝐴1, 𝐴2}, 𝑆2 = {𝐴3, 𝐴4}, 𝑆3 = {𝐴1, 𝐴3, 𝐴4}.

Then
𝐶1 = {𝑆1, 𝑆2}, 𝐶2 = {𝑆2, 𝑆3},

so that {𝐶1, 𝐶2} ∈ 𝑃2 (𝐻). Each 𝐶 𝑗 is a set of subarrays used simultaneously.

Third powerset 𝑃3 (𝐻): meta-configurations grouping multiple multi-beam strategies:

𝑃3 (𝐻) = P
(
𝑃2 (𝐻)

)
, 𝑀 = {𝐶1, 𝐶3} ∈ 𝑃3 (𝐻),

where 𝐶3 might be another collection of subarrays. Here 𝑀 captures several distinct multi-beam schemes
evaluated for different coverage zones.

This hierarchy
𝐻 → 𝑃1 (𝐻) → 𝑃2 (𝐻) → 𝑃3 (𝐻)

shows how iterated powersets model increasingly higher-order groupings in antenna design, from single
subarrays to sets of beam patterns to collections of multi-beam strategies in complex wireless deployments.

2.2 SuperHyperGraph

In classical graph theory, a hypergraph extends the idea of a conventional graph by permitting edges—called
hyperedges—to join more than two vertices. This broader framework enables the modeling of more intricate
relationships between elements, thereby enhancing its utility in various fields [28, 68, 101, 102]. A Super-
HyperGraph is an advanced extension of the hypergraph concept, integrating recursive powerset structures
into the classical model. This concept has been recently introduced and extensively studied in the litera-
ture [2, 85, 144, 163].
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Definition 2.10 (Graph). [47, 59, 69, 216] A graph is a mathematical structure consisting of a set of vertices
and a set of edges, where each edge connects a pair of distinct vertices.

Definition 2.11 (Subgraph). [47, 59] Let 𝐺 = (𝑉, 𝐸) be a graph. A subgraph of 𝐺 is a graph 𝐺′ = (𝑉 ′, 𝐸 ′)
such that

𝑉 ′ ⊆ 𝑉, 𝐸 ′ ⊆
{
{𝑢, 𝑣} ∈ 𝐸 | 𝑢, 𝑣 ∈ 𝑉 ′}.

In other words, 𝐺′ is obtained by selecting a subset of vertices and retaining only those edges of 𝐺 whose
endpoints both lie in 𝑉 ′.

Definition 2.12 (Hypergraph). [28, 37] A hypergraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) consists of:

• A nonempty set 𝑉 (𝐻) of vertices.

• A set 𝐸 (𝐻) of hyperedges, where each hyperedge is a nonempty subset of 𝑉 (𝐻), thereby allowing
connections among multiple vertices.

Unlike standard graphs, hypergraphs are well-suited to represent higher-order relationships. In this paper, we
restrict ourselves to the case where both 𝑉 (𝐻) and 𝐸 (𝐻) are finite.

Example 2.13 (VLSI Netlist Hypergraph). In modern VLSI circuit design, the netlist ( [43,87,181]) describing
device interconnections is naturally modeled as a hypergraph. Each vertex represents a device pin, and each
hyperedge corresponds to an electrical net that may connect two or more pins simultaneously.

Let the set of pins be
𝑉 =

{
𝑝𝐴, 𝑝𝐵, 𝑝𝐶 , 𝑝𝐷 , 𝑝𝐸

}
,

where 𝑝𝐴 and 𝑝𝐵 are input pins of a logic gate, 𝑝𝐶 is its output pin, 𝑝𝐷 is a clock distribution pin, and 𝑝𝐸 is a
reset pin. Define the nets (hyperedges) by

𝑒1 = {𝑝𝐴, 𝑝𝐵, 𝑝𝐶 }, 𝑒2 = {𝑝𝐶 , 𝑝𝐷}, 𝑒3 = {𝑝𝐸 , 𝑝𝐴}.

Then the hypergraph
𝐻 =

(
𝑉, {𝑒1, 𝑒2, 𝑒3}

)
captures the multi-pin electrical connectivity of the circuit:

• 𝑒1 models the three-pin data net linking the gate’s inputs and output.

• 𝑒2 represents the two-pin clock net connecting the gate output to the clock distribution.

• 𝑒3 encodes the two-pin reset net linking the reset signal to one gate input.

Such a hypergraph is fundamental in VLSI placement and partitioning algorithms, where nets connecting
multiple pins must be considered simultaneously.

Definition 2.14 (n-SuperHyperGraph). [73, 81, 191, 192]
Let 𝑉0 be a finite base set of vertices. For each integer 𝑘 ≥ 0, define the iterative powerset by

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P(P𝑘 (𝑉0)),

where P(·) denotes the usual powerset operation. An n-SuperHyperGraph is then a pair

SHT(𝑛) = (𝑉, 𝐸),

with
𝑉 ⊆ P𝑛 (𝑉0) and 𝐸 ⊆ P𝑛 (𝑉0).

Each element of 𝑉 is called an n-supervertex and each element of 𝐸 an n-superedge.
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Example 2.15 (Microgrid Power Flow as a 2-SuperHyperGraph). Microgrid Power Flow refers to the dis-
tribution of electrical energy among generation, storage, and load units within a localized microgrid system
(cf. [53, 130, 177]). Consider a simple microgrid in electrical engineering, with base components

𝑉0 =
{
SP, WT , BS, RL, CL

}
,

where SP = Solar Panels, WT = Wind Turbine, BS = Battery Storage, RL = Residential Load, and CL =
Commercial Load. We form the 2-SuperHyperGraph SHT(2) = (𝑉 (2) , 𝐸 (2) ) by setting

𝑉 (2) =
{
{{SP,WT ,BS}}, {{RL,CL}}

}
⊆ P2 (𝑉0),

𝐸 (2) =
{
𝑒 =

{
{SP,WT ,BS}, {RL,CL}

}}
⊆ P2 (𝑉0) \ {∅}.

Here each element of 𝑉 (2) is a 2-supervertex representing a cluster of devices or loads; the single 2-superedge
𝑒 captures the power-flow event from the generation/storage cluster {{SP,WT ,BS}} to the combined load
cluster {{RL,CL}}. This hierarchical model reflects the nested grouping of components and their simultaneous
interaction in a microgrid.

Example 2.16 (Substation Protection Coordination as a 2-SuperHyperGraph). In power system protection
[14,32,159], relays and breakers form coordinated zones to isolate faults quickly and reliably. Let the base set
of devices be

𝑉0 = { R1, R2, R3, B1, B2},
where R𝑖 are protective relays and B 𝑗 are circuit breakers.

Level-1 hyperedges (1-supervertices). Define the protection zones as hyperedges:

𝑒1 = {R1, B1} (Zone 1), 𝑒2 = {R2, B1, B2} (Zone 2), 𝑒3 = {R3, B2} (Zone 3).

Thus
𝑉 (1) = {𝑒1, 𝑒2, 𝑒3} ⊆ P1 (𝑉0).

Level-2 supervertices. Group overlapping zones into 2-supervertices:

𝐷1 = {𝑒1, 𝑒2} (overlap on B1), 𝐷2 = {𝑒2, 𝑒3} (overlap on B2).

Hence
𝑉 (2) = {𝐷1, 𝐷2} ⊆ P2 (𝑉0).

Level-2 superedge. Since both 2-supervertices share the intermediate zone 𝑒2, there is a single 2-superedge:

𝐸 (2) =
{
{𝐷1, 𝐷2}

}
⊆ P2 (𝑉0) \ {∅}.

Therefore, the 2-SuperHyperGraph
SHT(2) =

(
𝑉 (2) , 𝐸 (2) )

captures the hierarchical protection coordination:

• Level 1 lists individual protection zones (relay–breaker groupings).

• Level 2 clusters zones sharing breakers into regional coordination units 𝐷1 and 𝐷2.

• The 2-superedge {𝐷1, 𝐷2} models backup coordination between these two units via the shared zone 𝑒2.

Example 2.17 (Distribution Grid Topology as a 3-SuperHyperGraph). Electric power distribution networks
consist of substations, feeders, and local load zones organized hierarchically (cf. [1, 51, 231]). Let the base set
be

𝑉0 = { Sub, Fe1, Fe2, LZ1, LZ2},
where Sub is the substation, Fe𝑖 are feeders, and LZ 𝑗 are load zones.
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Level-1 hyperedges (1-supervertices). Define the 1-supervertices (hyperedges) as

𝑒1 = {Sub, Fe1, Fe2}, 𝑒2 = {Fe1,LZ1}, 𝑒3 = {Fe2,LZ2}.

Thus
𝑉 (1) = {𝑒1, 𝑒2, 𝑒3} ⊆ P1 (𝑉0).

Level-2 supervertices. Group overlapping hyperedges into 2-supervertices:

𝐷1 = {𝑒1, 𝑒2} (overlap on Fe1), 𝐷2 = {𝑒1, 𝑒3} (overlap on Fe2).

Hence
𝑉 (2) = {𝐷1, 𝐷2} ⊆ P2 (𝑉0).

Level-3 supervertices. Wrap each 2-supervertex into a singleton 3-supervertex:

𝑈1 = {𝐷1}, 𝑈2 = {𝐷2}.

Thus
𝑉 (3) = {𝑈1,𝑈2} ⊆ P3 (𝑉0).

Level-3 superedge. Finally, connect the two 3-supervertices by the single 3-superedge

𝐸 (3) =
{
{𝑈1,𝑈2}

}
⊆ P3 (𝑉0).

Hence the 3-SuperHyperGraph
SHT(3) =

(
𝑉 (3) , 𝐸 (3) )

encodes the hierarchical topology of the distribution grid:

• Level 1 captures basic nets: high-voltage ring (𝑒1) and two service feeders (𝑒2, 𝑒3).

• Level 2 groups nets sharing a feeder into regional zones (𝐷1, 𝐷2).

• Level 3 wraps each regional zone into a supervertex (𝑈1,𝑈2).

• The 3-superedge {𝑈1,𝑈2} reflects the overall interconnection of these two zones via the substation.

2.3 Graph Signal Processing

Graph Signal Processing analyzes data defined on graph nodes using spectral methods and graph-based
transformations like filtering and shifting [61, 129, 151, 153]. If we are to define it explicitly, it would be as
follows.

Definition 2.18 (Graph Signal Processing). (cf. [61, 129, 151, 153]) Let 𝐺 = (𝑉, 𝐸) be a simple graph with
|𝑉 | = 𝑁 . A graph signal is a function 𝑥 : 𝑉 → R, represented by the vector x = [𝑥(𝑣1) · · · 𝑥(𝑣𝑁 )]⊤ ∈ R𝑁 .
Choose a graph shift operator F ∈ R𝑁×𝑁 (e.g. the adjacency matrix A or the Laplacian L = D − A). Then:

(Graph shifting) x′ = F x.

Since F is (for instance) diagonalizable as F = V𝚲V−1, the graph Fourier transform (GFT) of x is

x̂ = V x, x = V−1 x̂,

where columns of V are eigenvectors of F and the entries of 𝚲 are the associated graph frequencies.
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Example 2.19 (Path Graph Temperature Sensor Network). Temperature Sensor Networks are systems of
distributed sensors that monitor, collect, and transmit temperature data across environments for analysis and
control (cf. [125, 156, 157, 223]). Consider the path graph 𝐺 = (𝑉, 𝐸) with 𝑉 = {1, 2, 3, 4} and edges
{(1, 2), (2, 3), (3, 4)}. We use the combinatorial Laplacian L = D − A as the graph shift operator, where

A =

©­­­«
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

ª®®®¬ , D = diag(1, 2, 2, 1).

Its eigen-decomposition L = U𝚲U⊤ yields

U =

©­­­«
0.372 0.602 0.602 0.372
0.602 0.372 −0.372 −0.602
0.602 −0.372 −0.372 0.602
0.372 −0.602 0.602 −0.372

ª®®®¬ , 𝚲 = diag
(
0.382, 1.382, 2.618, 3.618

)
.

Now let the graph signal represent temperature readings: x = [1, 2, 3, 4]⊤ (in °C). Its graph Fourier transform
is

x̂ = U⊤ x ≈
©­­­«

4.866
−2.176
1.149
−0.514

ª®®®¬ .
These coefficients �̂�𝑘 quantify the components of x at the graph frequencies 𝜆𝑘 .

Proposition 2.20 (Orthonormality of the Graph Fourier Basis). Let 𝐺 = (𝑉, 𝐸) be an undirected simple graph
with |𝑉 | = 𝑁 , and let

F = V𝚲V⊤

be the eigendecomposition of a symmetric graph shift operator F ∈ R𝑁×𝑁 , where V = [v1, . . . , v𝑁 ] is
orthogonal. Then the columns of V form an orthonormal basis of R𝑁 and

V⊤V = I𝑁 .

Proof. Since F is real symmetric, the spectral theorem guarantees that there exists an orthogonal matrix V and
a real diagonal matrix 𝚲 such that F = V𝚲V⊤. Orthogonality of V means by definition

V⊤V = I𝑁 ,

so its columns {v𝑘} satisfy v⊤
𝑖

v 𝑗 = 𝛿𝑖 𝑗 , establishing the orthonormality of the graph Fourier basis. □

Proposition 2.21 (Parseval’s Identity). Under the same assumptions as above, define the Graph Fourier
Transform (GFT) of a graph signal x ∈ R𝑁 by

x̂ = V⊤x.

Then the energy of x is preserved in the spectral domain:

∥x∥2
2 =



̂x


2

2.

Proof. Using orthonormality of V,

∥x̂∥2
2 = (V⊤x)⊤ (V⊤x) = x⊤ VV⊤︸︷︷︸

I

x = ∥x∥2
2.

Thus the total signal energy is invariant under the GFT. □

Proposition 2.22 (Graph Convolution–Filtering Theorem). Let ℎ : R → R be a real-valued function (graph
filter), and define the filter operator

H = ℎ(F) = V ℎ(𝚲) V⊤,

where ℎ(𝚲) = diag
(
ℎ(𝜆1), . . . , ℎ(𝜆𝑁 )

)
. Then for any graph signal x,

Ĥx = ℎ(𝚲) x̂,

i.e. filtering in the vertex domain corresponds to pointwise multiplication in the spectral domain.
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Proof. By definition,
Ĥx = V⊤ (

V ℎ(𝚲) V⊤x
)
= V⊤V︸︷︷︸

I

ℎ(𝚲) (V⊤x) = ℎ(𝚲) x̂.

Since ℎ(𝚲) is diagonal, each spectral coefficient �̂�𝑘 is multiplied by ℎ(𝜆𝑘), proving the convolution–filtering
property. □

Hypergraph Signal Processing extends graph signal analysis to hypergraphs, using high-order tensors and
spectral methods for multi-node interactions [27, 171, 197, 233].

Definition 2.23 (Hypergraph Signal Processing). (cf. [27,171,197,233]) Let 𝐻 = (𝑉, 𝐸) be a hypergraph with
|𝑉 | = 𝑁 vertices and maximum hyperedge size m.c.e.(𝐻) = 𝑀 . Hypergraph Signal Processing (HGSP) on 𝐻

comprises the following components:

1. Adjacency tensor A ∈ R

𝑁 × · · · × 𝑁︸         ︷︷         ︸
𝑀 times : if 𝑒ℓ = {𝑣𝑙1 , . . . , 𝑣𝑙𝑐 } ∈ 𝐸 has 𝑐 ≤ 𝑀 , then for any index tuple

(𝑖1, . . . , 𝑖𝑀 ) that picks exactly those 𝑐 vertices (with the remaining 𝑀 − 𝑐 indices drawn from the same
set),

A𝑖1 · · ·𝑖𝑀 = 𝑐

( ∑︁
𝑘1 ,...,𝑘𝑐≥1∑𝑐

𝑖=1 𝑘𝑖=𝑀

𝑀!
𝑘1! 𝑘2! · · · 𝑘𝑐!

)−1

,

and A𝑖1 · · ·𝑖𝑀 = 0 otherwise.

2. Hypergraph signal: start with a vertex-domain signal s = [𝑠1, . . . , 𝑠𝑁 ]⊤ ∈ R𝑁 , and form the (𝑀−1)th-
order signal tensor

S = s ◦ s ◦ · · · ◦ s︸         ︷︷         ︸
𝑀−1 times

∈ R

𝑁 × · · · × 𝑁︸         ︷︷         ︸
𝑀−1 times .

3. Signal shifting: the filtered (shifted) signal is obtained by contracting A with S:

S′ = A ×𝑀 S,

where “×𝑀” denotes the 𝑀th-mode product, generalizing s′ = Fs in graph SP.

4. Hypergraph Fourier transform: assume an orthogonal CANDECOMP/PARAFAC decomposition

A =

𝑅∑︁
𝑟=1

𝜆𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀 times

, ⟨f𝑟 , f𝑠⟩ = 𝛿𝑟𝑠 .

Then the HGFT of S is the vector Ŝ ∈ R𝑅 with components

Ŝ𝑟 =
〈
S, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉
,

whose entries 𝜆𝑟 serve as the “hypergraph frequencies.

Example 2.24 (Hypergraph Signal Processing on a 3-Uniform Collaboration Hypergraph). Consider the
hypergraph 𝐻 = (𝑉, 𝐸) defined by

𝑉 = {Alice, Bob, Carol, Dave}, 𝐸 =
{
{Alice,Bob,Carol}, {Bob,Carol,Dave}

}
,

so that m.c.e.(𝐻) = 3. Assign to each vertex the “publication count” signal

s =


10
15
8
12

 ∈ R4.
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Since 𝑀 = 3, the adjacency tensor A ∈ R4×4×4 has nonzero entries precisely when {𝑖, 𝑗 , 𝑘} ∈ 𝐸 :

A𝑖, 𝑗 ,𝑘 = 3
( 3!
1! 1! 1!

)−1
=

3
6
= 0.5,

and A𝑖, 𝑗 ,𝑘 = 0 otherwise.

Form the hypergraph signal tensor S ∈ R4×4 by

S𝑖, 𝑗 = 𝑠𝑖 𝑠 𝑗 ,

so that for example SAlice,Bob = 10 × 15 = 150.

The shifted (filtered) signal S′ = A ×3 S ∈ R4×4 is given by

S′
𝑖, 𝑗 =

4∑︁
𝑘=1

A𝑖, 𝑗 ,𝑘 𝑠𝑘 .

Hence, for example,

S′
Alice,Bob = AAlice,Bob,Carol × 𝑠Carol = 0.5 × 8 = 4, S′

Bob,Carol = 0.5 × 10 + 0.5 × 12 = 11.

Proposition 2.25 (Linearity of the Hypergraph Shift). Let 𝐻 = (𝑉, 𝐸) be a hypergraph with adjacency tensor

A ∈ R𝑁×···×𝑁 of order 𝑀 , and let S,T ∈ R

𝑁 × · · · × 𝑁︸         ︷︷         ︸
𝑀−1 times be two hypergraph signal tensors. Then for any

scalars 𝛼, 𝛽 ∈ R,
A ×𝑀 (𝛼S + 𝛽T) = 𝛼 (A ×𝑀 S) + 𝛽 (A ×𝑀 T).

Proof. By definition the mode-𝑀 product of a tensor with a linear combination of two signals is[
A ×𝑀 (𝛼S + 𝛽T)

]
𝑖1 · · ·𝑖𝑀−1

=

𝑁∑︁
𝑖𝑀=1

A𝑖1 · · ·𝑖𝑀−1𝑖𝑀

(
𝛼S𝑖1 · · ·𝑖𝑀−1 + 𝛽 T𝑖1 · · ·𝑖𝑀−1

)
.

Since summation and scalar multiplication commute,

= 𝛼
∑︁
𝑖𝑀

A𝑖1 · · ·𝑖𝑀 S𝑖1 · · ·𝑖𝑀−1 + 𝛽
∑︁
𝑖𝑀

A𝑖1 · · ·𝑖𝑀 T𝑖1 · · ·𝑖𝑀−1 = 𝛼 (A ×𝑀 S)𝑖1 · · ·𝑖𝑀−1 + 𝛽 (A ×𝑀 T)𝑖1 · · ·𝑖𝑀−1 ,

which proves the claimed linearity. □

Proposition 2.26 (Spectral Multiplication Property). Assume that the adjacency tensor admits an orthogonal
CP decomposition

A =

𝑅∑︁
𝑟=1

𝜆𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀 times

, ⟨f𝑟 , f𝑠⟩ = 𝛿𝑟𝑠 .

Then the hypergraph Fourier transform (HGFT) of the shifted signal satisfies

Ŝ′
𝑟 = 𝜆𝑟 Ŝ𝑟 , Ŝ𝑟 =

〈
S, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉
.

Proof. By definition S′ = A ×𝑀 S. Then

Ŝ′
𝑟 =

〈
A ×𝑀 S, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉
=

〈
A, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉〈
S, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀−1 times

〉
,

where we have used the multilinearity of the inner product and the orthogonality of the factors. But〈
A, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉
= 𝜆𝑟 ,

so that
Ŝ′
𝑟 = 𝜆𝑟 Ŝ𝑟 ,

as required. □
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Proposition 2.27 (Parseval’s Identity for HGFT). Under the same orthogonality and decomposition assump-
tions as above, the total energy of the signal is preserved:

∥S∥2
𝐹 =

∑︁
𝑖1 ,...,𝑖𝑀−1

S2
𝑖1 · · ·𝑖𝑀−1

=

𝑅∑︁
𝑟=1

(
Ŝ𝑟

)2
,

where ∥ · ∥𝐹 denotes the Frobenius norm of the tensor.

Proof. Since the rank-one tensors f𝑟 ◦ · · · ◦ f𝑟 form an orthonormal basis for the (𝑀 − 1)-order signal space,

S =

𝑅∑︁
𝑟=1

Ŝ𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀−1 times

,

and the squared Frobenius norm expands as

∥S∥2
𝐹 =

𝑅∑︁
𝑟=1

(
Ŝ𝑟

)2



f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀−1 times




2

𝐹
=

𝑅∑︁
𝑟=1

(
Ŝ𝑟

)2
,

because each rank-one tensor has unit norm by orthonormality of f𝑟 . This completes the proof. □

Proposition 2.28 (Polynomial Hypergraph Filtering). Let 𝐻 = (𝑉, 𝐸) be a hypergraph with adjacency tensor
A admitting the orthogonal CP decomposition

A =

𝑅∑︁
𝑟=1

𝜆𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀 times

, ⟨f𝑟 , f𝑠⟩ = 𝛿𝑟𝑠 .

Given a real polynomial ℎ(𝑡) = ∑𝐾
𝑘=0 𝑎𝑘 𝑡

𝑘 , define the filter operator

𝐻ℎ (S) =
𝐾∑︁
𝑘=0

𝑎𝑘 A ×𝑀 · · · ×𝑀 A︸               ︷︷               ︸
𝑘 times

×𝑀S.

Then the HGFT of the filtered signal satisfies�𝐻ℎ (S)𝑟 = ℎ(𝜆𝑟 ) Ŝ𝑟 , 𝑟 = 1, . . . , 𝑅.

Proof. We proceed by induction on the filter degree. For 𝑘 = 0, note

A0︸︷︷︸
identity

×𝑀S = S, Ŝ𝑟 = Ŝ𝑟 .

Assume for some 𝑘 ≥ 0 that �(
A𝑘 ×𝑀 S

)
𝑟
= 𝜆𝑘𝑟 Ŝ𝑟 .

Then apply one more shift:
A𝑘+1 ×𝑀 S = A ×𝑀

(
A𝑘 ×𝑀 S

)
,

and by the spectral multiplication property (Proposition 2),�A𝑘+1 ×𝑀 S𝑟 = 𝜆𝑟
�A𝑘 ×𝑀 S𝑟 = 𝜆𝑘+1

𝑟 Ŝ𝑟 .

Hence for the polynomial filter,

�𝐻ℎ (S)𝑟 = 𝐾∑︁
𝑘=0

𝑎𝑘
�A𝑘 ×𝑀 S𝑟 =

𝐾∑︁
𝑘=0

𝑎𝑘 𝜆
𝑘
𝑟 Ŝ𝑟 = ℎ(𝜆𝑟 ) Ŝ𝑟 ,

as claimed. □

12



Proposition 2.29 (Commutativity of Polynomial Hypergraph Filters). Let ℎ(𝑡) =
∑𝐾
𝑘=0 𝑎𝑘 𝑡

𝑘 and 𝑔(𝑡) =∑𝐿
ℓ=0 𝑏ℓ 𝑡

ℓ be two real polynomials, and let 𝐻ℎ, 𝐻𝑔 be the corresponding polynomial filters as in Proposition
2.28. Then

𝐻ℎ ◦ 𝐻𝑔 (S) = 𝐻𝑔 ◦ 𝐻ℎ (S) for all hypergraph signals S.

Proof. By Proposition 2.28, the HGFT of 𝐻ℎ ◦ 𝐻𝑔 (S) is�𝐻ℎ (𝐻𝑔 (S))𝑟 = ℎ(𝜆𝑟 ) �𝐻𝑔 (S)𝑟 = ℎ(𝜆𝑟 ) 𝑔(𝜆𝑟 ) Ŝ𝑟 .

Similarly, �𝐻𝑔 (𝐻ℎ (S))𝑟 = 𝑔(𝜆𝑟 ) ℎ(𝜆𝑟 ) Ŝ𝑟 .
Since scalar multiplication commutes, these two are equal for every 𝑟 , and by invertibility of the HGFT the
filtered signals coincide:

𝐻ℎ ◦ 𝐻𝑔 (S) = 𝐻𝑔 ◦ 𝐻ℎ (S).
□

Proposition 2.30 (Invertibility of the HGFT). Under the orthogonality assumptions of Proposition 2.28, the
HGFT is invertible. In particular, for any hypergraph signal tensor S,

S =

𝑅∑︁
𝑟=1

Ŝ𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀−1 times

.

Proof. Because the rank-one tensors {f◦(𝑀−1)
𝑟 }𝑅

𝑟=1 form an orthonormal basis of the signal space, any tensor
S admits the unique expansion

S =

𝑅∑︁
𝑟=1

⟨S, f◦(𝑀−1)
𝑟 ⟩ f◦(𝑀−1)

𝑟 =

𝑅∑︁
𝑟=1

Ŝ𝑟 f◦(𝑀−1)
𝑟 ,

where Ŝ𝑟 are the HGFT coefficients. This provides the inversion formula and shows the transform is bijective.
□

2.4 Electric Circuit

An electric circuit is a closed loop that allows electric current to flow through connected electrical components
using conductors [20, 166, 180, 187].

Definition 2.31 (Electric Circuit). An electric circuit is a pair (𝐺, E) where:

• 𝐺 = (𝑉, 𝐸) is a finite, connected, oriented multigraph with vertex set𝑉 and edge set 𝐸 . Each edge 𝑒 ∈ 𝐸

has a chosen direction.

• E is a collection of circuit elements assigning to each edge 𝑒 ∈ 𝐸 a voltage–current relation

E(𝑒) : (𝑣𝑒, 𝑖𝑒) ↦→ 0,

such as Ohm’s law for a resistor 𝑒: 𝑣𝑒 − 𝑅𝑒 𝑖𝑒 = 0.

We associate to 𝐺 its incidence matrix 𝐴 ∈ {−1, 0, 1} |𝑉 |× |𝐸 | , where

𝐴𝑛,𝑒 =


+1, if edge 𝑒 leaves node 𝑛,

−1, if edge 𝑒 enters node 𝑛,

0, otherwise.

A state of the circuit consists of functions 𝑖 : 𝐸 → R (branch currents) and 𝑣 : 𝐸 → R (branch voltages)
satisfying:
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1. Kirchhoff’s Current Law (KCL):
𝐴 i = 0,

meaning the algebraic sum of currents at each node is zero.

2. Kirchhoff’s Voltage Law (KVL): there exists a node–potential vector u ∈ R |𝑉 | such that

v = 𝐴⊤ u,

so the sum of voltage drops around any closed loop vanishes.

3. Element Constitutive Relations: for each 𝑒 ∈ 𝐸 , E(𝑒) (𝑣𝑒, 𝑖𝑒) = 0.

Together, these equations define the network equations of the circuit.

Example 2.32 (Resistive Network). A Resistive Network is an electrical circuit composed of interconnected
resistors used to control voltage, current, and power distribution (cf. [127,132]). Let 𝐺 = (𝑉, 𝐸) be a connected
graph with 𝑉 = {1, 2, 3}, 𝐸 = {𝑒12, 𝑒23, 𝑒31}, each edge a resistor of resistance 𝑅𝑖 𝑗 . Then:

i = (𝑖12, 𝑖23, 𝑖31)⊤, v = (𝑣12, 𝑣23, 𝑣31)⊤,

and the incidence matrix is

𝐴 =
©­«
+1 0 −1
−1 +1 0
0 −1 +1

ª®¬ .
KCL: 𝐴 i = 0.
KVL: v = 𝐴⊤u for node potentials u = (𝑢1, 𝑢2, 𝑢3)⊤.
Ohm’s law on each edge 𝑒𝑖 𝑗 : 𝑣𝑖 𝑗 − 𝑅𝑖 𝑗 𝑖𝑖 𝑗 = 0. Solving these yields the currents and potentials in the network.

Proposition 2.33 (Positive Semidefiniteness of Circuit Laplacian). Let 𝐺 = (𝑉, 𝐸) be a connected oriented
multigraph, and let

𝐺cond = diag(𝑔𝑒) , 𝑔𝑒 =
1
𝑅𝑒

> 0,

be the diagonal matrix of edge conductances. Define the network Laplacian

𝐿 = 𝐴𝐺cond 𝐴
⊤,

where 𝐴 ∈ {−1, 0, 1} |𝑉 |× |𝐸 | is the incidence matrix. Then:

1. 𝐿 is symmetric and positive semidefinite.

2. ker(𝐿) = span{1}, where 1 is the all-ones vector.

Proof. Symmetry follows immediately since 𝐺cond is diagonal and 𝐴𝐺cond 𝐴
⊤ is manifestly symmetric. For

any x ∈ R |𝑉 | :

x⊤𝐿 x = x⊤𝐴𝐺cond 𝐴
⊤x = (𝐴⊤x)⊤𝐺cond (𝐴⊤x) =

∑︁
𝑒=(𝑢,𝑣) ∈𝐸

𝑔𝑒
(
𝑥𝑢 − 𝑥𝑣

)2 ≥ 0.

Thus 𝐿 is positive semidefinite.

Moreover, x⊤𝐿x = 0 if and only if 𝑥𝑢 = 𝑥𝑣 for every edge 𝑒 = (𝑢, 𝑣). Since 𝐺 is connected, this forces 𝑥𝑢
constant over all vertices, i.e. x ∈ span{1}. Hence ker(𝐿) = span{1}. □

Proposition 2.34 (Existence and Uniqueness of Resistive Circuit Solution). Consider a resistive network
on (𝐺, E) with conductances 𝑔𝑒 > 0. Let b ∈ R |𝑉 | be a vector of external current injections satisfying∑
𝑛∈𝑉 𝑏𝑛 = 0. Then there exists a solution (u, v, i) of node potentials u, branch voltages v, and branch currents

i satisfying: 
𝐴 i = b,

v = 𝐴⊤ u,

i = 𝐺cond v.

Moreover, this solution is unique up to adding a constant to all entries of u.
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Proof. Substitute i = 𝐺cond v and v = 𝐴⊤u into Kirchhoff’s Current Law 𝐴 i = b. We obtain the linear system

𝐴𝐺cond 𝐴
⊤ u = b ⇐⇒ 𝐿 u = b.

Since
∑
𝑛 𝑏𝑛 = 0, b lies in Im(𝐿). By the Theorem, 𝐿 has rank |𝑉 | − 1 and nullspace spanned by 1. Hence the

equation 𝐿 u = b admits a solution, unique modulo addition of any constant vector 𝑐 1.

Once u is fixed, define v = 𝐴⊤u and i = 𝐺cond v. These automatically satisfy Kirchhoff’s Voltage Law
and Ohm’s law by construction. This completes the proof of existence and uniqueness (up to reference
potential). □

2.5 Bond graphs

Bond graphs are a domain-independent formalism for modeling the transfer and storage of energy in multi-
domain physical systems [97,155,207,208]. They consist of two kinds of vertices—element nodes and junction
nodes—connected by bonds carrying conjugate variables effort 𝑒 and flow 𝑓 .

Definition 2.35 (Bond Graph). [97, 207, 208] A bond graph is an undirected graph

𝐺 = (𝑉, 𝐸),

where

• 𝑉 = 𝑉elem ¤∪ 𝑉junc, a disjoint union of

– Element nodes 𝑉elem = 𝑉𝑆𝑒 ¤∪𝑉𝑆 𝑓 ¤∪𝑉𝑅 ¤∪𝑉𝐶 ¤∪𝑉𝐼 ¤∪𝑉𝑇𝐹 ¤∪𝑉𝐺𝑌 ,
– Junction nodes 𝑉junc = 𝑉0 ¤∪𝑉1,

• 𝐸 ⊆
{
{𝑢, 𝑣} : 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣

}
is the set of bonds, each representing a single power port connection.

Each bond {𝑢, 𝑣} ∈ 𝐸 carries two variables:

𝑒 (effort), 𝑓 (flow), with instantaneous power 𝑃 = 𝑒 𝑓 .

Element nodes denote:

• 𝑆𝑒: effort source (e.g. voltage, force),

• 𝑆 𝑓 : flow source (e.g. current, velocity),

• 𝑅: resistance (energy dissipation),

• 𝐶: capacitance (potential energy storage),

• 𝐼: inertia (kinetic energy storage),

• 𝑇𝐹: transformer (scaling of effort and flow),

• 𝐺𝑌 : gyrator (cross-domain conversion of effort and flow).

Junction nodes denote:

• 0-junction: common effort, flows sum to zero,

• 1-junction: common flow, efforts sum to zero.
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Example 2.36 (Bond Graph of a Series 𝑅–𝐶 Circuit). Consider a simple series circuit consisting of an effort
source 𝑆𝑒, a resistor 𝑅, and a capacitor 𝐶. Its bond-graph representation is:

𝑉elem = {𝑆𝑒, 𝑅, 𝐶}, 𝑉junc = { 1},

where “1” denotes a 1-junction (common flow, efforts sum to zero). The set of bonds is

𝐸 =
{
{𝑆𝑒, 1}, {𝑅, 1}, {𝐶, 1}

}
.

Each bond {𝑥, 1} carries conjugate variables effort 𝑒𝑥 and flow 𝑓𝑥 . At the 1-junction:

𝑓𝑆𝑒 = 𝑓𝑅 = 𝑓𝐶 = 𝑓 , 𝑒𝑆𝑒 + 𝑒𝑅 + 𝑒𝐶 = 0.

The constitutive relations on each element are:

𝑒𝑆𝑒 (𝑡) = 𝑢(𝑡), 𝑒𝑅 = 𝑅 𝑓 , 𝑓𝐶 = 𝐶
𝑑 𝑒𝐶

𝑑𝑡
.

Thus the bond graph fully captures the energy exchange: the same flow 𝑓 passes through all elements, while
the efforts across 𝑆𝑒, 𝑅, and 𝐶 sum to zero.

Proposition 2.37 (Power Conservation at Junctions). In any bond graph 𝐺 = (𝑉, 𝐸), for each junction node
𝑗 ∈ 𝑉junc the algebraic sum of instantaneous powers carried by incident bonds is zero.

Proof. Let 𝐵 𝑗 = {𝑏1, . . . , 𝑏𝑘} be the set of bonds incident on junction 𝑗 , each carrying effort 𝑒𝑖 and flow 𝑓𝑖 on
bond 𝑏𝑖 . Then the instantaneous power into 𝑗 from bond 𝑏𝑖 is 𝑃𝑖 = 𝑒𝑖 𝑓𝑖 . We consider two cases:

(i) 0–junction: All bonds share a common effort 𝑒, and flows satisfy

𝑘∑︁
𝑖=1

𝑓𝑖 = 0.

Thus the total power
𝑘∑︁
𝑖=1

𝑃𝑖 =

𝑘∑︁
𝑖=1

𝑒 𝑓𝑖 = 𝑒

𝑘∑︁
𝑖=1

𝑓𝑖 = 𝑒 · 0 = 0.

(ii) 1–junction: All bonds share a common flow 𝑓 , and efforts satisfy

𝑘∑︁
𝑖=1

𝑒𝑖 = 0.

Hence
𝑘∑︁
𝑖=1

𝑃𝑖 =

𝑘∑︁
𝑖=1

𝑒𝑖 𝑓 = 𝑓

𝑘∑︁
𝑖=1

𝑒𝑖 = 𝑓 · 0 = 0.

In both cases the junction neither generates nor dissipates power, proving power conservation. □

Proposition 2.38 (State–Space Realization of Linear Bond Graphs). A linear time–invariant bond graph
comprised solely of linear storage elements (𝐶 and 𝐼), resistive elements (𝑅), and gyrators/transformers (𝐺𝑌 ,
𝑇𝐹) admits a state–space representation of the form

¤x = A x + B u, y = C x + D u,

where x collects the energy variables of 𝐶 and 𝐼 elements, and (u, y) are port variables at sources.
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Proof. Label each capacitor 𝐶𝑖 with state 𝑥𝐶𝑖
= 𝑒𝐶𝑖

(effort) and each inductor 𝐼 𝑗 with state 𝑥𝐼 𝑗 = 𝑓𝐼 𝑗 (flow).
The constitutive laws give

¤𝑥𝐶𝑖
= 𝑓𝐶𝑖

, ¤𝑥𝐼 𝑗 =
𝑒𝐼 𝑗

𝐼 𝑗
.

Using KCL/KVL at junctions and linear relations in 𝑅, 𝐺𝑌 , 𝑇𝐹, one assembles linear algebraic constraints:

E
(
x
u

)
+ F

(
¤x
y

)
= 0,

where E,F are constant incidence-like matrices. Partitioning yields

¤x = A x + B u, y = C x + D u,

with A = −𝐹−1
22 𝐹21, B = −𝐹−1

22 𝐹23, C = 𝐸12 + 𝐸11𝐴, D = 𝐸13 + 𝐸11𝐵, where the block matrices arise from
suitable reordering of ( ¤x, y, x, u). Because 𝐹22 is invertible for a well–posed causal assignment, the state–space
form follows directly. □

Proposition 2.39 (Passivity of Linear Bond Graph Systems). The state–space system derived from a passive
linear bond graph satisfies the dissipation inequality

¤𝐻 (x) ≤ u⊤y,

where 𝐻 (x) is the total stored energy.

Proof. Define the Hamiltonian (energy function)

𝐻 (x) = 1
2 x⊤Q x,

where Q = diag(𝐶−1
𝑖
, 𝐼 𝑗 ) collects inverse capacities and inertias. Differentiating:

¤𝐻 = x⊤Q ¤x = x⊤Q(A x + B u) = x⊤ (QA) x + (x⊤QB) u.

Passivity of resistors and proper gyrator/transformer connections imply QA + A⊤Q ≤ 0 and output equation
y = B⊤Q x + D u with D + D⊤ ≥ 0. Hence

¤𝐻 ≤ u⊤y,

establishing the dissipation inequality and thus passivity. □

3 Result: 𝑛-SuperHyperGraph Signal Processing

SuperHypergraph Signal Processing generalizes signal analysis over nested multi-level hypergraphs using
tensor operations, spectral decomposition, and hierarchical shifting.

Definition 3.1 (𝑛-SuperHypergraph Signal Processing). Let SHT(𝑛) = (𝑉, 𝐸) be an 𝑛-SuperHyperGraph with
|𝑉 | = 𝑁𝑛 and maximum superedge cardinality

𝑀 = max
𝑒∈𝐸

|𝑒 |.

Define the adjacency tensor A ∈ R

𝑁𝑛 × · · · × 𝑁𝑛︸           ︷︷           ︸
𝑀 times by

A𝑖1 · · ·𝑖𝑀 =


𝑐

( ∑︁
𝑘1 ,...,𝑘𝑐≥1∑

𝑘𝑖=𝑀

𝑀!
𝑘1! · · · 𝑘𝑐!

)−1

if {𝑣𝑖1 , . . . , 𝑣𝑖𝑀 } enumerates superedge 𝑒 = {𝑤1, . . . , 𝑤𝑐},

0 otherwise,

where 𝑐 = |𝑒 | ≤ 𝑀 .
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A signal on SHT(𝑛) is a vector s ∈ R𝑁𝑛 . Form the (𝑀 − 1)th-order signal tensor

S = s ◦ · · · ◦ s︸     ︷︷     ︸
𝑀−1 times

∈ R

𝑁𝑛 × · · · × 𝑁𝑛︸           ︷︷           ︸
𝑀−1 .

The shifted signal is
S′ = A ×𝑀 S,

where ×𝑀 denotes the mode-𝑀 product. Finally, assume an orthogonal CANDECOMP/PARAFAC decompo-
sition

A =

𝑅∑︁
𝑟=1

𝜆𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀 times

, ⟨f𝑟 , f𝑠⟩ = 𝛿𝑟𝑠 .

The n-SuperHypergraph Fourier transform of S is the vector Ŝ ∈ R𝑅 with

Ŝ𝑟 =
〈
S, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉
.

Example 3.2 (2-SuperHypergraph Signal Processing on a Divisional Collaboration Structure). Let the base
set of employees be

𝑉0 = {Alice,Bob,Carol,Dave,Eve}.

Form the 1-supervertices (committees):

𝐶1 = {Alice,Bob}, 𝐶2 = {Carol,Dave,Eve}, 𝐶3 = {Bob,Carol},

and the 2-supervertices (divisions):

𝐷1 = {𝐶1, 𝐶2}, 𝐷2 = {𝐶2, 𝐶3}.

Define the 2-SuperHyperGraph SHT(2) = (𝑉, 𝐸) with

𝑉 = {𝐷1, 𝐷2}, 𝐸 =
{
{𝐷1, 𝐷2}

}
,

so that |𝑉 | = 2 and 𝑀 = 2.

Assign to each division the “active project count” signal

s =

[
5
7

] (
𝑠1 = 5, 𝑠2 = 7

)
.

Since 𝑀 = 2, the adjacency tensor A ∈ R2×2 has entries

A𝑖, 𝑗 =

{
1, if {𝐷𝑖 , 𝐷 𝑗 } = {𝐷1, 𝐷2},
0, otherwise,

i.e. A =

(
0 1
1 0

)
.

The (𝑀 − 1)th-order signal tensor is just the vector s. The shifted signal is

S′ = A s =
(
0 1
1 0

) (
5
7

)
=

(
7
5

)
.

Finally, the adjacency matrix admits the orthogonal eigen-decomposition

A = F
(
1 0
0 −1

)
F⊤, F =

1
√

2

(
1 1
1 −1

)
.
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Hence the 2-SuperHypergraph Fourier transform of s is

ŝ = F⊤s =
1
√

2

(
1 1
1 −1

) (
5
7

)
=

( 12√
2

−2√
2

)
=

(
6
√

2

−
√

2

)
.

This example shows how 2-SuperHypergraph Signal Processing generalizes both graph and hypergraph signal
frameworks to a three-layer corporate structure.

Example 3.3 (3-SuperHypergraph Signal Processing for Department Collaboration). Let the base set of
employees be

𝑉0 = {Alice,Bob,Carol}.

Form the 1-supervertices (committees):

𝐶1 = {Alice,Bob}, 𝐶2 = {Bob,Carol},

the 2-supervertices (divisions):
𝐷1 = {𝐶1}, 𝐷2 = {𝐶2},

and the 3-supervertices (departments):

𝐻1 = {𝐷1}, 𝐻2 = {𝐷2}, 𝐻3 = {𝐷1, 𝐷2}.

Define the 3-SuperHyperGraph SHT(3) = (𝑉, 𝐸) by

𝑉 = {𝐻1, 𝐻2, 𝐻3}, 𝐸 =
{
{𝐻1, 𝐻2, 𝐻3}

}
,

so that |𝑉 | = 3 and 𝑀 = 3.

Assign to each department the “active project count” signal

s =
©­­«
3
4
5

ª®®¬ .
The adjacency tensor A ∈ R3×3×3 has entries

A𝑖, 𝑗 ,𝑘 =


3∑

𝑘1+𝑘2+𝑘3=3
3!

𝑘1! 𝑘2! 𝑘3!
=

3
6
= 0.5, {𝑖, 𝑗 , 𝑘} = {1, 2, 3},

0, otherwise.

Form the order-2 signal tensor S ∈ R3×3 by
S𝑖, 𝑗 = 𝑠𝑖 𝑠 𝑗 ,

so that for instance S1,2 = 3 × 4 = 12. The shifted signal S′ = A ×3 S ∈ R3×3 has entries

S′
𝑖, 𝑗 =

3∑︁
𝑘=1

A𝑖, 𝑗 ,𝑘 𝑠𝑘 ,

giving

S′ =
©­­«

0 0.5 × 5 0.5 × 4
0.5 × 5 0 0.5 × 3
0.5 × 4 0.5 × 3 0

ª®®¬ =
©­­«

0 2.5 2.0
2.5 0 1.5
2.0 1.5 0

ª®®¬ .
Theorem 3.4 (GSP and HGSP as Special Cases). Let NSP(𝑛) denote the 𝑛-SuperHypergraph Signal Processing
above, with parameters 𝑛 and 𝑀 . Then:

1. If 𝑛 = 0, NSP(0) coincides with Hypergraph Signal Processing on the hypergraph 𝐻 = (𝑉0, 𝐸).

2. If moreover 𝑀 = 2, NSP(0) further reduces to Graph Signal Processing on the simple graph (𝑉0, 𝐸).
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Proof. For 𝑛 = 0, one has 𝑉 ⊆ P0 (𝑉0) = 𝑉0 and 𝐸 ⊆ P0 (𝑉0) = 𝑉0, so SHT(0) is exactly a hypergraph on 𝑉0.
By construction, the adjacency tensor and all subsequent operations in NSP(0) agree with those of Hypergraph
Signal Processing.

If additionally 𝑀 = 2, then all superedges have size at most 2, so A is a matrix (order-2 tensor). The
tensor definitions collapse to vector–matrix operations: S = s, S′ = A s, and the CANDECOMP/PARAFAC
decomposition reduces to the eigen-decomposition of A. These are precisely the definitions of Graph Signal
Processing. □

Theorem 3.5 (Underlying 𝑛-SuperHyperGraph Structure). The 𝑛-SuperHypergraph Signal Processing NSP(𝑛)

is built intrinsically on the combinatorial structure of the 𝑛-SuperHyperGraph SHT(𝑛) .

Proof. By definition, every element of the domain𝑉 of signals is an 𝑛-supervertex in P𝑛 (𝑉0), and every nonzero
entry of the adjacency tensor A corresponds exactly to an 𝑛-superedge in 𝐸 ⊆ P𝑛 (𝑉0). All signal operations
(outer-product, mode products, tensor decompositions) are indexed by these supervertices and superedges.
Hence the entire signal-processing pipeline is a direct translation of the combinatorial data of SHT(𝑛) into
multilinear algebra, proving that NSP(𝑛) inherits and requires the full 𝑛-SuperHyperGraph structure. □

Theorem 3.6 (Spectral Diagonalization of the Shift Operator). Let A =
∑𝑅
𝑟=1 𝜆𝑟 (f𝑟 ◦· · ·◦f𝑟 ) be the orthogonal

CANDECOMP/PARAFAC decomposition of the adjacency tensor and let S′ = A×𝑀 S. Then for each spectral
component 𝑟 ,

Ŝ′
𝑟 = 𝜆𝑟 Ŝ𝑟 ,

where Ŝ𝑟 = ⟨S, f𝑟 ◦ · · · ◦ f𝑟 ⟩.

Proof. By definition,
Ŝ′
𝑟 =

〈
S′, f𝑟 ◦ · · · ◦ f𝑟

〉
=

〈
A ×𝑀 S, f⊗𝑀𝑟

〉
.

Using the multilinear contraction property,〈
A ×𝑀 S, f⊗𝑀𝑟

〉
=

〈
A, f⊗(𝑀−1)

𝑟 ◦ S×𝑀 f𝑟
〉
=

〈
A, f⊗𝑀𝑟

〉
Ŝ𝑟 .

But from the CP-decomposition, 〈
A, f⊗𝑀𝑟

〉
= 𝜆𝑟

〈
f⊗𝑀𝑟 , f⊗𝑀𝑟

〉
= 𝜆𝑟 ,

by orthonormality. Hence Ŝ′
𝑟 = 𝜆𝑟 Ŝ𝑟 . □

Theorem 3.7 (Inversion Formula). The collection {f⊗𝑀𝑟 }𝑅
𝑟=1 forms an orthonormal basis for the signal-tensor

space. Consequently, any signal tensor S admits the expansion

S =

𝑅∑︁
𝑟=1

Ŝ𝑟 (f𝑟 ◦ · · · ◦ f𝑟 ), Ŝ𝑟 =
〈
S, f⊗𝑀𝑟

〉
.

Proof. Orthonormality of the rank-one factors implies ⟨f⊗𝑀𝑟 , f⊗𝑀𝑠 ⟩ = 𝛿𝑟𝑠 . Any tensor in R𝑁
×(𝑀−1)
𝑛 can be

uniquely decomposed in this basis. The coefficients are given by the inner products Ŝ𝑟 . Summing over 𝑟 yields
the reconstruction formula. □

Theorem 3.8 (Parseval’s Identity). For any signal tensor S,

∥S∥2 =
∑︁

𝑖1 ,...,𝑖𝑀−1

S2
𝑖1 · · ·𝑖𝑀−1

=

𝑅∑︁
𝑟=1

(
Ŝ𝑟

)2
.

Proof. From the inversion formula, S =
∑
𝑟 Ŝ𝑟 f⊗𝑀𝑟 , so

∥S∥2 =

〈∑︁
𝑟

Ŝ𝑟 f⊗𝑀𝑟 ,
∑︁
𝑠

Ŝ𝑠 f⊗𝑀𝑠
〉
=

∑︁
𝑟 ,𝑠

Ŝ𝑟 Ŝ𝑠 ⟨f⊗𝑀𝑟 , f⊗𝑀𝑠 ⟩ =
∑︁
𝑟

(
Ŝ𝑟

)2
.

□
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Theorem 3.9 (Filter Diagonalization). Let A =
∑𝑅
𝑟=1 𝜆𝑟 f⊗𝑀𝑟 be the orthogonal CANDECOMP/PARAFAC

decomposition of the adjacency tensor. For any real polynomial 𝑔(𝑡) = ∑𝐾
𝑘=0 𝑎𝑘 𝑡

𝑘 , define the filter operator

H =

𝐾∑︁
𝑘=0

𝑎𝑘 A ×𝑀 A ×𝑀 · · · ×𝑀 A︸                         ︷︷                         ︸
𝑘 times

∈ R

𝑁𝑛 × · · · × 𝑁𝑛︸           ︷︷           ︸
𝑀 times .

Then for any signal tensor S, �H ×𝑀 S𝑟 = 𝑔(𝜆𝑟 ) Ŝ𝑟 , 𝑟 = 1, . . . , 𝑅,

i.e. the filter acts as pointwise multiplication by 𝑔(𝜆𝑟 ) in the spectral domain.

Proof. Since A×𝑘 =
∑𝑅
𝑟=1 𝜆

𝑘
𝑟 f⊗𝑀𝑟 by repeated application of the CP decomposition, it follows that

H =

𝐾∑︁
𝑘=0

𝑎𝑘 A×𝑘 =
𝑅∑︁
𝑟=1

( 𝐾∑︁
𝑘=0

𝑎𝑘𝜆
𝑘
𝑟

)
f⊗𝑀𝑟 =

𝑅∑︁
𝑟=1

𝑔(𝜆𝑟 ) f⊗𝑀𝑟 .

Hence for any S, �H ×𝑀 S𝑟 =
〈
H ×𝑀 S, f⊗𝑀𝑟

〉
= 𝑔(𝜆𝑟 ) ⟨S, f⊗𝑀𝑟

〉
= 𝑔(𝜆𝑟 ) Ŝ𝑟 .

□

Theorem 3.10 (Shift-Invariant Operator Characterization). A multilinear operator H : R𝑁
×(𝑀−1)
𝑛 → R𝑁

×(𝑀−1)
𝑛

commutes with the shift A ×𝑀 (·) if and only if it is simultaneously diagonalizable, i.e.,

H =

𝑅∑︁
𝑟=1

ℎ𝑟 f⊗𝑀𝑟 ,

for some scalars ℎ𝑟 . In this case, H ×𝑀 A = A ×𝑀 H .

Proof. (⇒) If H ◦ (A×𝑀 ) = (A×𝑀 ) ◦ H , then H preserves each one-dimensional eigenspace spanned by
f⊗𝑀𝑟 . By orthonormality, H(f⊗𝑀𝑟 ) = ℎ𝑟 f⊗𝑀𝑟 for some ℎ𝑟 .

(⇐) Conversely, if H =
∑

ℎ𝑟 f⊗𝑀𝑟 , then

H ×𝑀 A =

𝑅∑︁
𝑟=1

ℎ𝑟𝜆𝑟 f⊗𝑀𝑟 = A ×𝑀 H .

□

Theorem 3.11 (Operator Norm and Spectral Radius). Let 𝑇 : S ↦→ A ×𝑀 S be the shift operator. Then its
induced spectral norm equals the maximum absolute hypergraph frequency:

∥𝑇 ∥2 = max
1≤𝑟≤𝑅

��𝜆𝑟 ��.
Proof. Since 𝑇 is diagonalizable in the orthonormal basis {f⊗𝑀𝑟 }, its operator norm is the largest magnitude of
its eigen-values, which are exactly {𝜆𝑟 }𝑅𝑟=1. □

4 Result: Electric HyperCircuit and Electric SuperHyperCircuit

We define the concepts of the Electric HyperCircuit and the Electric SuperHyperCircuit, and provide concrete
examples and mathematical theorems to illustrate their structures and properties.

Definition 4.1 (Electric HyperCircuit). An electric hypercircuit is a pair (𝐻, E) where:

• 𝐻 = (𝑉, 𝐸, 𝐼, 𝜋, 𝜎) is a finite oriented hypergraph:
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– 𝑉 is the set of nodes.
– 𝐸 is the set of hyperedges (multi-terminal elements).
– 𝐼 is a finite set of incidences, with surjections 𝜋 : 𝐼 → 𝑉 (attaching each incidence to a node) and

𝑒 : 𝐼 → 𝐸 (attaching each incidence to a hyperedge).
– 𝜎 : 𝐼 → {+1,−1} is an orientation on incidences.

• E = {E𝑒}𝑒∈𝐸 assigns to each hyperedge 𝑒 a constitutive relation

E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0, 𝑣𝑒 = (𝑣𝑘)𝑘∈𝐼𝑒 , 𝑖𝑒 = (𝑖𝑘)𝑘∈𝐼𝑒 ,

where 𝐼𝑒 = {𝑘 ∈ 𝐼 : 𝑒(𝑘) = 𝑒} is the set of incidences of 𝑒.

A state of the hypercircuit consists of functions 𝑖 : 𝐼 → R (port currents) and 𝑣 : 𝐼 → R (port voltages)
satisfying:

1. Kirchhoff’s Current Law (KCL): ∑︁
𝑘∈𝐼: 𝜋 (𝑘 )=𝑛

𝑖(𝑘) = 0, ∀ 𝑛 ∈ 𝑉.

2. Kirchhoff’s Voltage Law (KVL): there exists a node-potential function 𝑢 : 𝑉 → R such that

𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
, ∀ 𝑘 ∈ 𝐼 .

3. Element Constitutive Relations: for each 𝑒 ∈ 𝐸 ,

E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0.

Example 4.2 (Common–Emitter BJT Amplifier as an Electric HyperCircuit). A BJT (Bipolar Junction
Transistor) is a semiconductor device that amplifies or switches signals using current-controlled junctions
(cf. [21,54,185]). A Common–Emitter BJT Amplifier is a transistor circuit configuration that amplifies voltage
signals with significant gain and phase inversion (cf. [112, 113]). Consider the hypercircuit (𝐻, E) defined as
follows:

Hypergraph structure 𝐻 = (𝑉, 𝐸, 𝐼, 𝜋, 𝑒, 𝜎):

𝑉 = {𝑉𝐶𝐶 , 𝐵, 𝐶, 𝐸}, 𝐸 = {𝑅𝐵, 𝑅𝐶 , 𝑇},

where
𝐼 = { 𝑘𝑉𝐶𝐶 ,𝑅𝐵

, 𝑘𝐵,𝑅𝐵
, 𝑘𝑉𝐶𝐶 ,𝑅𝐶

, 𝑘𝐶,𝑅𝐶
, 𝑘𝐵,𝑇 , 𝑘𝐶,𝑇 , 𝑘𝐸,𝑇 }.

The attachment maps are
𝜋(𝑘𝑉𝐶𝐶 ,𝑅𝐵

) = 𝑉𝐶𝐶 , 𝑒(𝑘𝑉𝐶𝐶 ,𝑅𝐵
) = 𝑅𝐵,

𝜋(𝑘𝐵,𝑅𝐵
) = 𝐵, 𝑒(𝑘𝐵,𝑅𝐵

) = 𝑅𝐵,

𝜋(𝑘𝑉𝐶𝐶 ,𝑅𝐶
) = 𝑉𝐶𝐶 , 𝑒(𝑘𝑉𝐶𝐶 ,𝑅𝐶

) = 𝑅𝐶 ,

𝜋(𝑘𝐶,𝑅𝐶
) = 𝐶, 𝑒(𝑘𝐶,𝑅𝐶

) = 𝑅𝐶 ,

𝜋(𝑘𝐵,𝑇 ) = 𝐵, 𝑒(𝑘𝐵,𝑇 ) = 𝑇,

𝜋(𝑘𝐶,𝑇 ) = 𝐶, 𝑒(𝑘𝐶,𝑇 ) = 𝑇,

𝜋(𝑘𝐸,𝑇 ) = 𝐸, 𝑒(𝑘𝐸,𝑇 ) = 𝑇.

Orient all incidences from the first-listed node to the second, so 𝜎(𝑘𝑋,𝑒) = +1 if 𝑋 is listed first, and −1
otherwise.
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Constitutive relations E:

E𝑅𝐵
: 𝑣𝑅𝐵

− 𝑅𝐵 𝑖𝑅𝐵
= 0, 𝑣𝑅𝐵

= 𝑣(𝑘𝑉𝐶𝐶 ,𝑅𝐵
) − 𝑣(𝑘𝐵,𝑅𝐵

), 𝑖𝑅𝐵
= 𝑖(𝑘𝑉𝐶𝐶 ,𝑅𝐵

);
E𝑅𝐶

: 𝑣𝑅𝐶
− 𝑅𝐶 𝑖𝑅𝐶

= 0, 𝑣𝑅𝐶
= 𝑣(𝑘𝑉𝐶𝐶 ,𝑅𝐶

) − 𝑣(𝑘𝐶,𝑅𝐶
), 𝑖𝑅𝐶

= 𝑖(𝑘𝑉𝐶𝐶 ,𝑅𝐶
);

E𝑇 : 𝑣(𝑘𝐵,𝑇 ) − 𝑣(𝑘𝐸,𝑇 ) −𝑉𝐵𝐸 = 0,
𝑖(𝑘𝐸,𝑇 ) − 𝑖(𝑘𝐵,𝑇 ) − 𝑖(𝑘𝐶,𝑇 ) = 0,
𝑖(𝑘𝐶,𝑇 ) − 𝛼 𝑖(𝑘𝐸,𝑇 ) = 0,

where 𝑉𝐵𝐸 is the base–emitter threshold and 𝛼 the common-base gain.

KCL and KVL: A state consists of 𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R, and node potentials 𝑢 : 𝑉 → R, satisfying∑︁
𝑘: 𝜋 (𝑘 )=𝑛

𝑖(𝑘) = 0 (KCL at each 𝑛 ∈ 𝑉), 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
(KVL for each 𝑘 ∈ 𝐼).

This hypercircuit model captures the two resistors and the three-terminal transistor in one unified oriented
hypergraph framework.

Theorem 4.3 (Generalization of Electric Circuit). If each hyperedge 𝑒 ∈ 𝐸 has exactly two incidences
𝐼𝑒 = {𝑘1, 𝑘2} and E𝑒

(
𝑣𝑒, 𝑖𝑒

)
depends only on the voltage difference and a single current (as in Ohm’s law),

then the electric hypercircuit reduces to the classical electric circuit on the graph 𝐺 = (𝑉, 𝐸).

Proof. When |𝐼𝑒 | = 2, index the two incidences by 𝑘1, 𝑘2 with 𝜋(𝑘1) = 𝑛1, 𝜋(𝑘2) = 𝑛2. KVL gives

𝑣(𝑘1) = 𝑢(𝑛1), 𝑣(𝑘2) = −𝑢(𝑛2) =⇒ 𝑣𝑛1𝑛2 = 𝑢(𝑛1) − 𝑢(𝑛2),

recovering the usual branch voltage. KCL at each node
∑
𝑘: 𝜋 (𝑘 )=𝑛 𝑖(𝑘) = 0 becomes the sum of incident branch

currents. Finally, if E𝑒 (𝑣𝑒, 𝑖𝑒) ≡ 𝑣𝑛1𝑛2 − 𝑅𝑒 𝑖𝑒 = 0, we obtain Ohm’s law. Thus the hypercircuit equations
coincide with the network equations of an electric circuit on the graph 𝐺. □

Theorem 4.4 (Underlying Hypergraph Structure). The electric hypercircuit (𝐻, E) is intrinsically built on the
combinatorial data of the oriented hypergraph 𝐻.

Proof. By definition, the set of nodes 𝑉 , hyperedges 𝐸 , incidences 𝐼, and orientation 𝜎 completely determine
the incidence relations 𝜋 and 𝑒. All circuit equations—KCL, KVL, and constitutive relations—are indexed
by these hypergraph components (𝑉, 𝐼, 𝐸). Therefore the signal-processing and network-analysis formalisms
operate directly on the hypergraph structure, proving that the electric hypercircuit inherits and requires the full
hypergraph. □

Theorem 4.5 (Existence and Uniqueness of Linear Hypercircuit Solution). Let (𝐻, E) be an electric hypercir-
cuit in which each hyperedge 𝑒 ∈ 𝐸 has a linear, time-invariant constitutive relation

𝑖𝑒 = 𝐺𝑒 𝑣𝑒, 𝐺𝑒 ∈ R |𝐼𝑒 |× |𝐼𝑒 | , 𝐺𝑒 = 𝐺⊤
𝑒 > 0.

Define the oriented incidence matrix 𝐵 ∈ R |𝑉 |× |𝐼 | by

𝐵𝑛,𝑘 =

{
𝜎(𝑘), 𝜋(𝑘) = 𝑛,

0, otherwise,

and let Σ = diag(𝜎(1), . . . , 𝜎( |𝐼 |)). Then for any vector of external current injections 𝑏 ∈ R |𝑉 | satisfying∑
𝑛∈𝑉 𝑏𝑛 = 0, there exists a node-potential vector 𝑢 ∈ R |𝑉 | and port currents 𝑖 ∈ R |𝐼 | satisfying Kirchhoff’s

laws and constitutive relations, unique up to an additive constant in 𝑢.

Proof. Kirchhoff’s Voltage Law gives
𝑣 = Σ 𝐵⊤ 𝑢,
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and each hyperedge’s relation yields

𝑖 = 𝐺 𝑣 = 𝐺 Σ 𝐵⊤ 𝑢, 𝐺 =
⊕
𝑒∈𝐸

𝐺𝑒 .

Kirchhoff’s Current Law reads
𝐵 𝑖 = 𝑏 =⇒ 𝐵𝐺 Σ 𝐵⊤ 𝑢 = 𝑏.

Since each 𝐺𝑒 is positive definite, 𝑌 ≡ 𝐵𝐺 Σ 𝐵⊤ is symmetric positive semidefinite with rank(𝑌 ) = |𝑉 | − 1.
The condition

∑
𝑏𝑛 = 0 ensures 𝑏 ∈ Im(𝑌 ), so 𝑌 𝑢 = 𝑏 admits a solution modulo ker(𝑌 ) = span{1}. Once 𝑢

is fixed, one recovers 𝑣 and 𝑖 uniquely. □

Theorem 4.6 (Superposition Principle). Under the same linearity assumptions, if two sets of external injections
𝑏 (1) and 𝑏 (2) produce solutions (𝑢 (1) , 𝑖 (1) ) and (𝑢 (2) , 𝑖 (2) ), then the combined injection 𝑏 = 𝑏 (1) + 𝑏 (2) yields
the solution

𝑢 = 𝑢 (1) + 𝑢 (2) , 𝑖 = 𝑖 (1) + 𝑖 (2) .

Proof. The hypercircuit equations are linear:

𝑌 𝑢 ( 𝑗 ) = 𝑏 ( 𝑗 ) , 𝑖 ( 𝑗 ) = 𝐺 Σ 𝐵⊤ 𝑢 ( 𝑗 ) , 𝑗 = 1, 2.

By linearity of matrix equations,

𝑌 (𝑢 (1) + 𝑢 (2) ) = 𝑌 𝑢 (1) + 𝑌 𝑢 (2) = 𝑏 (1) + 𝑏 (2) ,

and similarly for 𝑖. Hence (𝑢 (1) + 𝑢 (2) , 𝑖 (1) + 𝑖 (2) ) satisfies KCL, KVL, and constitutive relations for the
combined excitation 𝑏. □

Theorem 4.7 (Reciprocity of Passive Hypercircuits). In a passive linear hypercircuit (all 𝐺𝑒 symmetric), the
nodal admittance matrix 𝑌 = 𝐵𝐺 Σ 𝐵⊤ is symmetric. Consequently, the transfer impedance between any two
nodes is reciprocal.

Proof. Since each 𝐺𝑒 is symmetric and Σ is diagonal,

𝑌⊤ = (𝐵𝐺 Σ 𝐵⊤)⊤ = 𝐵 Σ⊤𝐺⊤ 𝐵⊤ = 𝐵𝐺 Σ 𝐵⊤ = 𝑌 .

Symmetry of 𝑌 implies that for any two distinct nodes 𝑛, 𝑚 ∈ 𝑉 , the entry 𝑌𝑛𝑚 = 𝑌𝑚𝑛, which governs the
small-signal transfer between 𝑛 and 𝑚, yielding reciprocity. □

Definition 4.8 (Electric 𝑛-SuperHyperCircuit). Let 𝑉0 be a finite base set of fundamental nodes and let
SHT(𝑛) = (𝑉, 𝐸) be an oriented 𝑛-SuperHyperGraph with

𝑉 ⊆ P𝑛 (𝑉0), 𝐸 ⊆ P𝑛 (𝑉0),

and incidence structure (𝐼, 𝜋, 𝑒, 𝜎) where

𝐼 = {(𝑣, 𝑒) : 𝑣 ∈ 𝑒, 𝑒 ∈ 𝐸}, 𝜋(𝑣, 𝑒) = 𝑣, 𝑒(𝑣, 𝑒) = 𝑒, 𝜎(𝑣, 𝑒) ∈ {+1,−1}.

An electric 𝑛-superhypercircuit is the pair (SHT(𝑛) , E) where E = {E𝑒}𝑒∈𝐸 assigns to each superedge 𝑒 a
constitutive relation

E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0, 𝑣𝑒 =

(
𝑣(𝑘)

)
𝑘∈𝐼𝑒 , 𝑖𝑒 =

(
𝑖(𝑘)

)
𝑘∈𝐼𝑒 ,

with 𝐼𝑒 = {𝑘 ∈ 𝐼 : 𝑒(𝑘) = 𝑒}. A state consists of port-voltage and port-current functions

𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R,

and a supervertex potential 𝑢 : 𝑉 → R, satisfying:

1.
∑︁

𝑘∈𝐼: 𝜋 (𝑘 )=𝑣
𝑖(𝑘) = 0 for all supervertices 𝑣 ∈ 𝑉 (generalized KCL).

2. 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
for all ports 𝑘 ∈ 𝐼 (generalized KVL).
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3. E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0 for each superedge 𝑒 ∈ 𝐸 (constitutive laws).

Example 4.9 (Electric 2-SuperHyperCircuit for a BJT Amplifier Subnetwork). A BJT amplifier uses a bipolar
junction transistor to amplify input signals, commonly employed in analog circuits for voltage or current gain
(cf. [29, 112, 114]). Let the base set of fundamental nodes be

𝑉0 = {𝑉𝐶𝐶 , 𝐵, 𝐶, 𝐸},

and consider the electric hypercircuit with three hyperedges:

𝑒1 = {𝑉𝐶𝐶 , 𝐵} (𝑅𝐵), 𝑒2 = {𝑉𝐶𝐶 , 𝐶} (𝑅𝐶 ), 𝑒3 = {𝐵,𝐶, 𝐸} (𝑇).

We form the 2-supervertices by grouping overlapping hyperedges:

𝐷1 = { 𝑒1, 𝑒2}, 𝐷2 = { 𝑒2, 𝑒3}.

Thus the set of 2-supervertices is
𝑉 = {𝐷1, 𝐷2},

and there is a single 2-superedge connecting them:

𝐸 =
{
{𝐷1, 𝐷2}

}
.

The incidence set is
𝐼 = { 𝑘1 = (𝐷1, 𝐸), 𝑘2 = (𝐷2, 𝐸)},

with 𝜋(𝑘𝑖) = 𝐷𝑖 , 𝑒(𝑘𝑖) = 𝐸 , and choose 𝜎(𝑘𝑖) = +1.

We assign to each 2-superedge 𝐸 the constitutive relations of an ideal connection:

E𝐸 : 𝑣(𝑘1) − 𝑣(𝑘2) = 0, 𝑖(𝑘1) + 𝑖(𝑘2) = 0,

where 𝑣(𝑘𝑖) and 𝑖(𝑘𝑖) are the port-voltage and port-current at incidence 𝑘𝑖 .

A state consists of port-functions 𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R and supervertex potentials 𝑢 : 𝑉 → R satisfying:∑︁
𝑘: 𝜋 (𝑘 )=𝐷𝑖

𝑖(𝑘) = 0, 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
, E𝐸

(
𝑣𝐸 , 𝑖𝐸

)
= 0.

Concretely,
𝑖(𝑘1) + 𝑖(𝑘2) = 0, 𝑣(𝑘1) = 𝑣(𝑘2),

ensuring that the two subnetworks {𝑅𝐵, 𝑅𝐶 } and {𝑅𝐶 , 𝑇} are perfectly connected in this 2-superhypercircuit.

Example 4.10 (Electric 3-SuperHyperCircuit for a BJT Amplifier Meta-Connection). Let the base set of
fundamental nodes be

𝑉0 = {𝑉𝐶𝐶 , 𝐵, 𝐶, 𝐸},

and consider the three 1-superedges (ordinary hyperedges)

𝑒1 = {𝑉𝐶𝐶 , 𝐵}, 𝑒2 = {𝑉𝐶𝐶 , 𝐶}, 𝑒3 = {𝐵,𝐶, 𝐸}.

Form the 2-supervertices (elements of P2 (𝑉0)) by grouping overlapping 1-superedges:

𝐷1 = {𝑒1, 𝑒2}, 𝐷2 = {𝑒2, 𝑒3}, 𝐷3 = {𝑒3, 𝑒1}.

Thus
𝑉 (2) = {𝐷1, 𝐷2, 𝐷3}.

Next form the 3-supervertices (elements of P3 (𝑉0)) by grouping overlapping 2-supervertices:

𝐴1 = {𝐷1, 𝐷2}, 𝐴2 = {𝐷2, 𝐷3}, 𝐴3 = {𝐷3, 𝐷1},

so
𝑉 (3) = {𝐴1, 𝐴2, 𝐴3}.
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Finally, the single 3-superedge
𝑆 = {𝐴1, 𝐴2, 𝐴3}

yields the oriented 3-SuperHyperGraph SHT(3) = (𝑉 (3) , {𝑆}).

The incidence set is
𝐼 = { 𝑘𝑖 = (𝐴𝑖 , 𝑆) | 𝑖 = 1, 2, 3},

with attachments 𝜋(𝑘𝑖) = 𝐴𝑖 , 𝑒(𝑘𝑖) = 𝑆, and orientation 𝜎(𝑘𝑖) = +1.

Assign to the 3-superedge 𝑆 the constitutive (ideal coupling) relations

E𝑆 : 𝑣(𝑘1) − 𝑣(𝑘2) = 0, 𝑣(𝑘2) − 𝑣(𝑘3) = 0, 𝑖(𝑘1) + 𝑖(𝑘2) + 𝑖(𝑘3) = 0.

A state consists of port-voltage and port-current functions 𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R and a supervertex potential
𝑢 : 𝑉 (3) → R, satisfying:∑︁

𝑘: 𝜋 (𝑘 )=𝐴𝑖

𝑖(𝑘) = 0, 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
, E𝑆

(
𝑣𝑆 , 𝑖𝑆

)
= 0.

Concretely:
𝑖(𝑘1) + 𝑖(𝑘2) + 𝑖(𝑘3) = 0, 𝑣(𝑘1) = 𝑣(𝑘2) = 𝑣(𝑘3),

ensuring an ideal three-port connection that unifies the two subnetworks {𝑒1, 𝑒2}, {𝑒2, 𝑒3}, and {𝑒3, 𝑒1} into a
single 3-superhyperconnection.

Theorem 4.11 (Reduction to Hypercircuit and Circuit). The electric 𝑛-superhypercircuit (SHT(𝑛) , E):

1. For 𝑛 = 0,𝑉 ⊆ 𝑉0 and 𝐸 ⊆ 𝑉0, so SHT(0) is an oriented hypergraph on𝑉0. The above equations recover
exactly those of an electric hypercircuit.

2. If furthermore each superedge 𝑒 has |𝐼𝑒 | = 2 and E𝑒 (𝑣𝑒, 𝑖𝑒) depends only on the voltage difference and
the single branch current, then SHT(0) is a graph and the hypercircuit reduces to a classical electric
circuit on 𝐺 = (𝑉0, 𝐸).

Proof. When 𝑛 = 0, each supervertex is a base node and each superedge is a subset of nodes in 𝑉0. The
incidence set 𝐼 and orientation 𝜎 coincide with those of an oriented hypergraph. Hence KCL and KVL match
the hypercircuit laws, and E𝑒 are the same constitutive relations.

If in addition |𝐼𝑒 | = 2, label the two incidences 𝑘1, 𝑘2 with 𝜋(𝑘1) = 𝑛1, 𝜋(𝑘2) = 𝑛2. Then

𝑣(𝑘1) = 𝑢(𝑛1), 𝑣(𝑘2) = −𝑢(𝑛2) =⇒ 𝑣𝑛1𝑛2 = 𝑢(𝑛1) − 𝑢(𝑛2),

and KCL becomes the node-current sum law. If E𝑒 (𝑣𝑒, 𝑖𝑒) : 𝑣𝑛1𝑛2 − 𝑅𝑒 𝑖𝑒 = 0, one recovers Ohm’s law. Thus
the model reduces to the classical electric circuit network equations. □

Theorem 4.12 (Intrinsic 𝑛-SuperHyperGraph Structure). The electric 𝑛-superhypercircuit (SHT(𝑛) , E) is built
intrinsically on the oriented 𝑛-SuperHyperGraph SHT(𝑛) .

Proof. All components—supervertices 𝑉 , superedges 𝐸 , incidences 𝐼, attachment maps 𝜋, 𝑒, and orienta-
tions 𝜎—are data of SHT(𝑛) . The network laws (generalized KCL, KVL) and constitutive equations are
formulated directly in terms of these hypergraph elements. No additional structure or external indexing is
required. Therefore the circuit model inherently carries and exploits the full combinatorial structure of the
𝑛-SuperHyperGraph. □

Theorem 4.13 (Positive Semidefiniteness of Hypercircuit Admittance). Let (SHT(𝑛) , E) be a linear electric 𝑛-
superhypercircuit in which each superedge 𝑒 has a symmetric positive-definite constitutive conductance matrix
𝐺𝑒. Define the global oriented incidence matrix

𝐵 ∈ R |𝑉 |× |𝐼 | , 𝐵𝑣,𝑘 = 𝜎(𝑘) if 𝜋(𝑘) = 𝑣, else 0,

and the block-diagonal conductance 𝐺 =
⊕

𝑒∈𝐸 𝐺𝑒 . Then the nodal admittance matrix

𝑌 = 𝐵𝐺 𝐵⊤

is symmetric positive semidefinite with ker(𝑌 ) = span{1}.
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Proof. Symmetry: 𝑌⊤ = (𝐵𝐺 𝐵⊤)⊤ = 𝐵𝐺⊤ 𝐵⊤ = 𝐵𝐺 𝐵⊤ = 𝑌 . Positive semidefiniteness: for any 𝑢 ∈ R |𝑉 | ,

𝑢⊤𝑌 𝑢 = 𝑢⊤𝐵𝐺 𝐵⊤𝑢 = (𝐵⊤𝑢)⊤𝐺 (𝐵⊤𝑢) ≥ 0,

since 𝐺 is block-diagonal with each 𝐺𝑒 ≻ 0. Finally, 𝑢⊤𝑌𝑢 = 0 if and only if 𝐵⊤𝑢 = 0, i.e. all port-voltage
differences vanish, forcing 𝑢 constant on the connected superhypergraph. Hence ker(𝑌 ) = span{1}. □

Theorem 4.14 (Reciprocity of Passive 𝑛-SuperHypercircuits). Let (SHT(𝑛) , E) be a passive linear electric 𝑛-
superhypercircuit with oriented incidence matrix 𝐵 ∈ {−1, 0, 1} |𝑉 |× |𝐼 | and block-diagonal conductance 𝐺 ≻ 0.
Define the nodal admittance matrix

𝑌 = 𝐵𝐺 𝐵⊤.

Then:

1. 𝑌 is symmetric:
𝑌⊤ = (𝐵𝐺 𝐵⊤)⊤ = 𝐵𝐺⊤ 𝐵⊤ = 𝐵𝐺 𝐵⊤ = 𝑌 .

2. Consequently, for any two supervertices 𝑣, 𝑤 ∈ 𝑉 , the transfer admittance satisfies

𝑌𝑣𝑤 = 𝑌𝑤𝑣 .

Proof. Immediate from the symmetry of 𝑌 . Physically, injecting a current at 𝑣 and measuring the resulting
voltage at 𝑤 yields the same relation when the roles of 𝑣 and 𝑤 are exchanged. □

Theorem 4.15 (Superposition Principle). If (SHT(𝑛) , E) is linear as above, and two external current injection
patterns 𝑏 (1) , 𝑏 (2) ∈ R |𝑉 | (with zero total sum) produce nodal potentials 𝑢 (1) , 𝑢 (2) , then the combined injection
𝑏 = 𝑏 (1) + 𝑏 (2) produces

𝑢 = 𝑢 (1) + 𝑢 (2) , 𝑖 = 𝑖 (1) + 𝑖 (2) ,

where 𝑖 ( 𝑗 ) = 𝐺 𝐵⊤𝑢 ( 𝑗 ) .

Proof. Linearity of the global equation 𝑌 𝑢 = 𝑏 implies

𝑌 (𝑢 (1) + 𝑢 (2) ) = 𝑌 𝑢 (1) + 𝑌 𝑢 (2) = 𝑏 (1) + 𝑏 (2) = 𝑏.

Similarly, 𝑖 = 𝐺 𝐵⊤𝑢 is linear in 𝑢. Uniqueness up to a constant follows as in previous theorem. □

Theorem 4.16 (Energy Conservation). In any state (𝑣, 𝑖, 𝑢) of a passive linear electric 𝑛-superhypercircuit,
the total instantaneous power supplied by the ports equals the rate of change of stored energy:

𝑃in =
∑︁
𝑘∈𝐼

𝑒𝑘 𝑓𝑘 =
𝑑

𝑑𝑡

(
1
2 𝑢

⊤𝑄 𝑢

)
,

where 𝑒𝑘 = 𝜎(𝑘) 𝑢(𝜋(𝑘)), 𝑓 = 𝐺 𝑣, and 𝑄 is the block-diagonal matrix of storage coefficients from capaci-
tive/inertial superedges.

Proof. Define the stored energy 𝐸 (𝑢) = 1
2 𝑢

⊤𝑄 𝑢. Differentiating,
¤𝐸 = 𝑢⊤𝑄 ¤𝑢.

From KCL and constitutive laws, 𝐵 𝑖 = 0 (no net injection) and 𝑖 = 𝐺 𝐵⊤𝑢. Multiply 𝑢⊤𝐵 𝑖 = 0 by 𝑢 to get

𝑢⊤𝐵𝐺 𝐵⊤𝑢 = 0.

On the other hand, the total port power 𝑃in = 𝑣⊤𝑖 = (𝐵⊤𝑢)⊤𝐺 (𝐵⊤𝑢). Hence

𝑃in = (𝐵⊤𝑢)⊤𝐺 (𝐵⊤𝑢) = 𝑢⊤𝐵𝐺 𝐵⊤𝑢 = 0 = ¤𝐸,

demonstrating conservation of energy (no dissipation in ideal storage elements). □

Theorem 4.17 (Existence and Uniqueness of Solution). For a passive linear electric 𝑛-superhypercircuit with
nodal admittance 𝑌 , given any external injection 𝑏 with

∑
𝑏𝑣 = 0, there exists a unique (modulo a constant)

potential vector 𝑢 and unique port currents 𝑖 satisfying KCL, KVL, and constitutive laws.

Proof. Combine Theorems: positive semidefiniteness and superposition guarantee existence for each homo-
geneous and particular component, and symmetry of 𝑌 ensures uniqueness up to an additive constant in
𝑢. □
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5 Result: Bond HyperGraph and Bond SuperHyperGraph

A Bond HyperGraph is a hypergraph from a bond graph, mapping each junction to a hyperedge connecting
incident element nodes. A Bond SuperHyperGraph is an 𝑛-level superhypergraph extending a bond graph,
where nested hyperedges represent hierarchical junction groupings across supervertices. We define the concepts
of the Bond HyperGraph and the Bond SuperHyperGraph as follows.

Definition 5.1 (Bond HyperGraph). Let 𝑉elem be the set of bond-graph element nodes and 𝑉junc the set of
junction nodes, and let

𝐺 =
(
𝑉elem ¤∪𝑉junc, 𝐸

)
be the classical bond graph. The Bond HyperGraph is the hypergraph

𝐻 =
(
𝑉elem, E

)
,

where
E =

{
𝑒 𝑗 ⊆ 𝑉elem : 𝑗 ∈ 𝑉junc, 𝑒 𝑗 = { 𝑢 ∈ 𝑉elem : {𝑢, 𝑗} ∈ 𝐸}

}
.

Each hyperedge 𝑒 𝑗 collects exactly those element nodes incident on junction 𝑗 .

Example 5.2 (Bond HyperGraph of a Series R–C Circuit Driven by a Voltage Source). An RC circuit is
an electrical circuit composed of a resistor and capacitor, used for filtering, timing, and signal processing
applications (cf. [88, 89, 91]). Consider the bond graph with element nodes and junctions as follows:

𝑉elem = {𝑆𝑒, 𝑅, 𝐶}, 𝑉junc = { 𝑗1, 𝑗2}.

The bond connections are
𝐸 =

{
{𝑆𝑒, 𝑗1}, {𝑅, 𝑗1}, {𝑅, 𝑗2}, {𝐶, 𝑗2}

}
,

where 𝑆𝑒 is an effort source, 𝑅 a resistor, 𝐶 a capacitor, and 𝑗1, 𝑗2 are 1-junctions.

Forming the Bond HyperGraph 𝐻 = (𝑉elem, E), each junction 𝑗𝑘 induces a hyperedge

𝑒 𝑗1 = { 𝑆𝑒, 𝑅}, 𝑒 𝑗2 = { 𝑅, 𝐶},

so that
E = { 𝑒 𝑗1 , 𝑒 𝑗2 }.

Thus 𝐻 is the hypergraph with vertex set {𝑆𝑒, 𝑅, 𝐶} and hyperedge set {{𝑆𝑒, 𝑅}, {𝑅,𝐶}}, exactly capturing
which element nodes meet at each junction.

Theorem 5.3 (Generalization of Bond Graph). Every bond graph 𝐺 arises from a unique Bond HyperGraph
𝐻 via the construction above, and conversely any Bond HyperGraph 𝐻 defines a bond graph 𝐺 in which each
hyperedge 𝑒 𝑗 becomes a junction node 𝑗 connected by bonds to every element 𝑢 ∈ 𝑒 𝑗 .

Proof. Starting from 𝐺, we form 𝐻 = (𝑉elem, E) by setting each hyperedge 𝑒 𝑗 to be the neighborhood of
junction 𝑗 . Conversely, given 𝐻, define

𝑉junc = E, 𝐸 =
{
{𝑢, 𝑒 𝑗 } : 𝑢 ∈ 𝑒 𝑗 , 𝑒 𝑗 ∈ E

}
.

Then 𝐺′ = (𝑉elem ¤∪𝑉junc, 𝐸) is a bond graph whose junction-neighborhoods recover exactly the hyperedges of
𝐻. These two operations are inverse to one another, proving the bijective correspondence. □

Theorem 5.4 (Underlying Hypergraph Structure). The Bond HyperGraph 𝐻 = (𝑉elem, E) carries by definition
the full structure of a finite hypergraph: its vertex set is 𝑉elem and its hyperedge set is E ⊆ P(𝑉elem).

Proof. By construction, E is a collection of subsets of𝑉elem, and there are no additional constraints: 𝐻 satisfies
exactly the axioms of a finite hypergraph. All bond-graph junction connectivity is encoded solely in these
hyperedges. □

Theorem 5.5 (Degree Correspondence). Let 𝐺 = (𝑉elem ¤∪𝑉junc, 𝐸) be a bond graph and 𝐻 = (𝑉elem, E) its
Bond HyperGraph. For each element node 𝑢 ∈ 𝑉elem, the degree of 𝑢 in 𝐺 (number of bonds incident on 𝑢)
equals the number of hyperedges in E that contain 𝑢:

deg𝐺 (𝑢) =
��{ 𝑒 𝑗 ∈ E : 𝑢 ∈ 𝑒 𝑗 }

��.
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Proof. In 𝐺, each bond connecting 𝑢 to a junction 𝑗 contributes one to deg𝐺 (𝑢). By definition of 𝐻, each
such junction 𝑗 ∈ 𝑉junc yields a hyperedge 𝑒 𝑗 = { 𝑣 ∈ 𝑉elem : {𝑣, 𝑗} ∈ 𝐸}. Thus 𝑢 appears in 𝑒 𝑗 exactly when
{𝑢, 𝑗} ∈ 𝐸 . Counting all bonds incident on 𝑢 is therefore identical to counting all hyperedges 𝑒 𝑗 with 𝑢 ∈ 𝑒 𝑗 ,
proving the claimed equality. □

Theorem 5.6 (Connectivity Equivalence). The bond graph 𝐺 is (vertex-)connected if and only if its Bond
HyperGraph 𝐻 is connected in the sense that its incidence bipartite graph (with parts𝑉elem and E) is connected.

Proof. By construction, the incidence bipartite graph of 𝐻 has an edge between 𝑢 ∈ 𝑉elem and hyperedge
𝑒 𝑗 ∈ E precisely when {𝑢, 𝑗} ∈ 𝐸 in 𝐺. But 𝐺 itself is exactly that same bipartite graph between elements
and junctions (with junction-names identified with hyperedges). Hence connectivity of one is equivalent to
connectivity of the other. □

Theorem 5.7 (Primal Graph Reconstruction). Let 𝐻 = (𝑉elem, E) be a Bond HyperGraph. Its 2-section (primal
graph)

𝐺𝐻 =
(
𝑉elem, 𝐸𝐻

)
, 𝐸𝐻 =

{
{𝑢, 𝑣} : ∃ 𝑒 ∈ E, {𝑢, 𝑣} ⊆ 𝑒

}
is exactly the element-adjacency projection of the original bond graph 𝐺, where two elements are adjacent
whenever they share a common junction.

Proof. By definition of the primal graph of a hypergraph, 𝑢 and 𝑣 are connected by an edge in 𝐺𝐻 if there
exists a hyperedge 𝑒 𝑗 containing both. But 𝑒 𝑗 collects precisely those element nodes incident on junction 𝑗 .
Therefore 𝑢, 𝑣 share 𝑒 𝑗 if and only if both are connected to the same junction 𝑗 in 𝐺, which is exactly the
adjacency rule in the element-projection of 𝐺. □

Theorem 5.8 (Dual Primal Graph and Junction Adjacency). Form the dual hypergraph 𝐻∗ = (E, 𝑉elem) of 𝐻,
where each element 𝑢 ∈ 𝑉elem defines a hyperedge {𝑒 𝑗 ∈ E : 𝑢 ∈ 𝑒 𝑗 } in 𝐻∗. Then the primal graph of 𝐻∗ on
vertex-set E is isomorphic to the junction-projection graph of 𝐺, in which two junctions are adjacent whenever
they share an element node.

Proof. In 𝐻∗, two dual-vertices 𝑒 𝑗1 , 𝑒 𝑗2 ∈ E are adjacent if they both belong to some dual-hyperedge, i.e.
there exists 𝑢 ∈ 𝑉elem with 𝑢 ∈ 𝑒 𝑗1 ∩ 𝑒 𝑗2 . But this condition is exactly that junctions 𝑗1, 𝑗2 in 𝐺 each connect
to the same element node 𝑢, establishing adjacency in the junction-projection of 𝐺. Hence the two graphs
coincide. □

Theorem 5.9 (Rank of Incidence Matrix). Let 𝐵 ∈ {0, 1} |𝑉elem |× | E | be the incidence matrix of 𝐻, with 𝐵𝑢, 𝑗 = 1
iff 𝑢 ∈ 𝑒 𝑗 . Then

rank(𝐵) = |𝑉elem | − 𝑐,

where 𝑐 is the number of connected components of 𝐺 (equivalently of 𝐻’s incidence graph).

Proof. Since 𝐺 is connected on each component and 𝐵 is the biadjacency matrix between elements and
junctions, standard results on the rank of the incidence matrix of a connected bipartite graph apply: its rank
equals the number of vertices minus the number of connected components. Here the “vertices” on one side are
𝑉elem, and the result follows by restriction to that side. □

Definition 5.10 (Bond 𝑛-SuperHyperGraph). Let𝑉0 be the finite set of element nodes in a bond-graph domain.
For each integer 𝑘 ≥ 0 define

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
.

A Bond 𝑛-SuperHyperGraph is a pair
BnSHT(𝑛) = (𝑉, 𝐸),

where
𝑉 ⊆ P𝑛 (𝑉0) (the 𝑛-supervertices), 𝐸 ⊆ P𝑛 (𝑉0) (the 𝑛-superedges),

together with the canonical incidence relation that each 𝑛-superedge 𝑒 ∈ 𝐸 attaches to its member 𝑛-
supervertices in 𝑉 .
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Example 5.11 (Bond 2-SuperHyperGraph of a Series R–L–C Circuit). An RLC circuit is an electrical circuit
consisting of a resistor (R), inductor (L), and capacitor (C) connected in series or parallel (cf. [118,154,182]).
Let the base set of element nodes be

𝑉0 = {𝑆𝑒, 𝑅, 𝐿, 𝐶},

and consider the bond graph with three 1-junctions 𝑗1, 𝑗2, 𝑗3 defined by the bonds

𝐸 =
{
{𝑆𝑒, 𝑗1}, {𝑅, 𝑗1}, {𝑅, 𝑗2}, {𝐿, 𝑗2}, {𝐿, 𝑗3}, {𝐶, 𝑗3}

}
.

The corresponding Bond HyperGraph 𝐻 = (𝑉elem, E) has

𝑉elem = {𝑆𝑒, 𝑅, 𝐿, 𝐶}, E =
{
𝑒 𝑗1 , 𝑒 𝑗2 , 𝑒 𝑗3

}
,

where
𝑒 𝑗1 = {𝑆𝑒, 𝑅}, 𝑒 𝑗2 = {𝑅, 𝐿}, 𝑒 𝑗3 = {𝐿, 𝐶}.

Now form the 2-supervertices (elements of P2 (𝑉0)) by grouping overlapping hyperedges:

𝐷1 = { 𝑒 𝑗1 , 𝑒 𝑗2 }, 𝐷2 = { 𝑒 𝑗2 , 𝑒 𝑗3 }.

Thus the set of 2-supervertices is
𝑉2 = {𝐷1, 𝐷2}.

A natural 2-superedge arises by connecting those two 2-supervertices that share the common hyperedge 𝑒 𝑗2 :

𝐸2 =
{
{𝐷1, 𝐷2}

}
.

Therefore, the Bond 2-SuperHyperGraph is

BnSHT(2) =
(
𝑉2, 𝐸2

)
=

(
{𝐷1, 𝐷2}, {{𝐷1, 𝐷2}}

)
.

This 2-SuperHyperGraph encodes a higher-level “meta-junction” that links the two 1-junction subnetworks
{𝑆𝑒, 𝑅}–{𝑅, 𝐿} and {𝑅, 𝐿}–{𝐿, 𝐶}, thus generalizing both the bond graph and its hypergraph representation.

Example 5.12 (Bond 3-SuperHyperGraph of a Series 𝑅–𝐿–𝐶 Circuit). Let the base set of element nodes be

𝑉0 = {𝑆𝑒, 𝑅, 𝐿, 𝐶},

and consider the bond graph with three 1-junctions 𝑗1, 𝑗2, 𝑗3 defined by the bonds

𝐸 =
{
{𝑆𝑒, 𝑗1}, {𝑅, 𝑗1}, {𝑅, 𝑗2}, {𝐿, 𝑗2}, {𝐿, 𝑗3}, {𝐶, 𝑗3}

}
.

The corresponding Bond HyperGraph 𝐻 = (𝑉elem, E) has

𝑉elem = {𝑆𝑒, 𝑅, 𝐿, 𝐶}, E = { 𝑒1, 𝑒2, 𝑒3},

where
𝑒1 = {𝑆𝑒, 𝑅}, 𝑒2 = {𝑅, 𝐿}, 𝑒3 = {𝐿, 𝐶}.

Form the 2-supervertices (elements of P2 (𝑉0)) by grouping overlapping hyperedges:

𝐷1 = {𝑒1, 𝑒2}, 𝐷2 = {𝑒2, 𝑒3}, 𝐷3 = {𝑒3, 𝑒1}.

Thus the set of 2-supervertices is
𝑉2 = {𝐷1, 𝐷2, 𝐷3},

and there is a natural 2-superedge for each pair of adjacent 2-supervertices:

𝐸2 =
{
{𝐷1, 𝐷2}, {𝐷2, 𝐷3}, {𝐷3, 𝐷1}

}
.

Now form the 3-supervertices (elements of P3 (𝑉0)) by grouping adjacent 2-supervertices:

𝐴1 = {𝐷1, 𝐷2}, 𝐴2 = {𝐷2, 𝐷3}, 𝐴3 = {𝐷3, 𝐷1}.
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Hence
𝑉3 = {𝐴1, 𝐴2, 𝐴3}.

Finally, the single 3-superedge connects all three 3-supervertices:

𝐸3 =
{
{𝐴1, 𝐴2, 𝐴3}

}
.

Therefore, the Bond 3-SuperHyperGraph is

BnSHT(3) =
(
𝑉3, 𝐸3

)
=

(
{𝐴1, 𝐴2, 𝐴3}, {{𝐴1, 𝐴2, 𝐴3}}

)
.

This structure captures a three-level meta-junction that links the overlapping sub-circuits {𝑆𝑒, 𝑅}–{𝑅, 𝐿},
{𝑅, 𝐿}–{𝐿, 𝐶}, and {𝐿, 𝐶}–{𝑆𝑒, 𝑅} in one unified 3-superhypergraph.

Theorem 5.13 (Reduction to Bond HyperGraph and Bond Graph). Let BnSHT(𝑛) = (𝑉, 𝐸) be a Bond
𝑛-SuperHyperGraph on base set 𝑉0. Then:

1. If 𝑛 = 1, and we take
𝑉 =

{
{𝑣} : 𝑣 ∈ 𝑉0

}
, 𝐸 =

{
𝑒 𝑗 : 𝑗 ∈ 𝑉junc

}
,

where each 𝑒 𝑗 ⊆ 𝑉0 is the set of element-nodes incident on junction 𝑗 , then BnSHT(1) coincides with the
Bond HyperGraph.

2. If moreover each hyperedge 𝑒 𝑗 ∈ 𝐸 has |𝑒 𝑗 | = 2, then this Bond HyperGraph is exactly the classical
Bond Graph.

Proof. (1) For 𝑛 = 1, P1 (𝑉0) = P(𝑉0). Choosing𝑉 = {{𝑣} : 𝑣 ∈ 𝑉0} identifies each singleton with the original
element node. Setting 𝐸 = {𝑒 𝑗 : 𝑗 ∈ 𝑉junc} reproduces exactly the hyperedges of the Bond HyperGraph, since
each 𝑒 𝑗 collects the element-nodes attached to junction 𝑗 .

(2) If each 𝑒 𝑗 has size two, then every hyperedge is a pair of singletons { {𝑢}, {𝑣} }. Collapsing the singletons
back to their underlying nodes yields an undirected graph with vertex set𝑉0 and edge set {{𝑢, 𝑣} : 𝑒 𝑗 = {𝑢, 𝑣}}.
This is precisely the Bond Graph. □

Theorem 5.14 (Intrinsic 𝑛-SuperHyperGraph Structure). Any Bond 𝑛-SuperHyperGraph BnSHT(𝑛) = (𝑉, 𝐸)
is by definition an 𝑛-SuperHyperGraph: its supervertex set 𝑉 and superedge set 𝐸 satisfy

𝑉 ⊆ P𝑛 (𝑉0), 𝐸 ⊆ P𝑛 (𝑉0),

and the incidence relation is the natural membership relation of superedges on supervertices.

Proof. The construction of BnSHT(𝑛) uses exactly the data of an 𝑛-SuperHyperGraph on base set 𝑉0. By
hypothesis 𝑉 and 𝐸 are subsets of P𝑛 (𝑉0), and each superedge 𝑒 ∈ 𝐸 attaches precisely to the supervertices
it contains. No additional structure is needed, hence BnSHT(𝑛) inherits the full combinatorial and incidence
structure of an 𝑛-SuperHyperGraph. □

Theorem 5.15 (Skeleton Consistency). Let BnSHT(𝑛) = (𝑉 (𝑛) , 𝐸 (𝑛) ) be a Bond 𝑛-SuperHyperGraph over
base set 𝑉0. For each 𝑘 = 𝑛 − 1, 𝑛 − 2, . . . , 1, define recursively

𝑉 (𝑘 ) =
⋃

𝑆∈𝑉 (𝑘+1)

𝑆, 𝐸 (𝑘 ) =
{
𝐹 ⊆ 𝑉 (𝑘 ) : 𝐹 ⊆ 𝑒 for some 𝑒 ∈ 𝐸 (𝑘+1)}.

Then for every 1 ≤ 𝑘 ≤ 𝑛,
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is a Bond 𝑘-SuperHyperGraph. In particular:

•
(
𝑉 (1) , 𝐸 (1) ) coincides with the Bond HyperGraph.

•
(
𝑉 (0) , 𝐸 (0) ) is the classical Bond Graph.
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Proof. We prove by downward induction on 𝑘 . For 𝑘 = 𝑛, the result is given. Suppose
(
𝑉 (𝑘+1) , 𝐸 (𝑘+1) ) is a

Bond (𝑘 + 1)-SuperHyperGraph with 𝑉 (𝑘+1) ⊆ P 𝑘+1 (𝑉0), 𝐸 (𝑘+1) ⊆ P 𝑘+1 (𝑉0). By definition,

𝑉 (𝑘 ) =
⋃

𝑆∈𝑉 (𝑘+1)

𝑆 ⊆
⋃

𝑆∈P𝑘+1 (𝑉0 )
𝑆 = P𝑘 (𝑉0),

and each 𝐹 ∈ 𝐸 (𝑘 ) is a subset of some 𝑒 ∈ 𝐸 (𝑘+1) ⊆ P𝑘+1 (𝑉0), so 𝐹 ⊆ ⋃
𝑒 ⊆ P𝑘 (𝑉0). The canonical

incidence (membership) relation restricts correctly. Hence
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) satisfies the definition of a Bond 𝑘-

SuperHyperGraph. Taking 𝑘 = 1 and then 𝑘 = 0 yields the Bond HyperGraph and Bond Graph, respectively.
□

Theorem 5.16 (Connectivity Inheritance). If the underlying Bond Graph (the 0-skeleton
(
𝑉 (0) , 𝐸 (0) )) is

connected, then for every 1 ≤ 𝑘 ≤ 𝑛, the Bond 𝑘-SuperHyperGraph
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is connected in the sense that

its 2-section graph is connected.

Proof. Recall that the 2-section of a hypergraph (𝑉, 𝐸) is the graph on𝑉 where two vertices are adjacent if they
belong to a common hyperedge. We show by induction on 𝑘 that the 2-section of

(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is connected.

Base (𝑘 = 0). The 2-section of the Bond Graph is itself, which is connected by hypothesis.

Inductive Step. Assume the 2-section of
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is connected. Consider

(
𝑉 (𝑘+1) , 𝐸 (𝑘+1) ) . By skeleton

consistency, every superedge 𝑒 ∈ 𝐸 (𝑘+1) is a subset of 𝑉 (𝑘 ) . Thus in the 2-section of
(
𝑉 (𝑘+1) , 𝐸 (𝑘+1) ) , any two

𝑘-supervertices 𝑆1, 𝑆2 ∈ 𝑉 (𝑘+1) that share an underlying 𝑘−1-vertex become adjacent if 𝑆1 ∩ 𝑆2 ≠ ∅. Since
the 2-section at level 𝑘 is connected, one can traverse from any 𝑘-supervertex to any other by stepping through
overlapping sets. Therefore the 2-section at level 𝑘 + 1 is also connected. □

Theorem 5.17 (Superedge-Induced Subgraph Connectivity). In a Bond 𝑛-SuperHyperGraph BnSHT(𝑛) =

(𝑉 (𝑛) , 𝐸 (𝑛) ), for each superedge 𝑒 ∈ 𝐸 (𝑛) , the induced subgraph of the underlying Bond Graph on the union
of all base-nodes in 𝑒 is connected.

Proof. Let 𝑒 ∈ 𝐸 (𝑛) be an 𝑛-superedge. By recursive definition of skeletons, each element of 𝑒 is a (𝑛 − 1)-
supervertex, whose member set is connected at the (𝑛−2)-level, and so on down to base-level. Since hyperedges
at each level correspond to junction connectivity in the lower level, the union of all base-nodes in 𝑒 forms a
connected set in the Bond Graph. More formally, for any two base-nodes 𝑢, 𝑣 in

⋃
𝑒, there exists a chain of

overlapping supervertices linking them, which projects to a path in the 2-section of the 0-skeleton. Hence the
induced subgraph is connected. □

Theorem 5.18 (Clique Characterization of (𝑘 + 1)-Superedges). Let BnSHT(𝑛) = (𝑉 (𝑛) , 𝐸 (𝑛) ) be a Bond
𝑛-SuperHyperGraph, and let 1 ≤ 𝑘 < 𝑛. Consider the primal (2-section) graph 𝐺 (𝑘 ) of (𝑉 (𝑘 ) , 𝐸 (𝑘 ) ), whose
vertices are the 𝑘-supervertices and whose edges join any two that lie together in some 𝑘-superedge. Then
each (𝑘 + 1)-superedge 𝑒 ∈ 𝐸 (𝑘+1) induces a clique in 𝐺 (𝑘 ) , and conversely any maximal clique of 𝐺 (𝑘 ) arises
from a unique (𝑘 + 1)-superedge.

Proof. By definition, a (𝑘 + 1)-superedge 𝑒 ⊆ 𝑉 (𝑘 ) consists of those 𝑘-supervertices grouped together because
they share a common (𝑘 − 1)-level face. In the 2-section 𝐺 (𝑘 ) , two 𝑘-supervertices are adjacent exactly if they
belong to some common (𝑘 − 1)-superedge; but membership in the same (𝑘 + 1)-superedge implies pairwise
sharing of lower–level faces, hence adjacency. Thus 𝑒 is a clique. Maximality follows because if a clique
could be extended, that would contradict the maximal grouping in 𝐸 (𝑘+1) . Conversely, any maximal clique in
𝐺 (𝑘 ) collects all 𝑘-supervertices pairwise overlapping in a common (𝑘 − 1)-face, so by construction it defines
a unique (𝑘 + 1)-superedge. □

Theorem 5.19 (Chain–Height Bound). In a Bond 𝑛-SuperHyperGraph BnSHT(𝑛) , the longest chain of strict
inclusions

𝑣0 ⊊ 𝑣1 ⊊ · · · ⊊ 𝑣𝑚

among supervertices has length at most 𝑛, i.e. 𝑚 ≤ 𝑛.
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Proof. By definition each 𝑣𝑘 ∈ 𝑉 (𝑘 ) is a subset of P𝑘 (𝑉0), and every element of 𝑣𝑘 is itself an element of
P𝑘−1 (𝑉0). Thus a strict inclusion 𝑣𝑘−1 ⊊ 𝑣𝑘 necessarily increases the “powerset depth” by one. Starting from
𝑣0 ⊆ 𝑉0 (depth 0), one can strictly ascend at most to depth 𝑛, proving 𝑚 ≤ 𝑛. □

Theorem 5.20 (Degree Propagation Across Levels). Let BnSHT(𝑛) be connected, and let deg𝑘 (𝑣) denote the
degree of a 𝑘-supervertex 𝑣 ∈ 𝑉 (𝑘 ) in the primal graph 𝐺 (𝑘 ) . Then for each 1 ≤ 𝑘 < 𝑛,

deg𝑘+1 (𝑒) = |{ 𝑣 ∈ 𝑉 (𝑘 ) : 𝑣 ∈ 𝑒}| =⇒ deg𝑘 (𝑣) = |{ 𝑒 ∈ 𝐸 (𝑘+1) : 𝑣 ∈ 𝑒}|.

In particular, the number of (𝑘 + 1)-superedges incident on a given 𝑘-supervertex equals its degree in 𝐺 (𝑘 ) .

Proof. By construction, in the primal graph 𝐺 (𝑘 ) two 𝑘-supervertices are adjacent exactly when they share
membership in some (𝑘 + 1)-superedge. Thus the number of neighbors of 𝑣 in 𝐺 (𝑘 ) , i.e. deg𝑘 (𝑣), counts
exactly those (𝑘 + 1)-superedges to which 𝑣 belongs, establishing the equality. □

Theorem 5.21 (Duality of Incidence Matrices). For each level 𝑘 , let 𝐵 (𝑘 ) ∈ {0, 1} |𝑉 (𝑘) |× |𝐸 (𝑘) | be the incidence
matrix of the Bond 𝑘-SuperHyperGraph. Then its transpose

(
𝐵 (𝑘 ) )⊤ is the incidence matrix of the dual

hypergraph, and
rank

(
𝐵 (𝑘 ) ) = rank

(
𝐵 (𝑘 ) ⊤)

.

Proof. By definition 𝐵
(𝑘 )
𝑣,𝑒 = 1 iff 𝑣 ∈ 𝑒. Transposition thus swaps the roles of supervertices and superedges,

yielding the dual. Over any field, a matrix and its transpose have equal rank, giving the asserted equality. □

Theorem 5.22 (Skeleton Associativity). Forming the 𝑘-skeleton of an 𝑛-SuperHyperGraph and then the
ℓ-skeleton (ℓ < 𝑘) yields the same result as directly forming the ℓ-skeleton. Concretely, for 0 ≤ ℓ < 𝑘 ≤ 𝑛,

Skeletonℓ
(
Skeleton𝑘 (BnSHT(𝑛) )

)
= Skeletonℓ

(
BnSHT(𝑛) ) .

Proof. Both construction procedures extract supervertices of depth ℓ by successive membership unwinding.
Whether one unwinds from 𝑛 down to 𝑘 and then to ℓ, or directly from 𝑛 to ℓ, the resulting collection of
ℓ-supervertices (and their induced ℓ-superedges) is identical. This follows from the transitive nature of set
membership in iterated powersets. □

6 Conclusion and Future Works

In this paper, we extended the frameworks of Graph Signal Processing, Electric Circuits, and Bond Graphs by
incorporating the mathematical structures of hypergraphs and superhypergraphs. We examined their formal
properties and provided illustrative examples to demonstrate their applicability and expressiveness.

In future work, we aim to conduct computational experiments related to these frameworks in order to ex-
plore their practical applications in real-world scenarios more concretely. In addition, we plan to investigate
theoretical extensions and applications to foundational concepts such as Ohm’s Law [206, 221], Kirchhoff’s
Laws [172, 178], AC/DC Analysis [3, 19], Transfer Functions [121, 203], and Integrated Circuits [209, 218].

And as a direction for future work, we plan to integrate advanced uncertainty-handling frameworks into
the proposed models by incorporating various set-theoretic generalizations, including Fuzzy Sets [227–229],
Intuitionistic Fuzzy Sets [22–25], Vague Sets [8, 12, 40, 96], Rough Sets [39, 167–169], HyperRough Sets [71,
77, 78], Bipolar Fuzzy Sets [5, 234, 235], Tripolar Fuzzy Sets [173–175], HyperFuzzy Sets [120, 196], Picture
Fuzzy Sets [50, 106], Hesitant Fuzzy Sets [6, 210, 211, 224], spherical fuzzy sets [10, 128], Neutrosophic
Sets [116, 189, 195], Quadripartitioned Neutrosophic Sets [122, 226], HyperPlithogenic Sets [75, 76], and
Plithogenic Sets [73,84,190]. These advanced frameworks are expected to significantly enhance the expressive
power and practical applicability of hypergraph-based models, particularly in capturing complex, multi-level,
and hierarchical uncertainty across a variety of domains. We also hope to explore possible extensions using
structures such as directed graphs [119, 184, 201], bidirected graphs [56, 100, 124], and multidirected graphs
[160, 161].
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[210] Vicenç Torra. Hesitant fuzzy sets. International journal of intelligent systems, 25(6):529–539, 2010.
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