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Abstract
This review aims to contribute to a holistic understanding of sustainable crop production strategies in the face of climate variability, offering insights for researchers, policymakers, and practitioners working at the intersection of agriculture and climate resilience. Climate change poses a significant threat to global agricultural productivity, directly impacting food security, farmer livelihoods, and the sustainability of cropping systems. Increasing temperatures, erratic rainfall patterns, extended droughts, and frequent extreme weather events are disrupting conventional agricultural practices, particularly in vulnerable regions. In this context, climate-resilient agronomic practices have emerged as crucial adaptive strategies to sustain and enhance crop production under changing environmental conditions. This review highlights recent advances and innovative approaches in climate-resilient agronomy, emphasizing sustainable practices that optimize resource use efficiency, conserve soil and water, and improve crop tolerance to climatic stresses. The use of crop varieties that are resistant to heat and drought, conservation agriculture methods, integrated nutrient and water management, precision farming, crop diversification, and agroforestry systems are some of the important practices that are covered. Agronomic practices treated in this review, such as the application of stress-tolerant crop varieties, conservation agriculture practices, integrated nutrient and water management, precision farming, and agroforestry, have been proven effective in various agro-ecological environments.
Furthermore, the study also discussed how organic amendments, biofertilizers, and climate-wise smart soil management strategies might improve soil health and carbon sequestration. To further on-farm risk management and decision-making, the paper also examines the integration of digital agriculture tools including remote sensing, weather forecasting, and decision support systems. 
This review emphasizes the need for a systems-based agronomic approach that fits production goals with environmental sustainability by combining recent research findings and successful field-level interventions. The results support increasing policy support, farmer capacity-building, and technology distribution to encourage broad application of climate-resilient agronomic practices. Food and nutritional security, improved farm incomes, and resilience in agricultural systems against the negative effects of climate change depend on such efforts.
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I. Introduction
[bookmark: _GoBack]Among the toughest problems facing world food systems in the twenty-first century is climate change. Climate change presents a substantial challenge to global agriculture, which requires innovative approaches to ensure sustainable livelihoods and food security. In response to the concerns posed by a changing climate, climate-smart agriculture has appeared to be a strategic solution aimed at addressing climate challenges, enhancing agricultural productivity, and increasing agricultural resilience. Climate-smart agriculture (CSA) practices encompass various practices, such as agroforestry, intercropping, mulching, row planting, crop rotation, water harvesting, and improved varieties (Bhatnagar et al., 2024). CSA encompasses practices that contribute to improved resource management, such as land and freshwater utilization, ecosystem and landscape development and management, and the provision of digital services to enable necessary changes, such as the adoption of smart farming technologies (Abegunde et al., 2022). CSA   also   includes methods    to    reduce    greenhouse    gas emissions,  such    as    agroforestry    and carbon    sequestration,     which    mitigate agriculture's    environmental    impact.    By empowering    smallholder    farmers    and reducing post-harvest losses, CSA supports local and  global  food  security, building  a  sustainable  agricultural  system capable of feeding future generations (Bhanuwanti et al., 2024; Hoque et al., 2023). Already negatively impacting agricultural productivity, soil health, and water resource availability are changes in temperature, precipitation patterns, and the frequency and intensity of extreme weather events (Raza et al., 2019). Particularly in tropical and subtropical areas, where rain-fed agriculture rules, global crop yields have shown sensitivity to these changes (Wheeler & von Braun, 2013). Depending on area and scenario, climate change is expected to lower yields of basic crops including rice, wheat, and maize by 10–25% globally by 2050 (Lobell et al., 2011).
Apart from being sensitive to fluctuations in temperature, agriculture itself fuels climate change; considering land-use change, this accounts for about 23% of all anthropogenic greenhouse gas emissions (IPCC, 2019). Over half of the labor force in developing nations like India is involved in agriculture, and much of the farming is small-scale and dependent on the monsoon. Without suitable adaptation policies, evidence points to a possible 40% drop in Indian wheat and rice yields by 2080 (Kumar et al., 2020).
Identifying these threats, various national and global programs have been launched to enhance adaptation in agriculture. India's National Innovations in Climate Resilient Agriculture (NICRA) and the National Mission for Sustainable Agriculture (NMSA) have taken the lead in testing practices like climate-resilient seed varieties, conservation agriculture, and enhanced water-use efficiency (Aggarwal et al., 2019). Internationally, mainstreaming climate-smart agriculture has gained traction, highlighting the importance of raising productivity in a sustainable manner, enhancing resilience, and minimizing emissions where it is possible (FAO, 2013). Given this context, the objectives of this review are as follows:
1. To examine the key climate-resilient agronomic practices that are being promoted and implemented globally and in climate-vulnerable regions.
2. To assess the effectiveness of these practices in enhancing productivity, resilience, and sustainability of cropping systems under climate stress.
3. To explore recent innovations and scientific advances, such as digital agriculture, precision farming, and integrated nutrient-water management, and their role in climate adaptation.
4. To identify policy and institutional frameworks that support the adoption of climate-resilient practices at scale.
5. To provide a synthesis of field-based evidence and scholarly findings that highlight best practices, success stories, and gaps in current knowledge.
By addressing these objectives, this review aims to contribute to a holistic understanding of sustainable crop production strategies in the face of climate variability, offering insights for researchers, policymakers, and practitioners working at the intersection of agriculture and climate resilience.
2. Climate Change and Agricultural Challenges
Agriculture is both a contributor to and a victim of climate change. With shifting climate patterns, farming systems globally are facing multidimensional stressors that threaten the stability of crop production, food security, and rural livelihoods. This section outlines the key climatic trends affecting agriculture, critical vulnerabilities in cropping systems, and specific impacts on crop yields, soil health, and water availability.
2.1 Trends in Global Climate Variables Affecting Agriculture
In the last century, the global average temperature has increased by about 1.1°C above pre-industrial levels, with more intense warming over land and in high-latitude areas (IPCC, 2021). Without mitigation, it is estimated that temperatures will increase by up to 2.7°C or more by the end of the century (Hausfather & Peters, 2020). At the same time, the global water cycle is amplifying, leading to altering the patterns of rainfall, extended durations of drought, and more frequent occurrence of extreme events like floods, cyclones, and heatwaves (Deryng et al., 2014).
These shifts profoundly impact growing season length, timing of critical phases of crop development, and geographic appropriateness of important crops (Wang et al., 2018). Rain-fed agriculture, which accounts for more than 80% of cropland worldwide, is highly vulnerable to decreased precipitation and increased variability (Rockström et al., 2010).
2.2 Key Vulnerabilities in Cropping Systems
Cropping systems in tropical and subtropical regions are disproportionately vulnerable due to their reliance on predictable climatic conditions and limited adaptive capacity. Climate change disrupts:
· Phenological cycles: Unseasonal rainfall and rising temperatures alter flowering and grain-filling periods, reducing crop performance (Lobell et al., 2011).
· Pest and disease dynamics: Warmer and wetter conditions can expand pest ranges and enhance pathogen virulence (Deutsch et al., 2018).
· Soil degradation: Intensified rainfall events accelerate erosion, while drought reduces soil organic matter and disrupts microbial activity (FAO & ITPS, 2015).
Cropping systems such as rice-wheat rotations, maize monocultures, and marginal rainfed systems in sub-Saharan Africa and South Asia are especially vulnerable due to the lack of diversification and reliance on singular seasonal rainfall events (Thornton et al., 2014).
2.3 Impacts on Crop Yields, Soil Health, and Water Availability
Crop Yields
Yield losses are one of the most concrete effects of climate change. Meta-analyses indicate that for every 1°C rise in global temperature, global wheat, rice, and maize yields may reduce by 6%, 3.2%, and 7.4%, respectively (Zhao et al., 2017). Yield losses due to temperature are aggravated by increased levels of ozone, unpredictable rainfall, and reduced crop durations.
Soil Health
Soil systems are degraded by direct (erosion, leaching of nutrients) and indirect (loss of biodiversity, changed decomposition) routes. Soil carbon pools are decreasing in intensively cultivated regions, which reduces fertility and the capacity of the soil to buffer climate shocks (Lal, 2020). Heat and drought also cause the disintegration of soil aggregates and enhanced salinization, especially in arid environments.
Water Availability
Water scarcity is becoming more acute due to reduced rainfall, increased evapotranspiration, and the over-extraction of groundwater. Agricultural water demand is expected to increase by 19% by 2050, yet water availability per capita is falling (WWAP, 2015). In South Asia, key river basins such as the Ganges and Indus are already experiencing seasonal water stress, affecting millions of hectares of irrigated cropland (Kummu et al., 2016).
3. Key Climate-Resilient Agronomic Practices
Climate-resilient agronomic practices lie at the foundation of adjusting agriculture systems to cope with the imperatives of climate change. The practices are structured to improve productivity, maximize the use of resources, and develop systemic resilience to weather climate-related stressors. The present section identifies the key approaches that have evolved as effective and replicable interventions for the sustainable production of crops in a climate-variability scenario.
3.1 Stress-Tolerant Crop Varieties
The release and use of stress-resistant crop varieties are a first line of defence against the negative impacts of increasing temperatures and irregular rainfall. For instance, drought-resistant maize hybrids created by the Drought Tolerant Maize for Africa (DTMA) project are registering yield increases of 20–30% when faced with drought (Cairns et al., 2013). Heat-resistant wheat varieties like HI 8802 (Pusa Tejas) have been developed to overcome increased night temperatures at critical reproductive phases (Gupta et al., 2022).
Advanced molecular methods, such as marker-assisted selection and genomic selection, are being used more and more to speed up crop breeding with higher resilience traits (Varshney et al., 2021).
3.2 Conservation Agriculture
Conservation agriculture (CA) is based on minimizing soil disturbance, using permanent soil cover, and applying varied rotations of crops. Such methods enhance water-holding capacity, minimize erosion, and increase soil organic matter (Thierfelder & Wall, 2010). CA has been effectively used in Sub-Saharan Africa, from which regions have recorded enhanced yields, improved drought tolerance, and enhanced soil health.
Perennial cover crops and mulches also help in reducing soil temperatures and enhancing microbial activity, essential for productive sustainability under climatic extremes (Giller et al., 2015).
3.3 Water and Nutrient Management
Water-saving technologies like drip and sprinkler irrigation are critical in enhancing water productivity, particularly in water-deficient areas. Integrated nutrient management (INM), through the integration of organic and inorganic inputs, optimizes nutrient supply and reduces environmental losses (Roy et al., 2006).
Site-specific nutrient management (SSNM) based on soil testing and decision support systems improves fertilizer efficiency and yields under fluctuating climatic conditions (Dobermann et al., 2002).
3.4 Organic Inputs and Soil Health
The use of compost, green manures, and biofertilizers enhances soil fertility, microbial diversity, and carbon storage. These materials reduce chemical fertilizer dependency and promote soil rehabilitation. For example, water-holding capacity and nutrient retention in sandy soils can be enhanced through the use of biochar (Lehmann et al., 2011).
Enhancing soil organic carbon is also essential for developing long-term resilience to drought and nutrient stress (Lal, 2020).
3.5 Precision and Digital Agriculture
Precision agriculture leverages digital technologies to optimize input use and support adaptive decision-making. Tools such as satellite imagery, weather forecasting, and crop simulation models help farmers manage risks and respond proactively to climatic variability (Zhang et al., 2019).
Decision support systems (DSS) and mobile-based advisory services are increasingly deployed to deliver real-time, location-specific recommendations to smallholder farmers.
3.6 Crop Diversification and Agroforestry
Diversification of cropping systems like intercropping, relay cropping, and agroforestry diffuses risk and increases ecological services. Agroforestry systems particularly provide several advantages like carbon sequestration, microclimate control, and income diversification (Mbow et al., 2014).
Such diversified systems are more resilient to shocks and contribute to the long-term sustainability of farming landscapes.
4. Enabling Factors
The successful adoption of climate-resilient agronomic practices relies heavily on external enabling factors, including policy frameworks, farmer training, and effective dissemination of technologies. Governments, NGOs, research institutions, and the private sector must collaborate to ensure that farmers have access to the tools and knowledge needed to adapt to climate change and implement sustainable agricultural practices.
4.1 Policy Support and Farmer Training
Inclusive policy support is important to up-scale climate-resilient agronomic practices. Climate-smart agriculture (CSA) policies can help implement the needed infrastructure, finance incentives, and regulations for implementing innovative farming methods. These may comprise subsidies on drought-resistant seeds, tax deductions for investments in water-saving irrigation technology, or incentives in sustainable land management measures.
For example, government promotion of drought-tolerant maize varieties in Kenya has been associated with enhanced resilience of smallholder farmers (Banziger et al., 2006). Likewise, India's National Mission for Sustainable Agriculture (NMSA) supports the use of soil health management practices, organic farming, and water-saving (Ministry of Agriculture & Farmers' Welfare, 2014).
Farmer training is a critical element of ensuring policy is implemented on the ground. Agricultural extension services are important for spreading awareness regarding new agronomic techniques, pest control, and soil health. Training farmers in the utilization of digital tools and climate forecasting models can help them make informed decisions and minimize risk exposure. For example, the 'Climate-Smart Villages' project of the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS) engages farmers directly and educates them in adaptive approaches to enhance climate resilience and productivity (Thornton et al., 2018).
4.2 Technology Dissemination and Adoption Strategies
The diffusion and acceptance of technologies play a core role in endowing farmers with instruments required for climatic resilience. Contemporary farming technology, such as remote sensing, soil moisture probes, and resistant crop varieties to drought, is capable of turning around how the agricultural sector becomes climate resilient. Yet technology usage relies on myriad variables such as cost, affordability, and farm producers' interests in experimenting on new approaches.
Successful adoption strategies involve establishing connections among research institutions, technology developers, and farmers. Partnerships among the public and private sectors can enable the creation of affordable and scalable technologies. For example, the application of mobile platforms for agricultural advice and weather updates has been successful in areas like sub-Saharan Africa, where mobile phone coverage is excellent (Aker, 2011). These platforms enable farmers to gain timely information about weather conditions, pest infestation, and prices, which makes them make better decisions.
In addition, farmer field schools and farmer cooperatives can be effective vehicles for technology extension. These institutions offer farmers on-the-job experience, enabling them to experiment and assess various technologies and practices collectively. In India, the deployment of ICT-based advisory services by Krishi Vigyan Kendras (KVKs) has empowered farmers with information on water management, pest control, and crop diversification, enhancing their productivity and resilience (Sulaiman et al., 2010).
The uptake of digital technology like farm management software and decision support systems is increasing, although efforts are still being made in issues of affordability, digital literacy, and connectivity. Governments and NGOs can assist in narrowing 
5. Socioeconomic and Policy Dimensions
Implementation of climate-resilient agronomic practices is not only technologically driven but also by the socioeconomic environment under which these practices are practiced. The comprehension of farmers' perceptions, determination of barriers to adoption, strengthening of extension services, and the development of enabling policy frameworks are essential in the quest for the large-scale adoption of these practices. This aspect is addressed in more detail below.
5.1 Farmer Perceptions and Adoption Barriers
Farmers' attitudes towards climate change and adoption of new practices are shaped by a number of socioeconomic factors. Farmers' perceptions of climate risks, information availability, and perceived advantages of using climate-resilient practices are important determinants of adoption rates. Research has indicated that farmers in developing nations tend to perceive climate change as a risk to their livelihoods but may not necessarily see the advantages of adopting climate-resilient practices (Deressa et al., 2009).
Adoption obstacles can be grouped into financial, informational, social, and infrastructural barriers. Financial obstacles are especially important, as the up-front cost of adopting new technologies, e.g., drought-resistant seeds or irrigation equipment, could be extremely expensive for smallholder farmers. Furthermore, a lack of access to credit and insurance products can dissuade farmers from incurring the financial risks of new farming methods (Pritchard et al., 2015).
Informational barriers are also highly evident; farmers can be uninformed about climate-resilient technologies or even their effective use. Social reasons such as prevailing farm practices, customs, and social attitudes also become impediments to adopting new techniques. Farmers might be unwilling to adopt conservation agriculture, for instance, owing to unfamiliarity with minimal tillage operations or fears of decreased yields during the initial transition period.
Overcoming such barriers entails specific interventions that satisfy the economic and informational requirements of farmers. Mobilizing awareness and illustrating the concrete advantages of climate-resilient practices through farmer-to-farmer exchanges, demonstration plots, and mass media campaigns can change perceptions and enhance rates of adoption.
5.2 Role of Extension Services and Capacity-Building
Extension services play an important role in filling the knowledge gap and empowering farmers with skills to implement climate-resilient practices. Agricultural extension agents act as a bridge between research organizations and farmers, communicating information on new technologies, farming methods, and government schemes. The performance of these services relies on the quality of training, availability of extension agents, and the relevance of the communicated information to local settings.
Capacity development programs for both farmers and extension agents are critical in building climate resilience. Farm-level decision-making can be enhanced through training on sustainable agriculture, climate adaptation, and the utilization of digital technologies (e.g., weather forecasting, precision agriculture). In countries like Kenya and Tanzania, farmer field schools have been effective in increasing knowledge among farmers regarding integrated pest management, soil fertility, and water management, resulting in improved climate-resilient practices adoption (Becx et al., 2017).
In addition to traditional extension services, digital platforms are becoming increasingly important in extending climate-related information to farmers. Mobile-based advisory services that deliver weather updates, pest alerts, and farming advice have proven effective in regions with high mobile penetration, such as East Africa (Aker, 2011). These platforms offer real-time information, enabling farmers to make timely decisions that can mitigate the impacts of climate-related stressors.
5.3 Policy Frameworks Supporting Climate-Resilient Agriculture
The development of robust policy frameworks plays a crucial role in establishing the enabling environment that will facilitate the adoption of climate-resilient agronomic practices. Policymakers need to shape agricultural policies which are compatible with climate change adaptation and mitigation agendas, making provision for farmers who need to change to more environmentally friendly practices to be well-supported.
At the national level, climate-smart agriculture (CSA) policies are important. CSA policies bring together sustainable agricultural practices with climate change adaptation, greenhouse gas emission reduction, and increased food security. For instance, the Climate-Resilient Green Economy (CRGE) strategy of Ethiopia provides precise interventions for the enhancement of sustainable agriculture such as the introduction of resilient crops against drought, conservation farming practices, and integrated land management (Government of Ethiopia, 2011).
Along with policies at the national level, regional and local policies should be adjusted to the respective climate vulnerabilities of various agroecological zones. Offering incentives in the forms of subsidies, tax exemptions on environmentally sound farming methods, or funding for the use of water-efficient technology can ease the economic burden on farmers. In addition, the incorporation of climate resilience into agricultural extension services and rural development projects is crucial to the success of policies being implemented at the ground level.
Global agreements and financing instruments are also involved in facilitating climate-resilient agriculture. The Green Climate Fund (GCF) and the United Nations Framework Convention on Climate Change (UNFCCC) commit financial resources for developing countries to use in deploying climate adaptation techniques in agriculture. These international systems can facilitate funding gaps and complement support needed for upscaling interventions that work.
6. Results and Discussion
The institutionalization of climate-resilient agronomic practices has revealed great potential in improving agricultural productivity, saving resources, and promoting farmers' adaptability to climate change. Agronomic practices treated in this review, such as the application of stress-tolerant crop varieties, conservation agriculture practices, integrated nutrient and water management, precision farming, and agroforestry, have been proven effective in various agroecological environments.
The use of drought and heat-tolerant crop varieties is a keystone of climate-resilient agronomy. These varieties not only increase the survival of crops during unfavourable weather but also help improve yields and food security in areas experiencing extreme climatic stress. For example, the deployment of drought-tolerant maize in sub-Saharan Africa under the Drought-Tolerant Maize for Africa (DTMA) project resulted in a yield boost of 20–30% during drought (Cairns et al., 2013). Likewise, heat-tolerant wheat in India has also demonstrated potential in preventing heat stress, thereby enhancing grain yield and quality during high-temperature stress (Gupta et al., 2022).
Such varieties' scalability is key to increased adoption. Governments, research organizations, and the private sector have to work together to bring these varieties within the reach of smallholder farmers, particularly in developing nations where climate change is felt most.
Conservation agriculture (CA) methods such as minimum tillage, rotation, and cover of soil have come forth as practical strategies to enhance the health of soils and the efficiency of water usage. Experiments have proved that CA boosts organic matter in the soil, enhances structure in the soil, and prevents erosion, promoting sustainable farming activities (Thierfelder & Wall, 2010). In addition, CA has been linked to enhanced drought resilience, notably in areas like Southern Africa, where it has been embraced as a primary adaptation measure.
Yet, the extensive implementation of CA is hindered by several challenges, especially in areas where conventional farming is deeply rooted. The up-front cost of adopting CA practices, farmer education requirements, and resistance to breaking old farming customs are major obstacles. However, sustained extension services and supportive policies can be critical to bridging these gaps.
Effective water and nutrient management is critical to achieve maximum productivity and ensure the sustainability of agricultural production systems. The use of drip irrigation, sprinkler irrigation, and integrated nutrient management (INM) practices has proven to have significant advantages in terms of resource use efficiency and crop productivity. Drip irrigation, for instance, conserves water by providing it directly to the root zone of the plant, minimizing water loss and enhancing water use efficiency (Roy et al., 2006).
Correspondingly, combining organic and inorganic inputs under nutrient management has been linked with enhanced soil fertility and enhanced crop performance. Site-specific nutrient management (SSNM) practices of testing soil levels of nutrients and varying fertilization according to plant requirements have also proved effective at maximizing fertilizer efficiency and minimizing the environment's ecological footprint (Dobermann et al., 2002). These practices prove most effective under conditions where degradation of the land is a chief concern.
The use of precision agriculture methods, such as remote sensing, weather monitoring, and decision support systems, has transformed on-farm decision-making. Satellites and soil moisture sensors, for example, allow farmers to track crop health, forecast weather, and plan irrigation and fertilization schedules (Zhang et al., 2019). Such tools have been especially useful in areas with limited access to information and advisory services.
Despite this, digital technology adoption is being hindered by challenges regarding digital literacy, access to the internet, and affordability of technology. Infrastructure improvements, for instance, covering more mobile networks and offering digital literacy programs, are essential to facilitate general adoption.
Crop diversification and agroforestry provide various advantages, such as enhanced carbon sequestration, soil fertility, and biodiversity. Through the integration of trees and crops, farmers can develop more sustainable farming systems that are less susceptible to climatic shocks. Agroforestry also offers supplementary income from the sale of timber, fruits, and non-timber forest products, further improving farm sustainability (Mbow et al., 2014).
Diversified cropping systems facilitate risk spreading, as various crops react differently to climatic stress. Intercropping and agroforestry systems are especially effective in ecological balance maintenance and soil support, thereby ensuring long-term productivity.

7. Conclusion
Climate change presents significant challenges to global agriculture, particularly in regions that are already vulnerable to environmental stressors. Climate-resilient agronomic practices, including the use of stress-tolerant crop varieties, conservation agriculture, integrated water and nutrient management, precision farming, and agroforestry, offer promising solutions to mitigate the impacts of climate change while ensuring food security and farmer livelihoods.
Implementation of such practices calls for a multi-dimensional strategy of policy support, extension education, and technology transfer. Governments and agriculture institutions need to collaborate to build enabling environments to facilitate the mass adoption of climate-resilient practices. The most important among these is to integrate scientific knowledge with local information and to supply practical tools and technologies that maximize productivity and sustainability.
Despite the established advantages, obstacles like adoption costs, restricted access to technology, and the necessity for capacity building persist. Addressing these challenges will demand sustained investment in research, infrastructure, and extension services to guarantee that farmers, especially in developing nations, are able to develop resilience against the volatile effects of climate change.
In conclusion, climate-resilient agronomy represents not just a set of practices but a holistic approach to adapting agricultural systems to the evolving climatic landscape. With the right support systems in place, these practices can ensure that agriculture remains a sustainable and viable livelihood for farmers while contributing to global efforts to combat climate change.
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