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ABSTRACT
This carried out the mathematical evaluation of health risk of heavy metals and polycyclic aromatic hydrocarbons in selected seafood in Idema-Abureni Clan, Bayelsa State.  Seafood were collected from Idema River. Heavy metals, PAHs, estimated daily intake (EDI), life cancer risk (LCR), total life cancer risk (TLCR), target hazard quotient (THQ), and hazard index of hazardous (HI) heavy metals were investigated based on standard methods of estimation.  The Pb, Cd, and Ni in Grapsidae seafood were 6.16±0.08mg/kg, 2.94±0.07mg/kg, and 10.15±0.11mg/kg respectively, which were higher than the reference values for seafood as recommended and similar pattern were perceived in P. busungwe, C. armatum, Bagrus bajad, and A. silverside. The estimated daily intake of Pb, Cd, and Cr in P. busungwe were 0.026mg/kg, 0.05mg/kg, and 0.006mg/kg respectively, were higher than the reference values for seafood as recommended. The THQ and HI of Pb, Cd, Cr, and Ni in Grapsidae were 0.006mg/kg, 0.001mg/kg, 0.006mg/kg, and 0.002mg/kg respectively, were higher than the reference values for seafood as recommended and similar fashion were noticed in Potamonautes busungwe, Cardisoma armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, Atlantic silverside, Portunus armatus, and C. roseus seafood. LCR and TLCR of Pb, Cd, Cr, and Ni studied in Grapsidae were  1.007 mg/kg, 3.080 mg/kg, 0.005mg/kg, 0.056 mg/kg respectively, were significantly higher the reference values for seafood as recommended and similar occurrences were observed in Oxudercinae, Bagrus bajad, Portunus armatus, and Catharanthus roseus. Consumption of the studied seafood in Idema River could lead to cumulative toxic effects. 
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1. INTRODUCTION
Southern Nigeria is depot of crude oil, hence it is regarded as the economic hub for Nigeria. The Southern region of Nigeria is plagued by socio-economic and environmental challenges, one of which is crude oil theft (Kalu and Ndubuisi, 2019).  Illegal crude oil activities entails theft of crude oil through unauthorized access to pipelines, which operate outside legal and regulatory frameworks and are often controlled by organized criminal networks (Ibaba and Olumati, 2009; Zalik, 2011; Okoli and Orinya, 2013; Aghedo, 2013; Kalu and Ndubuisi, 2019). 
Bayelsa State is located in the heart of Southern, is one of the most affected areas by illegal crude oil bunkering. The region is notorious for the widespread activities of oil theft, which involves unauthorized tapping of pipelines, and crude oil theft (Okoli and Orinya, 2013). Crude oil theft in Ogbia LGA is part of a larger pattern in the Niger Delta, where artisanal refining has become a booming underground economy. The stolen crude is refined using rudimentary methods in illegal refineries, often located deep in the creeks. These refineries produce low-quality petroleum products that are sold locally, while the process generates significant environmental pollution (Orogun and Atu, 2018).
Vandalism of oil pipelines leads to frequent oil spills, which contaminate water bodies, farmlands, and forests. This pollution has devastating effects on the local ecosystem, killing fish and other aquatic life, destroying farmlands, and rendering water sources unsafe for drinking (Nwilo and Badejo, 2005; Asuni, 2019).

Seafood are vital source of nutrition for the local population including the Idema-Abureni clan (Olawoyin, 2012). Seafood harvested from areas near illegal crude oil sites in Nigeria is heavily contaminated with heavy metals and PAHs (Nduka and Orisakwe, 2010). These heavy metals are of particular concern due to their toxicity and their tendency to bioaccumulate in organisms and concentrated as they move up the food chain (Akande and Oni, 2015).  Consumption of seafood contaminated with heavy metals poses significant health risks to local populations. Given that marine organisms are primary sources of protein for many communities in Bayelsa State, the exposure to heavy metals through dietary intake is substantial result in neurological disorders, kidneys and liver, cancers, and increased risk of cardiovascular diseases (Akande and Oni, 2015; Barakat, 2015; Orogun and Atu, 2018). 

PAHs in areas affected by illegal oil refining are much higher than in non-polluted areas (Idodo-Umeh and Ogbeibu, 2010; Okoro et al., 2011). The creeks, rivers, and estuaries of the Niger Delta, where many illegal refineries are located, are particularly vulnerable to contamination (Anyakora et al., 2005). Seafood from areas impacted by illegal crude oil activities has been found to contain elevated levels of PAHs (Numbere and Camilo, 2020). Seafood exposed to PAHs through both direct contact with polluted water and sediments. The bioaccumulation of PAHs in seafood poses a significant health risk to human populations, particularly in the Niger Delta, where seafood is a major part of the diet. Bivalve mollusks, such as oysters and periwinkles, are vulnerable to PAH contamination (Anyakora et al., 2005; Okoro et al., 2011; Numbere and Camilo, 2020). 
Health risk assessment (HRA) of heavy metals in seafood involves calculating the estimated daily intake (EDI) of each metal and PAHs while comparing it to established reference doses (RfD) provided by (Ikem et al., 2013). The target hazard quotient (THQ) is used to assess non-carcinogenic risks, while the cancer risk (CR) is used to evaluate potential carcinogenic risks (Clarkson and Magos, 2016). A THQ value above 1 indicates a potential health risk from long-term exposure to heavy metals and PAHs (Signa et al., 2017). The Niger Delta, have reported THQ values for lead, mercury, and cadmium  carcinogenic PAHs in seafood exceeding 1, suggesting a significant health risk for local populations, particularly for vulnerable groups like children and pregnant women (Anyakora et al., 2005; Tomasello et al., 2012).
The Idema-Abureni Clan is a small riverine settlement located in the Ogbia Local Government Area of Bayelsa State (Briggs, 2020). This area is largely inhabited by Ogbia people and Nembe people, who are of Ijaw ethnic origin. Idema-Abureni Clan is characterized by its proximity to waterways, which play a central role in the community's daily life, providing transport, sustenance, and economic opportunities. It is designated 40330N and 6033200E (Briggs, 2020). Periwinkle, blue swimming crab, mud keeper, slipper fish, butter catfish, silver side, sesema crab, land crab, and elegant crab remain the main source of protein to the people of Idema Town. Meanwhile, there are paucity of information regarding the health risk of consumption the famous seafood of the community. The aim of the study is to perform mathematical health risk assessment of heavy metals and PAHs in selected seafood, mostly consumed by the people of Idema-Abureni Clan.
	
2. MATERIALS AND METHODS
2.1 Studied Area 
Collection of seafood was done in June 2024 from Idema River. Idema river originates from Kalabari river and it flows through Towns and villages in the Ogbia kingdom. The seafood serve as a source of livelihood for many people in Idema Town. Oil exploration and extraction, drilling, pipeline installations, bunkering, cassava, yam, and plantain farming are the main anthropogenic activities in Idema-Abureni Clan, Ogbia Local Government Area.
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Figure 1 GPS of Idema Town in Ogbia Local Government Area of Bayelsa State. 

2.2 Collection of Seafood Samples
Ten different types of shell and fin seafood were collected from sites 1 and 2 in June, 2024 in Idema Town. Upon collection, the seafood were immediately transferred into the icebox and conveyed into the laboratory. Before dissection, they were allowed to thaw and anthropometric measurements were taken. The seafood were harvested and prepared for PAHs and hazardous metal analysis. Each of the seafood was oven-dried at 80 °C and was monitored until a constant weight was reached
2.3 Determination of Heavy Metal ion Concentration of Seafood 
The heavy metal ion concentrations of seafood (finfish) were determined using AAS, following the modified method as described by Rohan et al. (2014). AAS technique makes use of the atomic absorption spectrum of a sample in order to assess the concentration of specific analytes within the sample. It requires using a standard with known analyte concentration to establish the relation between the measured absorbed absorbance and the analyte concentration and relies therefore on the Beer-Lambert Law. Digestion/preparation of the sample and estimation of heavy metals were carried out based on standard methods.


2.4 Determination of PAHs Concentrations Seafood (Shellfish)
Polycyclic aromatic hydrocarbon (PAHs) concentrations in seafood (shellfish) using gas chromatography and HPLC, following the modified method of determination of PAHs in seafood (shellfish) as described by Bhupander et al. (2014). In this method, 50 mL of the sample was measured into a bottle seal via a separatory funnel. Then, 50 mL of methylene chloride was added into the bottle seal containing the sample (shell fish sample) and it was shaken for 30 seconds to rinse the surface. The mixture was allowed to stand and the organic layer is separated from the water phase for a minimum of 10 minutes. Ten millilitre (10 mL) of the methylene chloride was delivered into 250 mL flask. A second 60 mL of the methylene chloride was again added to the sample (shell seafood) and both the sample and the separatory funnel were rinsed with 20 mL of the solvent into the extract. This extraction procedure was then repeated a second time with both the sample and solvent combined in an Erlenmeyer flask. The combined extract was then poured into a dried column containing packed cotton wool. Repeat the extraction procedure a second time, combine the extracts in the Erlenmeyer flask.  Perform the third extraction in the same manner. Pour the combined extract through a drying column containing sodium sulphate and silica packed with cotton wool which collect the extract into vial and concentrated it by boiling it down with 1.0 mL nitrogen steam. The remaining extract was then mixed with 1.0 mL of the solvent and 1.0µL of the mixture was injected into flame ionization detector gas chromatograph for the analysis of PAHs. 

2.5 Wet Digestion Method
In this method, a total volume of 100 mL of H2SO4, HNO3, and HClO4 in the ratio of 40%:40%:20% were mixed together. Exactly 1 g of the sample was delivered into a conical flask. Then, 2 mL of the H2SO4, HNO3, and HClO in the ratio of 40%:40%:20% the acid were added to the sample in the conical flask. Digestion of the sample was commenced until the appearance of white fumes was clearly observed or noticed. The mixture was then cooled and filtered into a 100ml volumetric flask and was made up to using distilled water. The hollow cathode lamp for the desired metal was installed based on the method as described by Allen et al. (1996). The wavelength dial as specified by the analytical methodology was set. Then, the slit width was set or prepared according to manufacturer’s suggested setting. Turn on the instrument was switched on and the hollow cathode lamp current as suggested by the manufacturer and while  the instrument was made to  warm up until energy sources stabilizes within  about 10 to 20 minutes. The current was adjusted after been warmed-up while the wavelength was also adjusted until optimum energy gain is obtained. The align lamp was then fixed in accordance with manufacturer’s instructions. The burner head was installed and adjust its position. A 10cm, single-slot burner head was recommended for air-acetylene flames. The flow rate was adjusted according to manufacturer’s instructions to give maximum sensitivity for the metal being measured. The acetylene was adjusted to a specified value. The flame was Ignited and allowed to stabilized for 10 minutes. The blank was the aspirated and the instrument was zeroed. The standard solution was aspirated and the aspiration was adjusted to a standard solution until the aspiration rate of nebulizer to obtain a maximum sensitivity. The blank was aspirated again into and re-zero instrument. The standard was aspirated using standard with a concentration near the middle of the linear range and record absorbance while the instrument is now ready to operate (Miller, 1998; AOAC, 1995)

.	
2.6 Human Health Risk Assessment of Heavy Metals in Seafood
2.6.1 Estimated Daily Intake of Metals in Seafood
The daily intake of hazardous heavy metals were estimated based on the concentration in the samples of the seafood species. The daily intake by consuming the fish sample was estimated using equation 1 below (Matouke et al., 2020):
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Where.
C = Concentration of the metal in seafood (µg/g or mg/kg)
IR = Ingestion rate of seafood (g/day)
BW = Body weight (kg)
2.6.2 Target Hazard Quotient and Hazard Index of Metals in Seafood
The estimation of the Target Hazard Quotient (THQ) and Hazard Index (HI) of metals in seafood is a crucial aspect of assessing the potential health risks associated with the consumption of contaminated seafood. The Target Hazard Quotient is calculated using the formula below (Matouke et al., 2020):
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Where:
EFr = Exposure frequency (days/year)
ED = Exposure duration (years)
IR = Ingestion rate (kg/day)
C = Concentration of the contaminant (mg/kg)
RfD = Reference dose (mg/kg/day)
BW = Body weight (kg)
AT = Averaging time (days, ED × 365 days/year for non-carcinogens)


2.6.3 Life Cancer Risk and Total Life Cancer Risk of Metals in Seafood

The estimation of Life Cancer Risk (LCR) and Total Life Cancer Risk (TLCR) of metals in seafood is an important process to assess the potential carcinogenic risks posed by consuming seafood contaminated with carcinogenic metals (Ferguson, J.E. (1990; EFSA, 2008). 

Daily Intake of Metal was calculated or estimated using the formula:
[image: ]
Where:
 C = Concentration of the metal in seafood (mg/kg)
IR = Ingestion rate of seafood (kg/day)
EF = Exposure frequency (days/year)
ED = Exposure duration (years)
BW = Body weight (kg)
AT = Averaging time (days, usually lifetime expectancy in days for carcinogens)
The Life Cancer Risk (LCR) was calculated using the formula:

Where:[image: ]
DIM = Daily intake of the metal (mg/kg/day)
CSF = Cancer Slope Factor (mg/kg/day)^(-1), which is a measure of the risk of cancer associated with exposure to a carcinogen over a lifetime

The estimation of Life Cancer Risk (LCR) and Total Life Cancer Risk (TLCR) of metals in seafood is an important process to assess the potential carcinogenic risks posed by consuming seafood contaminated with carcinogenic metals (US EPA, 1989). 



















3. RESULTS
3.1 Heavy Metal Concentrations in Seafood From Idema-Abureni Clan River
Table 1 shows the heavy metal concentrations in seafood from Idema-Abureni Clan river. Results for each heavy metals were reported in triplicate. Heavy metals in the studied seafood were compared to that of the reference values for each of the heavy metals assayed. 

Table 1 Heavy metal concentrations in seafood from Idema-Abureni Clan River (n=3)
	Samples
	Pb
	Cd
	Cr
	Ni
	Zn
	Mn
	Fe

	Grapsidae (mg/kg)	
	6.16±0.08b
	0.43±0.06
	2.94±0.07b
	3.15±0.11b
	5.62±0.06
	1.95±0.08
	31.86±0.43

	P. busungwe 
(mg/kg)
	8.06±0.06b
	1.38±0.13
	1.86±0.06b
	3.61±0.16b
	8.06±0.10
	0.15±0.05
	19.68±0.12

	C. armatum (mg/kg)
	3.43±0.07b
	0.59±0.12 b
	7.15±0.10b
	2.73±0.17b
	1.59±0.08
	0.53±0.06
	27.82±0.10

	Oxudercinae (mg/kg)
	3.18±0.09 b
	0.23±0.15
	3.05±0.12b
	1.06±0.09b
	2.73±0.07
	0.10±0.07
	33.72±0.07

	H.bivittatus (mg/kg)
	7.64±0.05 b
	0.07±0.11b
	5.13±0.09b
	1.75±0.09b
	1.21±0.06
	2.01±0.12
	26.57±0.10

	M. tengara (mg/kg)
	5.81±0.13 b
	0.03±0.09
	1.39±0.07b
	4.43±0.08b
	0.38±0.08
	1.20±0.08
	21.52±0.14

	B. bajad 
(mg/kg)
	4.02±0.04b
	1.02±0.09b
	1.11±0.09b
	1.19±0.03b
	0.43±0.10
	3.63±0.12
	18.82±0.21

	A. silverside (mg/kg)
	4.91±0.09b
	0.54±0.06b
	3.93±0.10b
	4.52±0.06b
	1.84±0.10
	0.25±0.08
	17.52±0.08

	P. armatus (mg/kg)
	8.02±0.09b
	0.15±0.08b
	6.58±0.06b
	3.84±0.10b
	2.31±0.09
	0.82±0.09
	28.93±0.11

	C. roseus (mg/kg)
	3.63±0.12b
	0.32±0.08 b
	3.05±0.08 b
	10.02±0.09b
	5.89±0.07
	1.16±0.08
	20.21±0.11 

	Standard permissible limits of heavy metals in fish 

	WHO/FAO(2011)
MPL (mg/kg)
	1.0
	0.5
	0.6
	0.05
	30
	5.5
	43

	
	
	
	 
	
	
	
	





Data were reported in mean and standard error of mean (M±EM). Values bearing superscript (“b”) were significantly higher than the reference values at p≤ 0.05 down the group. Values with no superscript were significantly lower than the reference values at p≤ 0.05 down the group.



3.2 Estimated Daily Intake of Metals in Seafood From Idema-Abureni Clan River

Table 2 indicates the estimated daily intake of metals in seafood from Idema-Abureni Clan River. The estimated daily intake for each of the heavy metals was compared to the reference values as shown in Table 2.

Table 2 Estimated daily intake of metals in seafood from Idema-Abureni Clan River
	Samples
	Pb
	Cd 
	Cr
	Ni
	Zn
	Mn
	Fe

	Grapsidae (mg/kg)
	0.020
	0.001
	0.010
	0.033
	0.018
	0.006
	0.103

	P. busungwe (mg/kg) 
	0.026
	0.005
	0.006
	0.012
	0.026
	0.964
	0.064

	C. armatum (mg/kg)
	0.011
	0.002
	0.023
	0.041
	0.005
	0.002
	0.090

	Oxudercinae (mg/kg)
	0.010
	7.504
	0.010
	0.029
	0.009
	0.304
	0.109

	H. bivittatus (mg/kg)
	0.025
	2.104
	0.017
	0.035
	0.004
	0.007
	0.086

	M. tengara (mg/kg)
	
	0.019
	9.705
	0.005
	0.024
	0.001
	0.004
	0.070

	Bagrus bajad (mg/kg)	
	0.013
	0.003
	0.004
	0.017
	0.001
	0.061
	0.061

	A.. silverside (mg/kg)
	0.016
	0.002
	0.010
	0.028
	0.006
	1.980
	0.057

	P. armatus (mg/kg)
	0.026
	4.914
	0.021
	0.022
	0.008
	0.003
	0.094

	Catharanthus. roseus (mg/kg)
	0.012
	0.001
	0.010
	0.033
	0.019
	0.004
	0.066

	TDI (FDA, 2001; Garcia – Rico et al., 2007)
	0.00
	0.000
	0.1
	0.5
	8
	0.4-10
	0.8

	
	
	
	
	
	
	
	


Recommended tolerable intake (TDI) and upper tolerable each day intake (UTDI) level of heavy metals sea food (FDA, 2001; Garcia – Rico et al., 2007).



3.3 Target Hazard Quotient and Hazard Index (HI) Of Metals in Seafood From Idema-Abureni River
Table 3 presents the target hazard quotient and hazard index (HI) of metals in seafood from Idema-Abureni River. The Target hazard quotient and hazard index (HI) of metals in seafood from Idema-Abureni River were discussed and compared to the reference values stated in Table 3.
Table 3 Target hazard quotient and hazard index (HI) of metals in seafood from Idema-Abureni River
	Samples
	Pb 

	Cd 

	Cr

	Ni
	Zn 

	Mn 
	Fe 

	HI

	
	
	
	
	
	
	
	
	

	Grapsidae (mg/kg)
	0.006
	0.001
	0.006
	0.002
	0.006
	0.040
	0.001
	0.010

	Potamonautes busungwe (mg/kg)
	0.008
	0.005
	0.004
	0.005
	0.073
	0.062
	0.0789
	0.014

	Cardisoma armatum (mg/kg)
	0.003
	0.002
	0.015
	0.002
	0.017
	0.002
	0.0013
	0.007

	Oxudercinae (mg/kg)
	0.003
	0.076
	0.007
	0.002
	0.003
	0.002
	0.013
	0.006

	Halichoeres bivittatus (mg/kg)
	0.007
	0.021
	0.001
	0.002
	0.013
	0.047
	0.108
	0.010

	Mystus tengara (mg/kg)
	0.005
	0.009
	0.003
	0.001
	0.004
	0.028
	0.087
	0.007

	Bagrus bajad
	0.004
	0.003
	0.024
	0.840
	0.005
	0.084
	0.076
	0.009

	Atlantic silverside (mg/kg)
	0.005
	0.002
	0.006
	0.001
	0.019
	0.057
	0.076
	0.008

	Portunus armatus (mg/kg)
	0.007
	0.049
	0.014
	0.001
	0.025
	0.019
	0.012
	0.009

	Catharanthus roseus (mg/kg)
	0.003
	0.001
	0.006
	0.002
	0.063
	0.027
	0.082
	0.006

	Mohammed et al. (2022), Bat et., (2018)
	0.3-0.5
	0.1-0.5
	0.1-0.05
	0.1-0.2
	100
	20
	0.1-5.0
	1




3.4 Life Cancer Risk And Total Life Cancer Risk (TLCR) Of Metals In Seafood from Idema-Abureni Clan River

Table 4 shows the 4 life cancer risk and total life cancer risk (TLCR) of metals in seafood from Idema-Abureni Clan River. The life cancer risk and total life cancer risk (TLCR) of metals in seafood from Idema-Abureni Clan River evaluated in this study were discussed and compared to the reference values reported in Table 4.

Table 4 Life cancer risk and total life cancer risk (TLCR) of metals in seafood from Idema-Abureni Clan River
	Samples
	Pb
	Cd
	Cr
	Ni
	Zn
	Mn
	Fe
	TLCR

	Grapsidae (mg/kg)
	1.007
	3.080
	0.005
	0.056
	-
	-
	-
	0.062

	P. busungwe (mg/kg)
	0.021
	0.002
	0.003
	0.020
	-
	-
	-
	0.025

	C. armatum (mg/kg)
	0.009
	0.760
	0.012
	0.070
	-
	-
	-
	0.083

	Oxudercinae (mg/kg)
	0.085
	0.288
	0.005
	0.049
	-
	-
	-
	0.054

	H. bivittatus (mg/kg)
	0.213
	0.080
	0.009
	0.060
	-
	-
	-
	0.070

	Mystus tengara (mg/kg)
	0.162
	0.019
	0.003
	0.041
	-
	-
	-
	0.044

	Bagrus bajad (mg/kg)
	0.111
	0.001
	0.002
	0.029
	-
	-
	-
	0.032

	Atlantic silverside (mg/kg)
	0.136
	0.760
	0.005
	0.048
	-
	-
	-
	0.054

	P. armatus (mg/kg)
	0.221
	0.189
	0.011
	0.037
	-
	-
	-
	0.048

	C. roseus (mg/kg)

	0.102
	0.380
	0.005
	0.056
	-
	-
	-
	0.062

	(FAO,WHO,1998
	 to  
	 to  
	 to  
	 to  
	-
	-
	-
	 to  



3.5 Polycyclic Aromatic Hydrocarbon (PAHS) Concentration of Seafood Samples in Idema-Abureni Clan River
Table 5 shows the polycyclic aromatic hydrocarbon (PAHS) concentration of seafood samples in Idema-Abureni Clan River. The cancer risk of the detected and evaluated PAH in seafood harvested from Idema-Abureni Clan River were estimated and discussed in comparison to standard values (Table 5).

Table 5 Polycyclic aromatic hydrocarbon (PAHS) concentration of seafood samples in Idema-Abureni Clan River
	PAHs
	Grapsidae

	P. busungwe

	C. armatum

	Oxudercinae

	H. 
bivittatu

	M.
 tengara

	B. 
bajad

	A. 
silverside

	P. armatus

	C.
 roseus


	Naphthalene(3)
	4.821
	2.813
	3.181
	1.585
	2.904
	ND
	3.104
	3.872
	2.831
	10.558

	Acenapthylene(3)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Acenaphthene(3)
	ND
	ND
	2.373
	3.916
	1.619
	ND
	2.559
	1.287
	2.392
	4.263

	Fluorene(3)
	2.207
	ND
	ND
	1.418
	ND
	5.154
	ND
	ND
	ND
	3.318

	Phenanthrene(3)
	5.308
	6.181
	6.591
	4.193
	3.138
	2.935
	6.243
	5.739
	4.125
	5.188

	Anthracene(3)
	ND
	ND
	ND
	ND
	ND
	1.533
	ND
	ND
	ND
	ND

	Fluoranthene(3)
	ND
	ND
	1.262
	ND
	2.614
	ND
	2.938
	ND
	1.743
	2.871

	Pyrene(3)
	ND
	4.289
	2.942
	3.173
	1.534
	1.126
	3.352
	2.753
	2.162
	2.111

	Benz(a) anthracene(2A)
	ND
	ND
	3.727
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Chrysene(2B)
	3.216
	3.361
	7.585
	2.282
	2.190
	3.241
	4.430
	2.628
	3.760
	ND

	Benzo(b) fluoranthene(2B)
	4.943
	2.105
	ND
	1.579
	1.762
	ND
	2.539
	1.774
	2.101
	ND

	Benzo(k) fluoranthene(2B)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Benzo(a) pyrene(1)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Indeno(1,2,3-cd) pyrene(2B)
	ND
	2.338
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Dibenz (a,h) anthracene(2A)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Benzo(g,h,i) perylene(3)
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND
	ND

	Total
	20.496
	21.086
	24.661
	18.146
	15.761
	13.989
	23.165
	18.054
	19.114
	28.309

	Total carcinogenic PAHs
	8.159
	7.804
	11.312
	3.861
	3.952
	3.241
	6.969
	4.402
	5.861
	0

	%carcinogenic PAHs
	39.808
	37.010
	45.870
	21.277
	25.075
	23.168
	30.084
	24.382
	30.663
	0


1 = cancer-causing polycyclic sweet-smelling hydrocarbon to people; 2A = most likely cancer-causing polycyclic sweet-smelling hydrocarbon; 2B = potentially cancer-causing polycyclic sweet-smelling hydrocarbon; (3) =Non-cancer-causing polycyclic sweet-smelling hydrocarbon. ND = Not Detected 




4. DISCUSSION OF FINDINGS
Table 1 shows the heavy metal concentrations in seafood in river from Idema community Abureni Clan. Results for each heavy metals were reported in triplicate. Heavy metals in the studied seafood were compared to that of the reference values for each of the heavy metals assayed. The toxic metals arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb) are the most common heavy metals that induce human poisoning. Fish and aquatic product consumption is the major pathway for human exposure to Hg and As and, to a lesser extent, Cd and Pb (Goyanna et al., 2023; Gu, et al., 2017). While many of these metals have industrial, agricultural, or technological applications (Needleman et al., 2002; Pacyna et al., 2006; Rice et al., 2014), their persistence, bioaccumulation, and toxicity of heavy metals make them a significant public health concern. Exposure to metals like lead, mercury, cadmium, and arsenic through contaminated water, food, and air continues to pose risks, especially in industrialized and agricultural regions (Lanphear et al., 2005; Satarug et al., 2010; Song et al., 2014). The concentration of heavy metals in seafood collected from Idema river was reported in Table 1. The Ni level among the most cytotoxic heavy metals in this study studied in Grapsidae was perceived to highest next was Pb, Cr while the least was Cd. The Pb concentration in P. busungwe seafood was topmost followed by Ni, Cr while the least was Cd. Ni predominated in level in C. armatum seafood followed by Cr, Pb while the least was Cd and similar trends was examined in Oxudercinae seafood (Table 1). The Ni scrutinized in H. bivittatus seafood was ultimate in level followed by Pb, Cr while the least was Cd and similar fashion was noticed in Mystus tengara and Bagrus bajad seafood (Table 1). Ni examined in A. silverside seafood was observed to be highest in level followed by Pb, Cr while Cd was the least. Also, the Pb levels in P. armatus seafood was higher than the Ni, Cr, and Cd while Ni predominated in concentration in C. roseus seafood followed by Pb, Cr and the least was Cd (Table 1). The levels of Pb, and Ni, Cr observed in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus  and C. roseus were higher than the reference values as recommended by WHO (2011). The levels of Pb, Ni, Cr, and Cd estimated in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus  and C. roseus seafood in this study were similar to the values reported by Mohammed et al. (2022) on heavy metals in four marine fish and shrimp species from a subtropical coastal area: accumulation and consumer health risk assessment as well as Athanasia et al. (2023) on detection of arsenic, chromium, cadmium, lead, and mercury in fish: effects on the sustainable and healthy development of aquatic life and human consumers. 

The Fe concentration among the least toxic heavy metals in Grapsidae was highest followed by Zn while the least was Mn. The Fe in P. busungwe seafood was ultimate in level next was Zn while the Mn was the least.  Fe predominated in C. armatum seafood followed by Zn while the least was Mn and same pattern occurred in Oxudercinae seafood (Table 1). The level of Fe estimated in H. bivittatus seafood was highest followed by Mn while the least was Zn and same was trends was perceived in Bagrus bajad seafood (Table 1). The Fe evaluated in A. silverside seafood predominated in level followed by Zn while the least was Mn and same pattern occurred in P. armatus and C. roseus respectively (Table 1). The levels of Fe, and Zn, and Mn observed in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus  and C. roseus were lower than the reference values as recommended by WHO (2011). The Fe, Zn, and Mn estimated in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus  and C. roseus seafood were far much lower than the values reported by Emmanuel et al. (2022) on heavy metal bioaccumulation in highly consumed pelagic and benthic fish and associated health risk as well as Bat et al. (2018) on human health risk assessment of heavy metals in the black sea: evaluating mussels.

However, Table 2 indicates the estimated daily intake of metals in seafood in from Idema-Abureni Clan. The estimated daily intake for each of the heavy metals was compared to the reference values as shown in Table 2. Seafood consumption is a major source of essential nutrients like omega-3 fatty acids, protein, and various minerals (Maher et al., 2012). However, it is also a potential source of exposure to toxic Hg, Cd, Pb, and As, among others (Zhao et al., 2016).  Metals can accumulate in marine organisms due to natural geochemical processes and anthropogenic pollution, raising concerns about their potential health effects on humans. In this study, the Zn level in Grapsidae seafood was highest followed by Fe while the least was Mn and the Mn level examined in P. busungwe seafood was topmost next was Fe while the least was Zn. The Fe in C. armatum seafood was ultimate in concentration followed by Zn while the least was Mn and same trend occurred in Oxudercinae, H. bivittatus, M. tengara, and Bagrus bajad seafood. The level of Mn in A. silverside seafood was next was Zn while the least was Fe. More so, the concentration of Fe in P. armatus seafood was highest followed by Zn while the least was Mn and similar fashion occurred in Catharanthus. roseus seafood (Table 2). Having Zn, Mn, and iron Fe in seafood lower than the Recommended tolerable intake level of heavy metals sea food (Garcia-Rico et al., 2007; Burger et al., 2002), might not negatively impact on the nutrition and overall health of the indigenous people of Idema Town. 
The Estimated Daily Intake (EDI) of these metals through seafood is a key parameter for assessing the risk associated with metal exposure via diet (Storelli et al., 2005; Ghosn et al.,  2019). The estimated daily intake of Pb and Cd in Grapsidae and  P. busungwe seafood harvested from Idema river were higher than those of Ni  and Cr. The Cd and Pd in C. armatum, Oxudercinae, and H. bivittatus seafood were much more higher those of Ni and Cr (Table 2). The Cd in M. tengara seafood was topmost in levels followed by Pb, Ni while the least was Cr. The levels of Pb and Cd scrutinized in Bagrus bajad and A. silverside seafood were higher than of Ni and Cr. Also, the Cd in P. armatus seafood estimated was highest in level followed by Pb, Ni while the least was Cr. The Pb in Catharanthus. roseus seafood was supreme in level next was Cd, Ni while the least was Cr (Table 2). The levels of Pb and Cd estimated in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus and C. roseus seafood were higher than the Recommended tolerable intake level of heavy metals sea food (FDA, 2001; Garcia-Rico et al., 2007). 

Having levels of lead (Pb) and cadmium (Cd) in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus and C. roseus seafood that exceed the Estimated Daily Intake (EDI) values might cause serious health implications to the indigenous people of Idema Town. Pb and Cd are toxic even at low concentrations, and prolonged exposure through food consumption the studied seafood from Idema-Abureni Clan River could lead to bioaccumulation in the body that might precipitate acute and chronic health effects. According to Mohammed et al. (2022), Cd exposure primarily affects the kidneys, where it accumulates over time, potentially leading to kidney dysfunction and damage, while chronic exposure can also cause bone demineralization, leading to conditions like osteoporosis. While Ghosn et al. (2019) in their study on levels of Pb, Cd, Hg and As in fishery products from the eastern mediterranean and human health risk assessment due to their consumption reported that long-term exposure to cadmium has also been linked to an increased risk of cancer, particularly lung and prostate cancer. Additionally, cadmium can cause damage to the liver and may interfere with calcium metabolism, exacerbating bone loss.

Meanwhile, Table 3 presents the target hazard quotient and hazard index (HI) of metals in seafood from Idema-Abureni Clan River. Intake of seafood has long been associated with numerous health benefits, including high-quality protein and omega-3 fatty acids. However, the accumulation of Hg, Pb, Cd, and As in marine organisms poses significant health risks to humans (Miyazaki et al., 2015; Eme et al., 2020). The target hazard quotient (THQ) and hazard index (HI) are crucial risk assessment tools used to evaluate the potential health risks associated with the consumption of contaminated seafood. Liu et al. (2016) examined the THQ of heavy metals in fish species from the Yangtze River in China. They found that THQ values for mercury exceeded 1 for certain fish, indicating significant health risks to consumers.  Karami et al. (2020) studied the THQ of heavy metals in seafood from the Persian Gulf. Their results indicated that the THQ for cadmium was above 1 for several species, suggesting a potential risk to human health. In this study, the target hazard quotient and hazard index (HI) of Pb and Cr were topmost in Grapsidae seafood followed by Ni while the least was Cd and similar pattern were noticed in Potamonautes busungwe and Cardisoma armatum.  The target hazard quotient and hazard index (HI) of Cd in Oxudercinae seafood was ultimate in level next was Cr, Pb while the least was Ni and same pattern occurred in Halichoeres bivittatus, and Mystus tengara, seafood. The target hazard quotient and hazard index (HI) of Ni in Bagrus bajad seafood was ultimate in level next was Cr, Pb while the least was Cd. The target hazard quotient and hazard index (HI) of Cr in Atlantic silverside seafood was ultimate in level next was Pb, Cd while the least was Ni and same trends were examined in Portunus armatus and Catharanthus roseus seafood (Table 3). The Pb, Cd, Cr, and Ni levels estimated in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus and C. roseus seafood in this study were lower than the reference values of Pb, Cd, Cr, and Ni in seafood reported by Mohammed et al. (2022) and Bat et al. (2018). Having target hazard quotient (THQ) and hazard index (HI) values for Pb, Cr, Ni, and Cd that are lower than the established reference values generally indicates a lower risk to human health from consuming contaminated Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, Mystus tengara, Bagrus bajad, A. silverside, P. armatus and C. roseus   seafood by the indigenous people of Idema-Abureni Clan.
Table 4 shows the 4 life cancer risk and total life cancer risk (TLCR) of metals in seafood from Idema-Abureni Clan River. The life cancer risk and total life cancer risk (TLCR) of metals in seafood from Idema-Abureni Clan River evaluated in this study were discussed and compared to the reference values reported in Table 4. Consumers of seafood, are exposed to these metals, leading to potential long-term health effects, including cancer (Chen et al., 2018). Cadmium is known to accumulate in shellfish and can cause lung, prostate, and kidney cancers with long-term exposure (Maher et al., 2012). Chromium is a carcinogen that may be present in seafood due to industrial pollution. While its primary concern is neurotoxicity, lead exposure has also been associated with potential cancer risks (Chen et al., 2018). Wang et al. (2013) assessed the LCR and TLCR for multiple heavy metals, including arsenic, cadmium, and lead, in shellfish harvested from coastal China and result obtained from their study revealed that the LCR for cadmium was estimated at 1.5 × 10⁻⁵, and the TLCR for all metals was 1.8 × 10⁻⁴, indicating a combined risk that exceeded acceptable cancer risk levels. Zhang et al. (2016) also evaluated the cancer risk associated with hexavalent chromium in fish from rivers affected by industrial pollution and result gathered from the study indicated that the LCR for Cr was calculated to be 4.5 × 10⁻⁴, which was significantly above acceptable levels. Table 4 shows the Life cancer risk and total life cancer risk (TLCR) of metals in seafood from IdemaAbureni River.  

The Life cancer risk of Cd and Pb in Grapsidae seafood were higher than the TLCR (0.062mg/kg) while those of Pb, Cd, Cr, and Ni in P. busungwe seafood were lower than the TLCR (0.025mg/kg) (Table 4).  The Life cancer risk of Cd in Oxudercinae seafood was higher than the TLCR (0.083mg/kg) while the Pb and Cd were higher than the TLCR (0.054mg/kg).  The Life cancer risk of Pb and Cd in H. bivittatus seafood was higher than the TLCR (0.07mg/kg) while the Pb in Mystus tengara seafood were higher than the TLCR (0.044mg/kg). The Life cancer risk of Pb in Bagrus bajad seafood was higher than the TLCR (0.032mg/kg) while the Pb and Cd in Atlantic silverside seafood were higher than the TLCR (0.054mg/kg).

The Life cancer risk of Pb and Cd in P. armatus seafood was higher than the TLCR (0.048mg/kg) while the Pb and Cd in C. roseus seafood were higher than the TLCR (0.062mg/kg). Mathematically quantified life cancer risk and total life cancer risk (TLCR) of metals in seafood from Idema-Abureni River revealed that Pb, Cd, Cr, and Ni predominates in Grapsidae, Potamonautes busungwe, Cardisoma armatum, Oxudercinae, Halichoeres bivittat, Mystus tengara, Bagrus bajad, Atlantic silverside, Portunus armatus and Catharanthus roseus seafood and their respective values scrutinized were higher than the reference values as reported by the European Food Safety Authority (EFSA, 2015). The examined values of Pb, Cd, Cr, and Ni in Grapsidae, Potamonautes busungwe, Cardisoma armatum, Oxudercinae, Halichoeres bivittat, Mystus tengara, Bagrus bajad, Atlantic silverside, Portunus armatus and Catharanthus roseus seafood collected from Idema-Abureni River were similar to the values same heavy metals reported by Wang et al. (2013) on health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish and Zhang et al. (2016) on  cancer risk from lead, Cadmium, and  chromium in fish from heavily polluted rivers. The high level of Pb, Cd, Cr, and Ni estimated in seafood collected from Idema-Abureni River is reflective of severe contamination of her aquatic lives.  Consumption Grapsidae, Potamonautes busungwe, Cardisoma armatum, Oxudercinae, Halichoeres bivittat, Mystus tengara, Bagrus bajad, Atlantic silverside, Portunus armatus and Catharanthus roseus seafood could pose significant long-term cancer risks. The estimated levels of Pb, Cd, Cr, and Ni in seafood obtained from Idema-River River calls for stricter regulations to limit illegal oil pipeline vandalization and bunkering activities that could lead to the release of Pb, Cd, Cr, and Ni as well as other carcinogenic substances into aquatic ecosystems.

Polycyclic aromatic hydrocarbons (PAHs) gets into aquatic ecosystems through various routes such as crude oil spills, illegal bunkering activities, and atmospheric deposition (Zhao et al., 2014; Diercks et al., 2010). Industrial activities near coastal regions, illegal bunkering activities and the burning of fossil fuels release PAHs, which can bind to particles in the water and settle in sediments, where they are taken up by benthic organisms, such as shellfish, or accumulate in the tissues of pelagic species (Wang et al., 2016). Perugini et al. (2007) measured PAHs in seafood from the Adriatic Sea and found elevated levels, especially in shellfish, which were correlated with proximity to urban and industrial sites. In this study, naphthalene was detected in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatu, B. bajad, A. silverside, P. armatus, and C. roseus while acenaphthene was detected in C. armatum, Oxudercinae, H. bivittatu, B. bajad, A. silverside, P. armatus, and C. roseus. Fluorene was examined in Grapsidae, Oxudercinae, M. tengara, and C. roseus (Table 5). Phenanthrene was perceived in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatu, B. bajad, A. silverside, P. armatus, and C. roseus while Fluoranthene was uncovered in C. armatum, H. bivittatu, B. bajad, P. armatus, and C. roseus (Table 5). Pyrene was identified in P. armatus, C. armatum, Oxudercinae, H. bivittatu, M.tenga, B. bajad, A. silverside, P. armatus, and C. roseus while chrysene was noticed in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatu, B. bajad, A. silverside, P. armatus, and C. roseus seafood while acenaphthene was detected in C. armatum, Oxudercinae, H. bivittatu, B. bajad, A. silverside, and P. armatus seafood (Table 5). Also, benzo(b) fluoranthene was observed in Grapsidae, P. busungwe, Oxudercinae, H. bivittatu, A. silverside,  and P. armatus (Table 5).
The total PAHs detected in C. roseus, topmost in concentration next was C. armatum, B. bajad, Grapsidae, P. armatus, A. silverside, Oxudercinae, H. bivittatu while the least was M. tengara (Table 5). The total carcinogenic PAHs in C. armatum was the ultimate in level next was Grapsidae, P. busungwe, B. bajad, A. silverside, H. bivittatus, Oxudercinae, M. tengara while the least was C. roseus (Table 5). Also, percentage carcinogenic PAHs was topmost in C. armatum followed by Grapsidae, P. busungwe, P. armatus, B. bajad, A. silverside, H. bivittatus, while the least was M. tengara (Table 5).
Benzo[a]pyrene (BaP), benzo[a]pyrene, benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, chrysene, Dibenzo[a,h]anthracene, Benzo[k]fluoranthene,  Indeno[1,2,3-cd]pyren are recognized as the most potent carcinogenic PAHs while anthracene, pyrene, fluoranthene, and phenanthrene are considered possibly carcinogenic or contribute to the overall toxicity of PAH mixtures (Wang et al., 2016). In this study, benz(a)anthracene, chrysene, fluorene, and phenanthrene were detected in Grapsidae, P. busungwe, C. armatum, Oxudercinae, H. bivittatus, B. bajad, A. silverside. P. armatus and C. roseus seafood collected from Idema River and are recognized as carcinogenic PAHs. Long-term exposure to these carcinogenic PAHs in the studied seafood could possibly lead to increases cancer incidences and given the bioaccumulative nature of benz(a) anthracene, chrysene, fluorene, and phenanthrene, the indigenous people of Idema populations who rely heavily on such seafood for protein might be at higher risk of cancers of various types.

4. CONCLUSION
Cytotoxic Pb, Cd, Cr, and Ni as well as benz(a) anthracene, chrysene, fluorene, and phenanthrene were mathematically evaluated in the studied seafood collected from Idema River. High levels Pb, Cd, Cr, Ni, benz(a) anthracene, chrysene, fluorene, and phenanthrene were observed in seafood collected from Idema River. LCR and TLCR of Pb, Cd, Cr, and Ni studied in the studied seafood were significantly higher the reference values for seafood. Chronic consumption of these examined seafood for the presence of heavy metals and PAHs by residents of Idema River could lead to cumulative toxic effects. Immediate action is required to prevent the contamination of marine resources in Idema River. This includes implementing more stringent regulations on illegal crude oil or bunkering activities and conducting regular environmental monitoring. Public health interventions, including raising awareness about the risks of consumption of the contaminated studied seafood is necessary.
Data Availability Statement: All data used or developed is contained within the paper.
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