
An Introduction and Reexamination of Molecular Hypergraph and
Molecular n-SuperHypergraph

Abstract

A molecular graph is a labeled graph in which atoms are represented by vertices and covalent bonds by edges,
with each edge labeled according to the bond type [46]. A hypergraph generalizes the concept of a traditional
graph by allowing edges—called hyperedges—to connect more than two vertices simultaneously [13]. A
superhypergraph further extends this idea by incorporating recursively defined powerset layers, enabling
hierarchical and self-referential relationships among hyperedges [100].

This paper investigates the formalization, illustrative examples, and structural properties of molecular hyper-
graphs and molecular superhypergraphs (cf. [28]). These constructs, grounded in the theoretical foundations
of hypergraphs and superhypergraphs, provide enriched frameworks for representing molecular systems and
facilitate deeper exploration of hierarchical chemical connectivity and molecular structure.

Keywords: Superhypergraph, Hypergraph, Molecular Graph, Molecular n-SuperHypergraph, Molecular Hy-
perGraph

1 Introduction

1.1 Graph, HyperGraph, and SuperHyperGraph

Graph theory is a branch of mathematics that studies the properties of networks, where nodes (called vertices)
are connected by links (called edges) [22,23]. Graphs have been extensively studied for applications in various
fields such as social science [67,90], graph neural networks (GNNs) [8,37,127], and network analysis [71,73].

Mathematical structures can often be extended into hyperstructures and superhyperstructures by utilizing
the power set and 𝑛-th iterated powerset constructions (cf. [18, 53, 101]). These generalized frameworks are
particularly well-suited for modeling hierarchical and multi-layered structures across a wide range of conceptual
and applied domains. A hypergraph generalizes classical graphs by allowing an edge—called a hyperedge—to
connect more than two vertices simultaneously [13, 15]. A superhypergraph takes this further by employing
recursively nested powerset structures, enabling hierarchical and self-similar relationships among hyperedges
themselves [40, 99].

The overview of Graph, HyperGraph, and SuperHyperGraph is presented in Table 1.

Concept Notation Edge Connectivity Structural Extension

Graph 𝐺 = (𝑉, 𝐸) 𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠

𝑣} (binary edges)
Standard graph: edges join ex-
actly two vertices.

HyperGraph 𝐻 = (𝑉, 𝐸) 𝐸 ⊆ P(𝑉) \ {∅} (hyperedges) Generalizes edges to connect
any nonempty subset of ver-
tices.

SuperHyperGraph SHT(𝑛) = (𝑉, 𝐸) 𝑉, 𝐸 ⊆ P𝑛 (𝑉0) (super-
vertices/edges)

Uses 𝑛-fold iterated powersets
to model hierarchical, nested
connectivity among edges.

Table 1: Overview of Graph, HyperGraph, and SuperHyperGraph

1.2 Graph Theory in Chemistry

Chemistry is the scientific study of matter, including its properties, structure, composition, and interactions [27,
89]. Graphs are widely used in the field of chemistry to represent and analyze molecular structures [12,24,68].
Several types of graphs—such as molecular graphs [46,58,66,126] and pharmacophore graphs [93,119]—have
been extensively studied and routinely applied in chemical modeling and analysis.
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A molecular graph is a labeled graph in which atoms are represented by vertices and covalent bonds by edges,
with each edge labeled according to its bond type. Molecular graphs are often referred to as chemical graphs,
and the study of chemical graphs has developed into an active area of research [31,45,108,114]. Furthermore,
hypergraphs have been introduced as a generalization to capture higher-order interactions in molecules. In
particular, molecular hypergraphs—defined using hypergraphs—offer a richer and more flexible framework
for representing complex chemical connectivity [61, 62].

1.3 Our Contribution

This subsection outlines the contributions of the present paper. This paper investigates the construction and
properties of molecular hypergraphs and molecular superhypergraphs, which are extensions of classical graph
structures using hypergraph and superhypergraph frameworks (cf. [28]). Through thesee generalizations, we
aim to contribute to the advancement of hierarchical modeling in chemistry, providing new perspectives on
complex molecular structures. As this paper is purely theoretical, we hope that future work will involve various
experimental validations and applications based on the proposed models.

The overview of Molecular Graph, Molecular HyperGraph, and Molecular SuperHyperGraph is presented in
Table 2.

Concept Notation Elements Labeling Key Feature
Molecular Graph 𝐺 =

(𝑉, 𝐸, ℓ𝑉 , ℓ𝐸 )
𝑉 : atoms, 𝐸 ⊆
{{𝑢, 𝑣}}: covalent
bonds

ℓ𝑉 : atomic sym-
bols, ℓ𝐸 : bond
orders

Standard pairwise
connectivity

Molecular HyperGraph 𝐻 =

(𝑉𝐻 , 𝐸𝐻 , ℓ
𝐻
𝑉
, ℓ𝐻

𝐸
)

𝑉𝐻 : bonds as
nodes, 𝐸𝐻 ⊆
P(𝑉𝐻 ): atoms as
hyperedges

ℓ𝐻
𝑉

: bond types,
ℓ𝐻
𝐸

: atom types
Captures multi-
bond incidences
to atoms

Molecular 𝑛-SuperHyperGraph SH(𝑛) =

(𝑉, 𝐸, ℓ𝑉 , ℓ𝐸 )
𝑉 ⊆ P𝑛 (𝑉0):
nested groupings
of bonds/atoms,
𝐸 ⊆ P𝑛 (𝑉0)

Inherited labeling
at each level

Models hierarchi-
cal, multi-level
abstractions of
molecular struc-
ture

Table 2: Overview of Molecular Graph, Molecular HyperGraph, and Molecular SuperHyperGraph

1.4 Structure of This Paper

This section outlines the structure of the present paper. Section 2 provides concise explanations of funda-
mental concepts, including Classical Structures, Hyperstructures, 𝑛-SuperHyperstructures, HyperGraphs, and
𝑛-SuperHyperGraphs. Section 3 introduces the concept of Molecular Hypergraphs. Section 4 presents concrete
examples and several mathematical properties of Molecular 𝑛-SuperHyperGraphs. Section 5 offers concluding
remarks and discusses potential directions for future research.

2 Preliminaries and Definitions

This section provides an overview of the fundamental concepts and definitions essential for the discussions in
this paper. Throughout this work, all graphs are assumed to be undirected, finite, and simple, unless stated
otherwise.

2.1 Classical Structure, Hyperstructure, and 𝑛-Superhyperstructure

A Classical Structure represents a general mathematical concept, while a Hyperstructure can be defined using
the power set, and an 𝑛-Superhyperstructure can be defined using the 𝑛-th powerset [102]. Intuitively, the 𝑛-th
powerset is a repeated application of the powerset operation. Relevant definitions and simple examples are
provided below.

Definition 2.1 (Set). [56] A set is a well-defined collection of distinct objects, called elements or members.

2



Definition 2.2 (Subset). [56] Let 𝐴 and 𝐵 be sets. We say that 𝐴 is a subset of 𝐵, written 𝐴 ⊆ 𝐵, if every
element of 𝐴 is also an element of 𝐵; that is,

𝐴 ⊆ 𝐵 ⇐⇒ ∀𝑥 (𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵).

Definition 2.3 (Base Set). A base set 𝑆 is the foundational set from which complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 | 𝑥 is an element within a specified domain}.

All elements in constructs like P(𝑆) or P𝑛 (𝑆) originate from the elements of 𝑆.

Definition 2.4 (Powerset). [33] The powerset of a set 𝑆, denoted P(𝑆), is the collection of all possible subsets
of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Example 2.5 (Pizza Toppings as a Powerset). Suppose a pizzeria offers three optional toppings:

𝑆 = {Pepperoni, Mushrooms, Onions}.

Then the powerset
P(𝑆) =

{
𝐴 | 𝐴 ⊆ 𝑆

}
consists of all eight possible topping combinations:

∅, {Pepperoni}, {Mushrooms}, {Onions},
{Pepperoni,Mushrooms}, {Pepperoni,Onions}, {Mushrooms,Onions}, {Pepperoni,Mushrooms,Onions}.

• ∅: a plain cheese pizza (no toppings).

• {Pepperoni}, {Mushrooms}, {Onions}: pizzas with exactly one topping.

• {Pepperoni,Mushrooms}, {Pepperoni,Onions}, {Mushrooms,Onions}: pizzas with two toppings.

• {Pepperoni,Mushrooms,Onions}: the fully loaded pizza with all three toppings.

Thus the powerset P(𝑆) succinctly enumerates every possible pizza order, illustrating how the powerset captures
all combinations in a real-world customization scenario.

Definition 2.6 (𝑛-th Powerset). (cf. [28, 33, 97, 102])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), is defined recursively as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) represents the powerset of 𝐻 with the empty set removed.

Example 2.7 (Travel Itinerary Planning via 𝑛-th Powersets). Travel Itinerary Planning involves organizing
destinations, schedules, accommodations, and activities to efficiently manage time and experiences during a
trip (cf. [16, 92, 95]). Suppose you have three cities you might visit on vacation:

𝐻 = {Paris, Rome, Berlin}.

• 𝑃1 (𝐻) = P(𝐻) is the set of all possible one-week itineraries, namely

{ ∅, {Paris}, {Rome}, {Berlin}, {Paris,Rome}, {Paris,Berlin}, {Rome,Berlin}, {Paris,Rome,Berlin}}.

Each nonempty subset corresponds to the set of cities you plan to visit in a single week.
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• 𝑃2 (𝐻) = P(𝑃1 (𝐻)) is the collection of all possible multi-week travel plans, where each element is a set
of one-week itineraries. For example,

𝑋 =
{
{Paris}, {Rome,Berlin}

}
could represent a two-week vacation: Week 1 in Paris, Week 2 in Rome and Berlin.

• 𝑃3 (𝐻) = P(𝑃2 (𝐻)) then represents seasonal trip series, each element being a set of multi-week plans.
For instance,

𝑌 =

{
{{Paris}, {Rome}}, {{Berlin}, {Paris,Berlin}}

}
might encode two distinct two-week itineraries you alternate across the year.

Thus the 𝑛-th powerset 𝑃𝑛 (𝐻) captures progressively higher “meta” levels of travel organization:

Cities︸︷︷︸
𝐻

→ Weekly Itineraries︸                 ︷︷                 ︸
𝑃1 (𝐻 )

→ Multi-Week Plans︸                ︷︷                ︸
𝑃2 (𝐻 )

→ Seasonal Series︸             ︷︷             ︸
𝑃3 (𝐻 )

→ . . .

This illustrates a concrete, real-world use of iterated powersets in hierarchical trip planning.

The Overview of Set, Powerset, and 𝑛-th Powerset is presented in Table 3.

Concept Notation Definition Key Feature / Example
Set 𝑆 A well-defined collection of distinct ob-

jects, called elements.
e.g. 𝑆 = {𝑎, 𝑏, 𝑐}.

Powerset P(𝑆) The collection of all subsets of 𝑆, including
∅ and 𝑆 itself.

e.g. P({𝑎, 𝑏}) = {∅, {𝑎}, {𝑏}, {𝑎, 𝑏}}.

𝑛-th Powerset 𝑃𝑛 (𝑆) Defined recursively by 𝑃1 (𝑆) = P(𝑆),
𝑃𝑛+1 (𝑆) = P

(
𝑃𝑛 (𝑆)

)
.

e.g. 𝑃2 ({𝑎, 𝑏}) = P
(
P({𝑎, 𝑏})

)
.

Table 3: Overview of Set, Powerset, and 𝑛-th Powerset

Definition 2.8 (Classical Structure). (cf. [97,102]) A Classical Structure is a mathematical framework defined
on a non-empty set 𝐻, equipped with one or more Classical Operations that satisfy specified Classical Axioms.
Specifically:

A Classical Operation is a function of the form:

#0 : 𝐻𝑚 → 𝐻,

where 𝑚 ≥ 1 is a positive integer, and 𝐻𝑚 denotes the 𝑚-fold Cartesian product of 𝐻. Common examples
include addition and multiplication in algebraic structures such as groups, rings, and fields.

Definition 2.9 (Hyperoperation). (cf. [112, 113]) A hyperoperation is a generalization of a binary operation
where the result of combining two elements is a set, not a single element. Formally, for a set 𝑆, a hyperoperation
◦ is defined as:

◦ : 𝑆 × 𝑆 → P(𝑆),

where P(𝑆) is the powerset of 𝑆.

Definition 2.10 (Hyperstructure). (cf. [33, 102]) A Hyperstructure extends the notion of a Classical Structure
by operating on the powerset of a base set. Formally, it is defined as:

H = (P(𝑆), ◦),

where 𝑆 is the base set, P(𝑆) is the powerset of 𝑆, and ◦ is an operation defined on subsets of P(𝑆).
Hyperstructures allow for generalized operations that can apply to collections of elements rather than single
elements.
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Example 2.11 (Chemical Reaction Hyperstructure). A Chemical Reaction is a process where substances
(reactants) are transformed into new substances (products) through the rearrangement of atoms (cf. [3, 21]).
Consider the set of chemical species

𝑆 = { H2, O2, H2O, H2O2},

where H2 is hydrogen gas, O2 is oxygen gas, H2O is water, and H2O2 is hydrogen peroxide.

Hyperoperation ◦: The reaction hyperoperation

◦ : 𝑆 × 𝑆 −→ P(𝑆)

is defined on pure reagents by:

H2 ◦ O2 = {H2O, H2O2}, H2 ◦ H2 = {H2}, O2 ◦ O2 = {O2},

and extended symmetrically (so 𝑎◦𝑏 = 𝑏◦𝑎), with all other combinations yielding the singleton of one reactant
when no reaction occurs.

Hyperstructure H : We then form the hyperstructure

H =
(
P(𝑆), ◦

)
,

where the domain is the powerset P(𝑆) of all subsets of species, and the hyperoperation is extended to mixtures
by

𝐴 ◦ 𝐵 =
⋃

𝑎∈𝐴, 𝑏∈𝐵
(𝑎 ◦ 𝑏), 𝐴, 𝐵 ⊆ 𝑆.

Concrete computation:

{H2} ◦ {O2} = {H2O, H2O2}, {H2,O2} ◦ {O2} = (H2 ◦ O2) ∪ (O2 ◦ O2) = {H2O,H2O2,O2}.

Thus H models real-world chemical mixing: combining reagents yields a set of possible products, and
mixing mixtures yields the union of all individual reaction outcomes, capturing both single-step and multi-step
processes within one algebraic framework.

Definition 2.12 (SuperHyperOperations). (cf. [102]) Let 𝐻 be a non-empty set, and let P(𝐻) denote the
powerset of 𝐻. The 𝑛-th powerset P𝑛 (𝐻) is defined recursively as follows:

P0 (𝐻) = 𝐻, P𝑘+1 (𝐻) = P(P𝑘 (𝐻)), for 𝑘 ≥ 0.

A SuperHyperOperation of order (𝑚, 𝑛) is an 𝑚-ary operation:

◦(𝑚,𝑛) : 𝐻𝑚 → P𝑛
∗ (𝐻),

where P𝑛
∗ (𝐻) represents the 𝑛-th powerset of 𝐻, either excluding or including the empty set, depending on the

type of operation:

• If the codomain isP𝑛
∗ (𝐻) excluding the empty set, it is called a classical-type (𝑚, 𝑛)-SuperHyperOperation.

• If the codomain isP𝑛 (𝐻) including the empty set, it is called a Neutrosophic (𝑚, 𝑛)-SuperHyperOperation.

These SuperHyperOperations are higher-order generalizations of hyperoperations, capturing multi-level com-
plexity through the construction of 𝑛-th powersets.
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Definition 2.13 (𝑛-Superhyperstructure). (cf. [30, 34, 102]) An 𝑛-Superhyperstructure further generalizes a
Hyperstructure by incorporating the 𝑛-th powerset of a base set. It is formally described as:

SH𝑛 = (P𝑛 (𝑆), ◦),

where 𝑆 is the base set, P𝑛 (𝑆) is the 𝑛-th powerset of 𝑆, and ◦ represents an operation defined on elements
of P𝑛 (𝑆). This iterative framework allows for increasingly hierarchical and complex representations of
relationships within the base set.

Example 2.14 (Smartphone Product Bundling as a 2-Superhyperstructure). Smartphone Product Bundling
combines a smartphone with accessories or services, offering them together as a single package to increase
value. Let the base set of components be

𝑆 = {Frame, Screen, Battery, CircuitBoard}.

First-level collections (modules, in P1 (𝑆)) are:

𝑀1 = {Frame, Screen}, 𝑀2 = {Battery,CircuitBoard}, 𝑀3 = {Screen,Battery}.

Second-level collections (product bundles, in P2 (𝑆)) are:

𝑃1 = {𝑀1, 𝑀2}, 𝑃2 = {𝑀1, 𝑀3}, 𝑃3 = {𝑀2, 𝑀3}.

Thus P2 (𝑆) = {𝑃1, 𝑃2, 𝑃3}. We define the hyperoperation

◦ : P2 (𝑆) × P2 (𝑆) −→ P
(
P2 (𝑆)

)
by

𝑋 ◦ 𝑌 =
{
𝑋 ∪ 𝑌, 𝑋 ∩ 𝑌, (𝑋 ∪ 𝑌 ) \ (𝑋 ∩ 𝑌 )

}
.

Concretely, for two product bundles 𝑋 and 𝑌 :

• 𝑋 ∪ 𝑌 is the combined bundle containing every module from both 𝑋 and 𝑌 .

• 𝑋 ∩ 𝑌 is the common-module bundle shared by 𝑋 and 𝑌 .

• (𝑋 ∪ 𝑌 ) \ (𝑋 ∩ 𝑌 ) is the exclusive-module bundle (modules present in one bundle but not both).

Therefore
(
P2 (𝑆), ◦

)
is a 2-Superhyperstructure that models all possible ways to merge, intersect, and differ-

entiate smartphone product bundles in a supply-chain or sales context.

The overview of Classical Structure, Hyperstructure, and 𝑛-Superhyperstructure is presented in Table 4.

Concept Notation Underlying Set Operation Key Feature
Classical Structure (𝐻, {#0}) 𝐻 #0 : 𝐻𝑚 → 𝐻 Single-valued oper-

ations satisfying al-
gebraic axioms

Hyperstructure
(
P(𝑆), ◦

)
P(𝑆) ◦ : 𝑆 × 𝑆 → P(𝑆)

extended to P(𝑆) ×
P(𝑆)

Operations yield sets
of results (multi-
valued)

𝑛-Superhyperstructure
(
P𝑛 (𝑆), ◦

)
P𝑛 (𝑆) ◦ : P𝑛 (𝑆) ×

P𝑛 (𝑆) → P𝑛 (𝑆)
Hierarchical, nested
operations via iter-
ated powersets

Table 4: Overview of Classical Structure, Hyperstructure, and 𝑛-Superhyperstructure
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2.2 SuperHyperGraph

In classical graph theory, a hypergraph extends the idea of a conventional graph by permitting edges—called
hyperedges—to join more than two vertices. This broader framework enables the modeling of more intricate
relationships between elements, thereby enhancing its utility in various fields [13,26,50,51]. Related concepts
to HyperGraphs include Fuzzy HyperGraphs [7,82,94], Directed HyperGraphs [69,70,81], and Neutrosophic
HyperGraphs [6, 75]. A SuperHyperGraph is an advanced extension of the hypergraph concept, integrating
recursive powerset structures into the classical model. This concept has been recently introduced and extensively
studied in the literature [2, 43, 80, 86].

Definition 2.15 (Graph). [22] A graph is a mathematical structure consisting of a set of vertices and a set of
edges, where each edge connects a pair of distinct vertices.

Definition 2.16 (Hypergraph). [13, 15] A hypergraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) consists of:

• A nonempty set 𝑉 (𝐻) of vertices.

• A set 𝐸 (𝐻) of hyperedges, where each hyperedge is a nonempty subset of 𝑉 (𝐻), thereby allowing
connections among multiple vertices.

Unlike standard graphs, hypergraphs are well-suited to represent higher-order relationships. In this paper, we
restrict ourselves to the case where both 𝑉 (𝐻) and 𝐸 (𝐻) are finite.

Example 2.17 (Online Retail Transactions as a Hypergraph). Online Retail Transactions involve purchasing
goods or services over the internet, typically recorded as customer-item interactions within digital systems
(cf. [1, 83]). Consider an online store offering four products:

𝑃 = {Laptop, Headphones, Smartphone, Charger}.

We model customer purchase transactions as a hypergraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) by letting each product be a
vertex:

𝑉 (𝐻) = { 𝑣1, 𝑣2, 𝑣3, 𝑣4} = {Laptop, Headphones, Smartphone, Charger},

and each transaction as a hyperedge:

𝐸 (𝐻) =
{
𝑒1 = {Laptop,Headphones}, 𝑒2 = {Headphones, Smartphone,Charger}, 𝑒3 = {Laptop,Charger}

}
.

Concretely:

• 𝑒1: a customer bought a Laptop and Headphones together.

• 𝑒2: a customer purchased Headphones, a Smartphone, and a Charger in one order.

• 𝑒3: a customer bought a Laptop and a Charger together.

Thus the hypergraph 𝐻 captures both pairwise and three-item purchase patterns in the store’s transaction data.

Definition 2.18 (n-SuperHyperGraph). [35, 39, 99, 100]
Let 𝑉0 be a finite base set of vertices. For each integer 𝑘 ≥ 0, define the iterative powerset by

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P(P𝑘 (𝑉0)),

where P(·) denotes the usual powerset operation. An n-SuperHyperGraph is then a pair

SHT(𝑛) = (𝑉, 𝐸),

with
𝑉 ⊆ P𝑛 (𝑉0) and 𝐸 ⊆ P𝑛 (𝑉0).

Each element of 𝑉 is called an n-supervertex and each element of 𝐸 an n-superedge.
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Example 2.19 (Global Supply Distribution as a 2-SuperHyperGraph). (cf. [79, 96]) A global manufacturer
sources raw materials from multiple suppliers and distributes products via local distribution centers and regional
hubs. We model this as a 2-SuperHyperGraph.

Base set of suppliers:
𝑉0 = { 𝑆1, 𝑆2, 𝑆3, 𝑆4},

where 𝑆𝑖 denotes Supplier 𝑖.

Local distribution centers (1-supervertices in P1 (𝑉0)):

DC1 = {𝑆1, 𝑆2}, DC2 = {𝑆3, 𝑆4}, DC3 = {𝑆2, 𝑆3}.

Each DC 𝑗 collects materials from its member suppliers.

Regional hubs (2-supervertices in P2 (𝑉0)):

Hub𝐴 = {DC1, DC2}, Hub𝐵 = {DC2, DC3}.

Each hub aggregates goods from two local centers.

2-SuperHyperGraph:

SHT(2) = (𝑉, 𝐸), 𝑉 = {Hub𝐴, Hub𝐵}, 𝐸 =
{
{Hub𝐴, Hub𝐵}

}
.

The single hyperedge {Hub𝐴, Hub𝐵} represents the national distribution corridor linking the two regions.

Interpretation: This structure captures a three-tier hierarchy:

𝑆𝑖︸︷︷︸
suppliers

−→ DC 𝑗︸︷︷︸
local

centers

−→ Hub𝑘︸︷︷︸
regional

hubs

−→ {Hub𝐴,Hub𝐵}︸            ︷︷            ︸
national corridor

.

Thus SHT(2) provides a unified hypergraph view of supplier-center-hub relationships in global supply distri-
bution.

Example 2.20 (Corporate Divisional Structure as a 2-SuperHyperGraph). A Corporate Divisional Structure
organizes a company into semi-autonomous units based on products, services, markets, or geographical regions
(cf. [25, 117]). Let 𝑉0 = {Alice,Bob,Carol,Dave,Eve} be the set of individual employees in a company. We
first form the following committees (1-supervertices in P1 (𝑉0)):

𝐶1 = {Alice,Bob}, 𝐶2 = {Carol,Dave,Eve}, 𝐶3 = {Bob,Carol}.

Next, we group these committees into two divisions (2-supervertices in P2 (𝑉0)):

𝐷1 = {𝐶1, 𝐶2}, 𝐷2 = {𝐶2, 𝐶3}.

Define the 2-SuperHyperGraph SHT(2) = (𝑉, 𝐸) by

𝑉 = {𝐷1, 𝐷2}, 𝐸 =
{
{𝐷1, 𝐷2}

}
.

Here, the single hyperedge {𝐷1, 𝐷2} ∈ 𝐸 represents a cross-divisional task force that connects both divisions
𝐷1 and 𝐷2. Thus SHT(2) models a three-layer hierarchy—employees → committees → divisions—and
captures both intra-division and inter-division collaborations in one unified structure.
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2.3 Molecular Graph

A molecular graph is a labeled graph representing atoms as vertices and covalent bonds as edges with specified
bond types (cf. [52, 57, 63, 122]). The definition and example of a Molecular Graph are presented below.

Definition 2.21 (Molecular Graph). [63] A molecular graph is a labeled simple graph

𝐺 =
(
𝑉, 𝐸, ℓ𝑉 , ℓ𝐸

)
where

• 𝑉 is a finite set of atoms;

• 𝐸 ⊆
{
{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣

}
is the set of bonds;

• ℓ𝑉 : 𝑉 → {C,H,O, . . . } assigns to each vertex its atomic symbol;

• ℓ𝐸 : 𝐸 → {single, double, triple} assigns to each edge its bond order.

Thus 𝐺 encodes the connectivity of a molecule: vertices are atoms, edges are chemical bonds, and labels
record atom types and bond multiplicities.

Example 2.22 (Benzene Molecule as a Molecular Graph). A benzene molecule is an aromatic hydrocarbon
with six carbon atoms in a hexagonal ring and alternating double bonds (cf. [19, 118]). Consider benzene,
C6H6. We model it by

𝑉 = { 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6},
𝐸 =

{
{𝑐𝑖 , 𝑐𝑖+1} (𝑖 = 1, . . . , 5), {𝑐6, 𝑐1}, {𝑐𝑖 , ℎ𝑖} (𝑖 = 1, . . . , 6)

}
.

Label functions are
ℓ𝑉 (𝑐𝑖) = “C”, ℓ𝑉 (ℎ𝑖) = “H”,

ℓ𝐸 ({𝑐𝑖 , 𝑐𝑖+1}) =
{

“double”, 𝑖 ≡ 1, 3, 5 (mod 2),
“single”, 𝑖 ≡ 0, 2, 4 (mod 2),

ℓ𝐸 ({𝑐𝑖 , ℎ𝑖}) = “single”.

This graph 𝐺 faithfully represents benzene’s ring of alternating single and double C–C bonds and the six C–H
bonds.

The conceptual diagram is shown in Figure 1.

Figure 1: Hypergraph representation

3 Molecular Hypergraph

A Molecular Hypergraph represents molecules where vertices are atoms and hyperedges denote multi-atom
interactions or molecular substructures [17, 61, 91]. The definition of a Molecular Hypergraph is presented as
follows.

Definition 3.1 (Molecular Hypergraph). [28] A molecular hypergraph is a node- and hyperedge-labeled
hypergraph that models the atomic and bonding structure of a molecule. Formally, a molecular hypergraph

𝐻 =
(
𝑉𝐻 , 𝐸𝐻 , ℓ

𝐻
𝑉 , ℓ𝐻𝐸

)
consists of:
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• 𝑉𝐻 a finite set of nodes, each representing a chemical bond;

• 𝐸𝐻 ⊆ P(𝑉𝐻 ) a finite set of hyperedges, where each hyperedge 𝑒 ∈ 𝐸𝐻 is a subset of 𝑉𝐻 corresponding
to all bonds incident to a single atom;

• ℓ𝐻
𝑉

: 𝑉𝐻 → 𝐿𝐻
𝑉

a node-labeling function, assigning to each bond–node its bond type (e.g. single, double,
triple);

• ℓ𝐻
𝐸

: 𝐸𝐻 → 𝐿𝐻
𝐸

a hyperedge-labeling function, assigning to each atom–hyperedge its atomic symbol or
property (e.g. C, O, H).

This structure thus captures molecules at two hierarchical levels: bonds as nodes and atoms as hyperedges

Example 3.2 (Water Molecule as a Molecular Hypergraph). A water molecule consists of two hydrogen atoms
and one oxygen atom, forming a bent structure with polar covalent bonds (cf. [54, 76]). Consider the water
molecule H2O. We represent its two O–H bonds as nodes and its three atoms as hyperedges:

𝑉𝐻 = { 𝑏1, 𝑏2}, 𝐸𝐻 =
{
𝑒𝑂, 𝑒𝐻1 , 𝑒𝐻2

}
,

where
𝑏1 = bond between O and H1, 𝑏2 = bond between O and H2,

and the hyperedges are
𝑒𝑂 = { 𝑏1, 𝑏2}, 𝑒𝐻1 = { 𝑏1}, 𝑒𝐻2 = { 𝑏2}.

Labeling functions assign:

ℓ𝐻𝑉 (𝑏1) = ℓ𝐻𝑉 (𝑏2) = “single”, ℓ𝐻𝐸 (𝑒𝑂) = “Oxygen”, ℓ𝐻𝐸 (𝑒𝐻1 ) = ℓ𝐻𝐸 (𝑒𝐻2 ) = “Hydrogen”.

Thus 𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ
𝐻
𝑉
, ℓ𝐻

𝐸
) encodes the H2O molecule: bonds are nodes, atoms are hyperedges connecting

exactly those bonds incident to each atom. This concrete construction illustrates how molecular hypergraphs
faithfully represent real chemical structures.

Example 3.3 (Benzene Molecule (C6H6) as a Molecular Hypergraph). Consider the benzene molecule, C6H6.
We represent its twelve covalent bonds as nodes and its twelve atoms as hyperedges:

𝑉𝐻 = { 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8, 𝑏9, 𝑏10, 𝑏11, 𝑏12},
where

𝑏1 = bond between C1 and C2, 𝑏7 = bond between C1 and H1,

𝑏2 = bond between C2 and C3, 𝑏8 = bond between C2 and H2,

𝑏3 = bond between C3 and C4, 𝑏9 = bond between C3 and H3,

𝑏4 = bond between C4 and C5, 𝑏10 = bond between C4 and H4,

𝑏5 = bond between C5 and C6, 𝑏11 = bond between C5 and H5,

𝑏6 = bond between C6 and C1, 𝑏12 = bond between C6 and H6.

The set of hyperedges is
𝐸𝐻 = { 𝑒𝐶1 , 𝑒𝐶2 , 𝑒𝐶3 , 𝑒𝐶4 , 𝑒𝐶5 , 𝑒𝐶6 ,

𝑒𝐻1 , 𝑒𝐻2 , 𝑒𝐻3 , 𝑒𝐻4 , 𝑒𝐻5 , 𝑒𝐻6 },
with

𝑒𝐶𝑖
= { 𝑏𝑖 , 𝑏𝑖⊕1, 𝑏6+𝑖 }, (𝑖 = 1, . . . , 6),

𝑒𝐻 𝑗
= { 𝑏6+ 𝑗 }, ( 𝑗 = 1, . . . , 6),

where 𝑖 ⊕ 1 is taken modulo 6 (so 6 ⊕ 1 = 1).

Labeling functions are given by

ℓ𝐻𝑉 (𝑏𝑘) =
{

“double”, 𝑘 = 1, 3, 5,
“single”, 𝑘 = 2, 4, 6, 7, 8, 9, 10, 11, 12,
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ℓ𝐻𝐸 (𝑒𝐶𝑖
) = “Carbon”, ℓ𝐻𝐸 (𝑒𝐻 𝑗

) = “Hydrogen”.

Thus
𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ

𝐻
𝑉 , ℓ𝐻𝐸 )

encodes the benzene molecule: bonds are nodes labeled by bond order, and atoms are hyperedges connecting
exactly those bonds incident to each atom. This construction captures benzene’s aromatic ring and hydrogen
attachments in the molecular hypergraph framework.

Example 3.4 (Acetic Acid (CH3COOH) as a Molecular Hypergraph). Acetic acid consists of two carbon
atoms, four hydrogen atoms, and two oxygen atoms, with the structural formula CH3–COOH (cf. [59,64,115]).
We represent its seven covalent bonds as nodes and its eight atoms as hyperedges:

𝑉𝐻 = { 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7},
where

𝑏1 = bond C1–C2, 𝑏5 = double bond C2–O1,

𝑏2 = bond C1–H1, 𝑏6 = single bond C2–O2,

𝑏3 = bond C1–H2, 𝑏7 = bond O2–H4,

𝑏4 = bond C1–H3.

The set of hyperedges is
𝐸𝐻 = { 𝑒𝐶1 , 𝑒𝐶2 , 𝑒𝑂1 , 𝑒𝑂2 , 𝑒𝐻1 , 𝑒𝐻2 , 𝑒𝐻3 , 𝑒𝐻4 },

with
𝑒𝐶1 = {𝑏1, 𝑏2, 𝑏3, 𝑏4},
𝑒𝐶2 = {𝑏1, 𝑏5, 𝑏6},
𝑒𝑂1 = {𝑏5},
𝑒𝑂2 = {𝑏6, 𝑏7},
𝑒𝐻𝑖

= { 𝑏𝑖+1 }, 𝑖 = 1, 2, 3,
𝑒𝐻4 = {𝑏7}.

Labeling functions are defined by

ℓ𝐻𝑉 (𝑏𝑘) =
{

“double”, 𝑘 = 5,
“single”, 𝑘 ≠ 5,

ℓ𝐻𝐸 (𝑒𝑋) =


“C”, 𝑋 = 𝐶1, 𝐶2,

“O”, 𝑋 = 𝑂1, 𝑂2,

“H”, 𝑋 = 𝐻1, . . . , 𝐻4.

Thus
𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ

𝐻
𝑉 , ℓ𝐻𝐸 )

encodes the molecular hypergraph of acetic acid, with bonds as nodes labeled by bond order and atoms as
hyperedges connecting exactly those bonds incident to each atom.

4 Molecular n-SuperHypergraph

A Molecular 𝑛-SuperHypergraph models hierarchical molecular structures using nested sets of atoms or
interactions up to depth 𝑛. The definition of a Molecular 𝑛-SuperHyperGraph is presented as follows.

Definition 4.1 (Molecular 𝑛-SuperHyperGraph). [28]
Let 𝑉0 be a finite set of bond identifiers in a molecule. Define the 𝑛-th iterated powerset by

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
(𝑘 ≥ 0),

where P(·) is the usual powerset operation. A molecular 𝑛-SuperHyperGraph is then an ordered quadruple

𝐻 =
(
𝑉𝐻 , 𝐸𝐻 , ℓ

𝐻
𝑉 , ℓ𝐻𝐸

)
with

𝑉𝐻 ⊆ P𝑛 (𝑉0), 𝐸𝐻 ⊆ P𝑛 (𝑉0),
where
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• each element of 𝑉𝐻 is called an 𝑛-supernode, representing a collection of bonds (possibly nested up to
level 𝑛);

• each element of 𝐸𝐻 is called an 𝑛-superedge, representing an atom or functional group connecting those
supernodes;

• ℓ𝐻
𝑉

: 𝑉𝐻 → 𝐿𝑉 labels each supernode by its bond-type or functional-group name;

• ℓ𝐻
𝐸

: 𝐸𝐻 → 𝐿𝐸 labels each superedge by its atomic symbol or molecular fragment name.

This structure generalizes the molecular hypergraph (𝑛 = 0) and the molecular superhypergraph (𝑛 = 1) to
arbitrary depth 𝑛.

Many examples of Molecular n-SuperHyperGraphs are presented below.

Example 4.2 (Ethanol (C2H5OH) as a Molecular 2-SuperHyperGraph). Ethanol is a volatile, flammable
alcohol with the formula C2H5OH, commonly used in beverages, fuel, and disinfectants (cf. [48,109]). Let the
base set of bonds be

𝑉0 = { 𝑏C−C, 𝑏C−H1, 𝑏C−H2, 𝑏C−H3, 𝑏C−H4, 𝑏C−H5, 𝑏C−O, 𝑏O−H }.

Define two first-level subsets (functional groups):

𝐹ethyl = { 𝑏C−C, 𝑏C−H1, 𝑏C−H2, 𝑏C−H3, 𝑏C−H4, 𝑏C−H5 }, 𝐹hydroxyl = { 𝑏C−O, 𝑏O−H }.

Form two second-level supernodes in P2 (𝑉0):

𝑣1 = { 𝐹ethyl }, 𝑣2 = { 𝐹hydroxyl }.

Then the molecular 2-SuperHyperGraph for ethanol is

𝑉𝐻 = { 𝑣1, 𝑣2}, 𝐸𝐻 =
{
{ 𝑣1, 𝑣2}

}
,

with labeling functions

ℓ𝐻𝑉 (𝑣1) = “Ethyl-group bonds”, ℓ𝐻𝑉 (𝑣2) = “Hydroxyl-group bonds”,

ℓ𝐻𝐸
(
{ 𝑣1, 𝑣2}

)
= “Ethanol molecule”.

Here:

• 𝑣1, 𝑣2 ∈ P2 (𝑉0) are second-level supernodes each containing one functional-group subset;

• the single superedge {𝑣1, 𝑣2} connects them, representing the full C2H5OH structure;

• labels record the chemical interpretation at each hierarchy: bond collections → functional groups →
whole molecule.

This example illustrates how a molecular 2-SuperHyperGraph encodes both bond-level and group-level orga-
nization in a real chemical species.

Example 4.3 (Acetic Acid (CH3COOH) as a Molecular 2-SuperHyperGraph). Acetic acid is a weak organic
acid with formula CH3COOH, responsible for vinegar’s sour taste and strong smell (cf. [59, 64, 115]). Let the
base set of bonds be

𝑉0 = {𝑏1 = C1–C2, 𝑏2 = C1–H1, 𝑏3 = C1–H2, 𝑏4 = C1–H3,

𝑏5 = C2=𝑂1, 𝑏6 = C2–O2, 𝑏7 = O2–H}.

First-level functional groups (1-supernodes in P1 (𝑉0)) are

𝐹methyl = { 𝑏1, 𝑏2, 𝑏3, 𝑏4 }, 𝐹carboxyl = { 𝑏5, 𝑏6, 𝑏7 }.
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Form the second-level supernodes in P2 (𝑉0):

𝑣1 = { 𝐹methyl }, 𝑣2 = { 𝐹carboxyl }.

Then the molecular 2-SuperHyperGraph for acetic acid is

𝑉𝐻 = { 𝑣1, 𝑣2}, 𝐸𝐻 =
{
{ 𝑣1, 𝑣2}

}
.

Labeling functions are defined by

ℓ𝐻𝑉 (𝑣1) = “Methyl-group bonds”, ℓ𝐻𝑉 (𝑣2) = “Carboxyl-group bonds”,

ℓ𝐻𝐸
(
{𝑣1, 𝑣2}

)
= “Acetic acid molecule”.

Here:

• 𝑣1, 𝑣2 ∈ P2 (𝑉0) are second-level supernodes each containing one functional-group subset;

• the single superedge {𝑣1, 𝑣2} connects the methyl and carboxyl groups, representing the full CH3COOH
structure;

• labels record the chemical interpretation at each hierarchy: individual bonds︸               ︷︷               ︸
P0 (𝑉0 )

→ functional groups︸                ︷︷                ︸
P1 (𝑉0 )

→

whole molecule︸              ︷︷              ︸
P2 (𝑉0 )

.

This example demonstrates how a molecular 2-SuperHyperGraph encodes both bond-level and group-level
organization in a real chemical species.

Example 4.4 (Ethyl Acetate (CH3COOCH2CH3) as a Molecular 3-SuperHyperGraph). Ethyl acetate is a
colorless, sweet-smelling organic solvent with the formula CH3COOCH2CH3, commonly used in paints and
adhesives (cf. [74, 128]). Let the base set of bonds be

𝑉0 = {𝑏1 = C1−𝑂, 𝑏2 = O−C2, 𝑏3 = C2−C3, 𝑏4 = C3−H1, 𝑏5 = C3−H2, 𝑏6 = C3−H3}.

First-level functional groups (1-supernodes in P1 (𝑉0)) are

𝐹acetyl = { 𝑏1, 𝑏2 }, 𝐹ethyl = { 𝑏3, 𝑏4, 𝑏5, 𝑏6 }.

Second-level moieties (2-supernodes in P2 (𝑉0)) are

𝑀acetyl = { 𝐹acetyl }, 𝑀ethyl = { 𝐹ethyl }.

Third-level supernodes (3-supernodes in P3 (𝑉0)) are

𝑈1 = {𝑀acetyl }, 𝑈2 = {𝑀ethyl }.

Then the molecular 3-SuperHyperGraph for ethyl acetate is defined by

𝑉𝐻 = {𝑈1, 𝑈2}, 𝐸𝐻 =
{
{𝑈1, 𝑈2}

}
.

Labeling functions assign:

ℓ𝐻𝑉 (𝑈1) = “Acetyl moiety”, ℓ𝐻𝑉 (𝑈2) = “Ethyl moiety”, ℓ𝐻𝐸
(
{𝑈1,𝑈2}

)
= “Ethyl acetate molecule”.

In this construction:

• Bonds (P0) form functional groups (P1),

• which form moieties (P2),

• which in turn form supernodes at level 3 (P3),
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• and a single superedge connects them to represent the entire molecule.

Thus the 3-SuperHyperGraph captures bond-level, group-level, moiety-level, and full-molecule structure in
one unified framework.

Example 4.5 (Aspirin (C9H8O4) as a Molecular 3-SuperHyperGraph). Aspirin is a widely used medication
with formula C9H8O4, known for relieving pain, fever, and inflammation (cf. [11, 110, 116]). Let the base set
of bonds be

𝑉0 = {𝑏1 = C1−C2, 𝑏2 = C2−C3, 𝑏3 = C3−C4, 𝑏4 = C4−C5, 𝑏5 = C5−C6, 𝑏6 = C6−C1, 𝑏7 = C1−C7,

𝑏8 = C7=𝑂8, 𝑏9 = C7−𝑂9, 𝑏10 = 𝑂9−𝐻10, 𝑏11 = C2−𝑂11,

𝑏12 = 𝑂11−C8, 𝑏13 = C8−𝐻11, 𝑏14 = C8−𝐻12, 𝑏15 = C8−𝐻13}.
First-level functional groups (1-supernodes in P1 (𝑉0)) are

𝐹ring = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6}, 𝐹carboxyl = {𝑏7, 𝑏8, 𝑏9, 𝑏10}, 𝐹ester = {𝑏11, 𝑏12, 𝑏13, 𝑏14, 𝑏15}.

Second-level moieties (2-supernodes in P2 (𝑉0)) are

𝑀salicylic = { 𝐹ring, 𝐹carboxyl }, 𝑀acetyl = { 𝐹ester }.

Third-level supernodes (3-supernodes in P3 (𝑉0)) are

𝑈1 = {𝑀salicylic }, 𝑈2 = {𝑀acetyl }.

Then the molecular 3-SuperHyperGraph for aspirin is

𝑉𝐻 = {𝑈1, 𝑈2}, 𝐸𝐻 =
{
{𝑈1, 𝑈2}

}
.

Labeling functions assign:

ℓ𝐻𝑉 (𝑈1) = “Salicylic acid moiety”, ℓ𝐻𝑉 (𝑈2) = “Acetyl moiety”, ℓ𝐻𝐸
(
{𝑈1,𝑈2}

)
= “Aspirin molecule”.

In this framework:

• Bonds (P0) form functional groups (P1),

• Functional groups form moieties (P2),

• Moieties form supernodes at level 3 (P3),

• A single superedge connects the two level-3 nodes to represent the complete molecule.

Thus the 3-SuperHyperGraph captures bond-level, group-level, moiety-level, and whole-molecule structure in
one unified model.

Example 4.6 (Ethylene Glycol (HO–CH2–CH2–OH) as a Molecular 3-SuperHyperGraph). Ethylene glycol
is a colorless, odorless liquid with formula C2H6O2, commonly used as antifreeze and coolant in engines
(cf. [72, 105, 123]). Let the base set of bonds (level 0) be

𝑉0 = {𝑏1 = C1−C2, 𝑏2 = C1−H1, 𝑏3 = C1−H2, 𝑏4 = C2−H3, 𝑏5 = C2−H4,

𝑏6 = C1−O1, 𝑏7 = O1−H5, 𝑏8 = C2−O2, 𝑏9 = O2−H6}.
First-level functional groups (1-supernodes in P1 (𝑉0)) are

𝐹1 = { 𝑏1, 𝑏2, 𝑏3}, 𝐹2 = { 𝑏1, 𝑏4, 𝑏5}, 𝐹3 = { 𝑏6, 𝑏7}, 𝐹4 = { 𝑏8, 𝑏9}.

Here 𝐹1 and 𝐹2 are the two methylene groups at C1 and C2, and 𝐹3, 𝐹4 are the two hydroxyl groups.

Second-level moieties (2-supernodes in P2 (𝑉0)) are

𝑀1 = { 𝐹1, 𝐹3}, 𝑀2 = { 𝐹2, 𝐹4}.
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Each 𝑀𝑖 corresponds to a hydroxymethyl moiety at carbon 𝑖.

Third-level supernodes (3-supernodes in P3 (𝑉0)) are

𝑈1 = {𝑀1}, 𝑈2 = {𝑀2}.

Finally, the molecular 3-SuperHyperGraph is

𝑉𝐻 = {𝑈1,𝑈2}, 𝐸𝐻 =
{
{𝑈1,𝑈2}

}
.

Labeling functions assign:

ℓ𝐻𝑉 (𝑈1) = “Hydroxymethyl moiety at C1”, ℓ𝐻𝑉 (𝑈2) = “Hydroxymethyl moiety at C2”,

ℓ𝐻𝐸
(
{𝑈1,𝑈2}

)
= “Ethylene glycol molecule”.

In this example:

• Level 0 captures each individual bond in the molecule.

• Level 1 groups bonds into methylene and hydroxyl functional groups.

• Level 2 assembles each carbon’s methylene + hydroxyl into hydroxymethyl moieties.

• Level 3 creates supernodes for each hydroxymethyl moiety and a single superedge connecting them,
representing the full ethylene glycol structure.

Example 4.7 (Penicillin G (C16H18N2O4S) as a Molecular 4-SuperHyperGraph). Penicillin G is a natural
antibiotic with formula C16H18N2O4S, effective against gram-positive bacteria and used intravenously (cf.
[77, 84]). Let the base set of bonds (level 0) be

𝑉0 = {𝑏1 = 𝑁1−𝐶2, 𝑏2 = 𝐶2−𝐶3, 𝑏3 = 𝐶3−𝐶4, 𝑏4 = 𝐶4−𝑁1, 𝑏5 = 𝐶4−𝐶5, 𝑏6 = 𝐶5−𝑆6,

𝑏7 = 𝑆6−𝐶7, 𝑏8 = 𝐶7−𝐶4, 𝑏9 = 𝑁1−𝐶8, 𝑏10 = 𝐶8−𝐶9, 𝑏11 = 𝐶9−𝐶10, 𝑏12 = 𝐶10−𝐶11, 𝑏13 = 𝐶11−𝐶12, 𝑏14 = 𝐶12−𝐶9}.

Form the functional groups (1-supernodes, level 1):

𝐹𝛽-lactam = {𝑏1, 𝑏2, 𝑏3, 𝑏4}, 𝐹thiazolidine = {𝑏5, 𝑏6, 𝑏7, 𝑏8},

𝐹linkage = {𝑏9}, 𝐹phenyl = {𝑏10, 𝑏11, 𝑏12, 𝑏13, 𝑏14}.

Form the moieties (2-supernodes, level 2):

𝑀ring = {𝐹𝛽-lactam, 𝐹thiazolidine}, 𝑀side = {𝐹linkage, 𝐹phenyl}.

Form the super-moieties (3-supernodes, level 3):

𝑆penam = {𝑀ring }, 𝑆phenylacetyl = {𝑀side }.

Finally, form the 4-supernodes (level 4):

𝑈1 = { 𝑆penam }, 𝑈2 = { 𝑆phenylacetyl }.

The molecular 4-SuperHyperGraph for Penicillin G is then

𝑉𝐻 = {𝑈1, 𝑈2}, 𝐸𝐻 =
{
{𝑈1, 𝑈2}

}
.

Label functions assign:

ℓ𝐻𝑉 (𝑈1) = “Penam core”, ℓ𝐻𝑉 (𝑈2) = “Phenylacetyl side chain”, ℓ𝐻𝐸 ({𝑈1,𝑈2}) = “Penicillin G molecule”.

• Level 0 (bonds): individual bond identifiers 𝑏1, . . . , 𝑏14.

• Level 1 (functional groups): 𝛽-lactam ring, thiazolidine ring, linkage bond, phenyl ring.
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• Level 2 (moieties): fused ring system 𝑀ring and side-chain system 𝑀side.

• Level 3 (super-moieties): penam core 𝑆penam and phenylacetyl branch 𝑆phenylacetyl.

• Level 4 (4-supernodes): top-level groupings 𝑈1,𝑈2 representing the molecule’s two principal parts.

This 4-SuperHyperGraph captures bond-level, group-level, moiety-level, super-moiety-level, and whole-
molecule structure in one unified framework.

Example 4.8 (Estradiol (C18H24O2) as a Molecular 4-SuperHyperGraph). Estradiol is a primary female sex
hormone with formula C18H24O2, regulating reproductive and secondary sexual characteristics (cf. [78, 111]).
Let the base set of bonds (level 0) be

𝑉0 = {𝑏1 = 𝐶1−𝐶2, 𝑏2 = 𝐶2−𝐶3, 𝑏3 = 𝐶3−𝐶4, 𝑏4 = 𝐶4−𝐶5, 𝑏5 = 𝐶5−𝐶6, 𝑏6 = 𝐶6−𝐶7, 𝑏7 = 𝐶7−𝐶8, 𝑏8 = 𝐶8−𝐶9,

𝑏9 = 𝐶9−𝐶10, 𝑏10 = 𝐶10−𝐶5, 𝑏11 = 𝐶8−𝐶11, 𝑏12 = 𝐶11−𝐶12, 𝑏13 = 𝐶12−𝐶13, 𝑏14 = 𝐶13−𝐶14, 𝑏15 = 𝐶14−𝐶15,

𝑏16 = 𝐶15−𝐶8, 𝑏17 = 𝐶3−𝑂1, 𝑏18 = 𝐶17−𝑂2, 𝑏19 = 𝑂2−𝐻18}.

First-level functional groups (1-supernodes in P1 (𝑉0)) are

𝐹𝐴 = {𝑏1, 𝑏2, 𝑏3, 𝑏4}, 𝐹𝐵 = {𝑏4, 𝑏5, 𝑏6, 𝑏7}, 𝐹𝐶 = {𝑏7, 𝑏8, 𝑏11, 𝑏10},

𝐹𝐷 = {𝑏10, 𝑏9, 𝑏8, 𝑏6}, 𝐹OH-3 = {𝑏17}, 𝐹OH-17 = {𝑏18, 𝑏19}.

Second-level moieties (2-supernodes in P2 (𝑉0)) are

𝑀rings = {𝐹𝐴, 𝐹𝐵, 𝐹𝐶 , 𝐹𝐷},

𝑀hydroxyl = {𝐹OH-3, 𝐹OH-17}.

Third-level super-moieties (3-supernodes in P3 (𝑉0)) are

𝑆core = {𝑀rings },

𝑆functional = {𝑀hydroxyl }.

Fourth-level supernodes (4-supernodes in P4 (𝑉0)) are

𝑈1 = { 𝑆core }, 𝑈2 = { 𝑆functional }.

Then the molecular 4-SuperHyperGraph is

𝑉𝐻 = {𝑈1, 𝑈2}, 𝐸𝐻 =
{
{𝑈1, 𝑈2}

}
.

Labeling functions assign:
ℓ𝐻𝑉 (𝑈1) = “Steroid nucleus (rings A–D)”,

ℓ𝐻𝑉 (𝑈2) = “Hydroxyl groups at C3 and C17”,

ℓ𝐻𝐸 ({𝑈1,𝑈2}) = “Estradiol molecule”.

This construction captures:

• Level 0 (bonds): individual C–C, C–O, and O–H bonds;

• Level 1 (functional groups): four fused rings A–D and two hydroxyl attachments;

• Level 2 (moieties): the complete ring system vs. the hydroxyl functionalities;

• Level 3 (super-moieties): core steroid framework vs. functional group assembly;

• Level 4 (4-supernodes): top-level partition into nucleus and functional modules, connected by a single
superedge representing the full Estradiol molecule.
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Theorem 4.9 (Level-Flattening Theorem). Let 𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ𝑉 , ℓ𝐸) be a molecular 𝑛-SuperHyperGraph
over the base bond set 𝑉0. For each 𝑘 with 0 ≤ 𝑘 ≤ 𝑛, define the 𝑘-flattening map

𝜑𝑘 : P𝑛 (𝑉0) −→ P 𝑛−𝑘 (𝑉0), 𝑋 ↦→
⋃
𝑌 ∈𝑋

𝑌,

applied recursively 𝑘 times. Then

𝐻 (𝑛−𝑘 ) =
(
𝜑𝑘 (𝑉𝐻 ), 𝜑𝑘 (𝐸𝐻 ), ℓ𝑉 ◦ 𝜑𝑘 , ℓ𝐸 ◦ 𝜑𝑘

)
is a well-defined molecular (𝑛 − 𝑘)-SuperHyperGraph.

Proof. Since 𝑉𝐻 ⊆ P𝑛 (𝑉0) and 𝐸𝐻 ⊆ P𝑛 (𝑉0), applying 𝜑𝑘 yields 𝜑𝑘 (𝑉𝐻 ) ⊆ P𝑛−𝑘 (𝑉0) and 𝜑𝑘 (𝐸𝐻 ) ⊆
P𝑛−𝑘 (𝑉0). The composites ℓ𝑉 ◦𝜑𝑘 and ℓ𝐸◦𝜑𝑘 remain valid labeling functions (their codomains are unchanged).
Thus all axioms of a molecular (𝑛 − 𝑘)-SuperHyperGraph hold by construction. In particular:

• The new vertex set is a collection of (𝑛 − 𝑘)-supernodes.

• The new edge set is a collection of (𝑛 − 𝑘)-superedges.

• Labels remain consistent under flattening.

Hence 𝐻 (𝑛−𝑘 ) satisfies the definition of a molecular (𝑛 − 𝑘)-SuperHyperGraph. □

Theorem 4.10 (Connectivity Equivalence). Let 𝐻 be a molecular 𝑛-SuperHyperGraph and let 𝐻 (0) be its
0-flattening (the underlying molecular hypergraph). Then 𝐻 is connected (in the sense that its primal graph is
connected) if and only if 𝐻 (0) is connected.

Proof. Recall that the primal graph 𝐺 (𝐻) of a hypergraph 𝐻 has the same vertex set, with an ordinary edge
between two vertices whenever they appear together in some hyperedge. Under each flattening step 𝜑𝑘 , the
condition “two (𝑛 − 𝑘)-supernodes appear in a common (𝑛 − 𝑘)-superedge” is exactly the image of “two
𝑛-supernodes appear in a common 𝑛-superedge.” Hence adjacency relations in 𝐺 (𝐻) are preserved through
flattening down to 𝐺 (𝐻 (0) ). Therefore any path in 𝐺 (𝐻) projects to a path in 𝐺 (𝐻 (0) ) and vice versa.
Connectedness is thus equivalent at all levels. □

Theorem 4.11 (Bond-Coverage Theorem). In any molecular 𝑛-SuperHyperGraph 𝐻 over base bond set 𝑉0,
every bond identifier 𝑏 ∈ 𝑉0 is covered by the union of the flattened superedges:⋃

𝑒∈𝐸𝐻

𝜑𝑛 (𝑒) = 𝑉0.

Proof. We prove by induction on 𝑛.

Base case 𝑛 = 0: Then 𝐻 is a molecular hypergraph (𝑉𝐻 , 𝐸𝐻 ) over 𝑉0, and by definition of a molecular
hypergraph each bond appears in at least one atomic hyperedge. Hence

⋃
𝑒∈𝐸𝐻

𝑒 = 𝑉0.

Inductive step: Assume true for 𝑛 − 1. Let 𝐻 be a molecular 𝑛-SHG. Form its 1-flattening 𝐻′ which is a
molecular (𝑛 − 1)-SHG. By induction, ⋃

𝑒′∈𝐸𝐻′

𝜑𝑛−1 (𝑒′) = 𝑉0

. But
𝐸𝐻′ = 𝜑1 (𝐸𝐻 )

and
𝜑𝑛−1 ◦ 𝜑1 = 𝜑𝑛

. Therefore ⋃
𝑒∈𝐸𝐻

𝜑𝑛 (𝑒) =
⋃

𝑒′∈𝐸𝐻′

𝜑𝑛−1 (𝑒′) = 𝑉0.

This completes the induction. □
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Theorem 4.12 (Induced Sub-SuperHyperGraph Theorem). Let𝐻 = (𝑉𝐻 , 𝐸𝐻 , ℓ𝑉 , ℓ𝐸) be a molecular 𝑛-SuperHyperGraph
over base bond set 𝑉0, and let 𝐵 ⊆ 𝑉0 be any nonempty subset of bonds. Define

𝑉 ′ = { 𝑣 ∈ 𝑉𝐻 : 𝑣 ⊆ P𝑛 (𝐵) }, 𝐸 ′ = { 𝑒 ∈ 𝐸𝐻 : 𝑒 ⊆ P𝑛 (𝐵) }.

Then
𝐻 [𝐵] = (𝑉 ′, 𝐸 ′, ℓ𝑉 |𝑉 ′ , ℓ𝐸 |𝐸′ )

is itself a well-defined molecular 𝑛-SuperHyperGraph over 𝐵.

Proof. Since 𝑉𝐻 ⊆ P𝑛 (𝑉0), any 𝑣 ∈ 𝑉𝐻 satisfying 𝑣 ⊆ P𝑛 (𝐵) must lie in P𝑛 (𝐵). Hence 𝑉 ′ ⊆ P𝑛 (𝐵).
Similarly 𝐸 ′ ⊆ P𝑛 (𝐵). The restricted labeling functions ℓ𝑉 |𝑉 ′ and ℓ𝐸 |𝐸′ still map into the same label sets and
assign the same chemical interpretations. All defining axioms of an 𝑛-SuperHyperGraph hold on 𝑉 ′, 𝐸 ′ by
closure under subset, so 𝐻 [𝐵] is a molecular 𝑛-SuperHyperGraph over the smaller bond set 𝐵. □

Theorem 4.13 (Label-Preservation Under Flattening). Let 𝐻 be a molecular 𝑛-SuperHyperGraph and let 𝜑𝑘

be the 𝑘-flattening map from level 𝑛 to 𝑛 − 𝑘 . Then for every supernode 𝑣 ∈ 𝑉𝐻 ,

ℓ𝑉 (𝑣) = ℓ𝑉
(
𝜑𝑘 (𝑣)

)
,

and similarly ℓ𝐸 (𝑒) = ℓ𝐸 (𝜑𝑘 (𝑒)) for every superedge 𝑒 ∈ 𝐸𝐻 . In other words, flattening does not alter any
labels.

Proof. By definition of 𝜑𝑘 , we have 𝜑𝑘 : P𝑛 (𝑉0) → P𝑛−𝑘 (𝑉0) and labels are assigned only by the map ℓ𝑉 or
ℓ𝐸 on the original set elements. Because ℓ𝑉 and ℓ𝐸 depend solely on the chemical identity of the collection
(and not on its nesting depth), applying 𝜑𝑘 does not change the underlying set whose label is being queried.
Hence ℓ𝑉 (𝑣) = ℓ𝑉 (𝜑𝑘 (𝑣)) and likewise for ℓ𝐸 . □

Theorem 4.14 (Atomic-Degree Bound Theorem). Let 𝐻 be a molecular 𝑛-SuperHyperGraph, and let 𝐺 (𝐻)
be its primal graph on supernodes 𝑉𝐻 . Then for any supernode 𝑣 ∈ 𝑉𝐻 ,

deg𝐺 (𝐻 ) (𝑣) ≤
��{ 𝑒 ∈ 𝐸𝐻 : 𝑣 ⊆ 𝑒}

�� × (|𝑒 | − 1),

where |𝑒 | is the cardinality of the superedge 𝑒. In particular, each supernode’s degree is bounded by the number
and sizes of superedges containing it.

Proof. By construction, 𝐺 (𝐻) connects two distinct supernodes 𝑣, 𝑤 whenever there exists some superedge
𝑒 ∈ 𝐸𝐻 with {𝑣, 𝑤} ⊆ 𝑒. Fix 𝑣. For each superedge 𝑒 containing 𝑣, 𝑣 acquires edges in 𝐺 (𝐻) to each of the
other |𝑒 | − 1 nodes in 𝑒. Summing over all such 𝑒 yields the stated bound. Since an edge in 𝐺 (𝐻) may be
counted multiple times if two superedges share the same pair {𝑣, 𝑤}, this is an upper bound. □

Theorem 4.15 (Hierarchical Partition Refinement). In a molecular 𝑛-SuperHyperGraph 𝐻, the collection of
supernodes at level 𝑘 𝜑𝑛−𝑘 (𝑉𝐻 ) ⊆ P𝑘 (𝑉0) forms a partition of 𝑉0 that refines the partition obtained at level
𝑘 − 1. That is, every 𝑘-flattened supernode is contained in exactly one (𝑘 − 1)-flattened supernode.

Proof. Level 𝑛-supernodes 𝑉𝐻 ⊆ P𝑛 (𝑉0) cover 𝑉0 by the Bond-Coverage Theorem. Applying 𝜑𝑛−𝑘 yields
𝜑𝑛−𝑘 (𝑉𝐻 ) ⊆ P𝑘 (𝑉0). Since

⋃
𝑣∈𝑉𝐻

𝜑𝑛 (𝑣) = 𝑉0 and each 𝑣 flattens to a unique set in P0 (𝑉0), the families
at intermediate levels cover 𝑉0 without overlap beyond set-inclusion. Moreover, if 𝑋 ∈ 𝜑𝑛−𝑘 (𝑉𝐻 ) and
𝑌 ∈ 𝜑𝑛−(𝑘−1) (𝑉𝐻 ), then 𝑋 ⊆ 𝑌 by the recursive definition of 𝜑. Hence the 𝑘-level partition refines the
(𝑘 − 1)-level partition. □
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5 Conclusion and Future Works

This paper has examined the formal definitions, illustrative examples, and structural properties of Molecular
Hypergraphs and Molecular 𝑛-SuperHypergraphs, providing a rigorous foundation for modeling hierarchical
biochemical interactions. We hope that future work will further advance experimental, mathematical, and
chemical investigations into these frameworks.

As part of our future research agenda, we intend to explore extensions of the Molecular Hypergraph and Molec-
ular 𝑛-SuperHypergraph frameworks by integrating advanced uncertainty-handling methodologies. These in-
clude Fuzzy Sets [124, 125], Intuitionistic Fuzzy Sets [9, 10], Vague Sets [5, 47], Rough Sets [87, 88], Bipolar
Fuzzy Sets [4], HyperFuzzy Sets [29,60,104], Picture Fuzzy Sets [20,55], Hesitant Fuzzy Sets [106,107], and
Neutrosophic Sets [98, 103].

We also plan to investigate their more recent extensions, such as Quadripartitioned Neutrosophic Sets [44,
65, 121], Plithogenic Sets [35, 41, 42], and HyperPlithogenic Sets [36–38]. These integrations aim to enrich
the expressive power of the models and extend their applicability to increasingly complex and hierarchically
uncertain systems in both theoretical and applied domains.

Furthermore, as a future direction, we hope to explore extended concepts of the present paper by incorporating
structures such as directed graphs [32], bidirected graphs [14, 49, 120], and multidirected graphs [?, 85].

The paper has been solely authored by the corresponding author at this stage.
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