
Graph theory is a core branch of mathematics concerned with representing and analyzing relationships among
discrete elements. These concepts are widely used in fields such as electrical engineering. For example, graphs
play a crucial role in important frameworks including Graph Signal Processing, Electric Circuits, and Bond
Graphs.

A hypergraph generalizes the concept of a traditional graph by allowing edges—called hyperedges—to connect
more than two vertices simultaneously [16]. A superhypergraph further extends this idea by incorporating recur-
sively defined powerset layers, enabling hierarchical and self-referential relationships among hyperedges [105].

In this paper, we extend the frameworks of Graph Signal Processing, Electric Circuits, and Bond Graphs using
hypergraphs and superhypergraphs, and investigate their mathematical properties and illustrative examples.
These extensions enable the representation of hierarchical structures inherent in Graph Signal Processing,
Electric Circuits, and Bond Graphs, providing a more expressive modeling framework. We anticipate that
future research will advance computational experiments and practical applications in these domains.
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1 Introduction

1.1 Hypergraphs and Superhypergraphs

Graph theory is a core branch of mathematics concerned with representing and analyzing relationships among
discrete elements using abstract structures known as graphs, where entities (called vertices) are connected by
links (called edges) [24–26]. Due to the intuitive and visual nature of graphs, which allows complex systems
to be illustrated clearly, they have been widely applied and actively studied in numerous fields, including graph
neural networks [45, 56, 57] and beyond. Classical graphs are limited to modeling pairwise relationships, yet
many natural and engineered systems involve complex interactions among multiple entities that cannot be fully
described using only binary connections. To overcome this limitation, the theory of graphs has been expanded
to include the framework of hypergraphs and, more recently, superhypergraphs [36, 104].

A hypergraph is a generalization of a traditional graph in which a single edge—called a hyperedge—can
simultaneously connect an arbitrary number of vertices [16,19,20,33]. This structure enables more expressive
modeling of phenomena involving group-level interactions, such as metabolic networks, task teams, or symptom
clusters in medical diagnostics. Furthermore, hypergraphs have been extended and studied in various forms,
including Directed Hypergraphs [44,64,78], Regular Hypergraphs [28,29], Complete Hypergraphs [14,77,110],
Fuzzy Hypergraphs [32, 76, 99], and Neutrosophic Hypergraphs [5, 7, 71].

Building upon the hypergraph concept, a superhypergraph incorporates additional layers of abstraction by
iteratively applying the powerset operation to the vertex set [5, 40, 104, 105]. This results in recursively nested
structures that can capture not only hyperedges over sets of vertices, but also interactions among groups of
hyperedges themselves. Such higher-order formalisms are particularly suited for representing hierarchical,
modular, or multi-scale systems in science and engineering (cf. [21, 52, 53]).
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1.2 Graphs in Electrical Engineering, Physics, and Chemistry

Graph theory provides a powerful framework that can be applied across a wide range of disciplines, including
electrical engineering, physics, and chemistry (cf. [30,31,72]). In this paper, we investigate extensions of Graph
Signal Processing, Electric Circuits, and Bond Graphs through the lens of hypergraphs and superhypergraphs.

Signal Processing involves analyzing, modifying, and extracting information from signals such as sound,
images, or data [9, 55, 74]. Graph Signal Processing extends this idea by analyzing signals defined on
the vertices of a graph using spectral methods [70, 80, 111]. Electric Circuits model the flow of electrical
current through interconnected components [112]. A related concept known as the Circuit Graph represents
circuits as graphs (cf. [120, 125]). Bond Graphs are graphical models that represent energy exchange across
different physical domains, such as mechanical, electrical, thermal, and hydraulic systems, within a unified
formalism [18, 49].

Beyond the concepts mentioned above, many other graph-theoretic models and their applications have been
studied. These include the Chemical Graph [41, 46, 121, 123], which represents molecules and their bonds;
the Interaction Graph, used in dynamical systems and particle interactions [8, 73]; and the Feynman Graph,
central to quantum field theory and particle physics [17, 94]. These examples demonstrate the versatility and
broad applicability of graph theory across scientific domains.

1.3 Our Contribution

As mentioned earlier, the principles of graph theory can be broadly applied to various domain-specific graph
models. In this paper, we extend the frameworks of Graph Signal Processing, Electric Circuits, and Bond
Graphs using hypergraphs and superhypergraphs, and investigate their underlying mathematical properties
along with illustrative examples. It should be noted that this paper focuses exclusively on theoretical aspects.
We hope that future computational or circuit-based experiments will be conducted by interested researchers to
further explore and validate the proposed frameworks.

2 Preliminaries and Definitions

This section provides an overview of the fundamental concepts and definitions essential for the discussions in
this paper. Throughout this paper, we restrict our attention to finite structures.

2.1 Power Set

We provide the definitions of the Base Set, the Powerset, and the n-th Powerset as follows.

Definition 2.1 (Base Set). A base set 𝑆 is the foundational set from which complex structures such as powersets
and hyperstructures are derived. It is formally defined as:

𝑆 = {𝑥 | 𝑥 is an element within a specified domain}.

All elements in constructs like P(𝑆) or P𝑛 (𝑆) originate from the elements of 𝑆.

Definition 2.2 (Powerset). [35, 97] The powerset of a set 𝑆, denoted P(𝑆), is the collection of all possible
subsets of 𝑆, including both the empty set and 𝑆 itself. Formally, it is expressed as:

P(𝑆) = {𝐴 | 𝐴 ⊆ 𝑆}.

Definition 2.3 (𝑛-th Powerset). (cf. [34, 35, 101, 106])

The 𝑛-th powerset of a set 𝐻, denoted 𝑃𝑛 (𝐻), is defined iteratively, starting with the standard powerset. The
recursive construction is given by:

𝑃1 (𝐻) = 𝑃(𝐻), 𝑃𝑛+1 (𝐻) = 𝑃(𝑃𝑛 (𝐻)), for 𝑛 ≥ 1.

Similarly, the 𝑛-th non-empty powerset, denoted 𝑃∗
𝑛 (𝐻), is defined recursively as:

𝑃∗
1 (𝐻) = 𝑃∗ (𝐻), 𝑃∗

𝑛+1 (𝐻) = 𝑃∗ (𝑃∗
𝑛 (𝐻)).

Here, 𝑃∗ (𝐻) represents the powerset of 𝐻 with the empty set removed.
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2.2 SuperHyperGraph

In classical graph theory, a hypergraph extends the idea of a conventional graph by permitting edges—called
hyperedges—to join more than two vertices. This broader framework enables the modeling of more intricate
relationships between elements, thereby enhancing its utility in various fields [16, 33, 50, 51]. A SuperHyper-
Graph is an advanced extension of the hypergraph concept, integrating recursive powerset structures into the
classical model. This concept has been recently introduced and extensively studied in the literature [1,43,75,85].

Definition 2.4 (Hypergraph). [16, 19] A hypergraph 𝐻 = (𝑉 (𝐻), 𝐸 (𝐻)) consists of:

• A nonempty set 𝑉 (𝐻) of vertices.

• A set 𝐸 (𝐻) of hyperedges, where each hyperedge is a nonempty subset of 𝑉 (𝐻), thereby allowing
connections among multiple vertices.

Unlike standard graphs, hypergraphs are well-suited to represent higher-order relationships. In this paper, we
restrict ourselves to the case where both 𝑉 (𝐻) and 𝐸 (𝐻) are finite.

Definition 2.5 (n-SuperHyperGraph). [36, 39, 104, 105]
Let 𝑉0 be a finite base set of vertices. For each integer 𝑘 ≥ 0, define the iterative powerset by

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P(P𝑘 (𝑉0)),

where P(·) denotes the usual powerset operation. An n-SuperHyperGraph is then a pair

SHT(𝑛) = (𝑉, 𝐸),

with
𝑉 ⊆ P𝑛 (𝑉0) and 𝐸 ⊆ P𝑛 (𝑉0).

Each element of 𝑉 is called an n-supervertex and each element of 𝐸 an n-superedge.

Example 2.6 (Microgrid Power Flow as a 2-SuperHyperGraph). Microgrid Power Flow refers to the distribution
of electrical energy among generation, storage, and load units within a localized microgrid system (cf. [23,68,
95]). Consider a simple microgrid in electrical engineering, with base components

𝑉0 =
{
SP, WT , BS, RL, CL

}
,

where SP = Solar Panels, WT = Wind Turbine, BS = Battery Storage, RL = Residential Load, and CL =
Commercial Load. We form the 2-SuperHyperGraph SHT(2) = (𝑉 (2) , 𝐸 (2) ) by setting

𝑉 (2) =
{
{{SP,WT ,BS}}, {{RL,CL}}

}
⊆ P2 (𝑉0),

𝐸 (2) =
{
𝑒 =

{
{SP,WT ,BS}, {RL,CL}

}}
⊆ P2 (𝑉0) \ {∅}.

Here each element of 𝑉 (2) is a 2-supervertex representing a cluster of devices or loads; the single 2-superedge
𝑒 captures the power-flow event from the generation/storage cluster {{SP,WT ,BS}} to the combined load
cluster {{RL,CL}}. This hierarchical model reflects the nested grouping of components and their simultaneous
interaction in a microgrid.

2.3 Graph Signal Processing

Graph Signal Processing analyzes data defined on graph nodes using spectral methods and graph-based
transformations like filtering and shifting [27,67,79,81]. If we are to define it explicitly, it would be as follows.

Definition 2.7 (Graph Signal Processing). Let 𝐺 = (𝑉, 𝐸) be a simple graph with |𝑉 | = 𝑁 . A graph signal is
a function 𝑥 : 𝑉 → R, represented by the vector x = [𝑥(𝑣1) · · · 𝑥(𝑣𝑁 )]⊤ ∈ R𝑁 . Choose a graph shift operator
F ∈ R𝑁×𝑁 (e.g. the adjacency matrix A or the Laplacian L = D − A). Then:

(Graph shifting) x′ = F x.

Since F is (for instance) diagonalizable as F = V𝚲V−1, the graph Fourier transform (GFT) of x is

x̂ = V x, x = V−1 x̂,

where columns of V are eigenvectors of F and the entries of 𝚲 are the associated graph frequencies.
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Example 2.8 (Path Graph Temperature Sensor Network). Temperature Sensor Networks are systems of dis-
tributed sensors that monitor, collect, and transmit temperature data across environments for analysis and control
(cf. [63,83,84,126]). Consider the path graph𝐺 = (𝑉, 𝐸) with𝑉 = {1, 2, 3, 4} and edges {(1, 2), (2, 3), (3, 4)}.
We use the combinatorial Laplacian L = D − A as the graph shift operator, where

A =

©­­­«
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

ª®®®¬ , D = diag(1, 2, 2, 1).

Its eigen-decomposition L = U𝚲U⊤ yields

U =

©­­­«
0.372 0.602 0.602 0.372
0.602 0.372 −0.372 −0.602
0.602 −0.372 −0.372 0.602
0.372 −0.602 0.602 −0.372

ª®®®¬ , 𝚲 = diag
(
0.382, 1.382, 2.618, 3.618

)
.

Now let the graph signal represent temperature readings: x = [1, 2, 3, 4]⊤ (in °C). Its graph Fourier transform
is

x̂ = U⊤ x ≈
©­­­«

4.866
−2.176
1.149
−0.514

ª®®®¬ .
These coefficients �̂�𝑘 quantify the components of x at the graph frequencies 𝜆𝑘 .

Hypergraph Signal Processing extends graph signal analysis to hypergraphs, using high-order tensors and
spectral methods for multi-node interactions [15, 89, 109, 130].

Definition 2.9 (Hypergraph Signal Processing). Let 𝐻 = (𝑉, 𝐸) be a hypergraph with |𝑉 | = 𝑁 vertices
and maximum hyperedge size m.c.e.(𝐻) = 𝑀 . Hypergraph Signal Processing (HGSP) on 𝐻 comprises the
following components:

1. Adjacency tensor A ∈ R

𝑁 × · · · × 𝑁︸         ︷︷         ︸
𝑀 times : if 𝑒ℓ = {𝑣𝑙1 , . . . , 𝑣𝑙𝑐 } ∈ 𝐸 has 𝑐 ≤ 𝑀 , then for any index tuple

(𝑖1, . . . , 𝑖𝑀 ) that picks exactly those 𝑐 vertices (with the remaining 𝑀 − 𝑐 indices drawn from the same
set),

A𝑖1 · · ·𝑖𝑀 = 𝑐

( ∑︁
𝑘1 ,...,𝑘𝑐≥1∑𝑐

𝑖=1 𝑘𝑖=𝑀

𝑀!
𝑘1! 𝑘2! · · · 𝑘𝑐!

)−1

,

and A𝑖1 · · ·𝑖𝑀 = 0 otherwise.

2. Hypergraph signal: start with a vertex-domain signal s = [𝑠1, . . . , 𝑠𝑁 ]⊤ ∈ R𝑁 , and form the (𝑀−1)th-
order signal tensor

S = s ◦ s ◦ · · · ◦ s︸         ︷︷         ︸
𝑀−1 times

∈ R

𝑁 × · · · × 𝑁︸         ︷︷         ︸
𝑀−1 times .

3. Signal shifting: the filtered (shifted) signal is obtained by contracting A with S:

S′ = A ×𝑀 S,

where “×𝑀” denotes the 𝑀th-mode product, generalizing s′ = Fs in graph SP.

4. Hypergraph Fourier transform: assume an orthogonal CANDECOMP/PARAFAC decomposition

A =

𝑅∑︁
𝑟=1

𝜆𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀 times

, ⟨f𝑟 , f𝑠⟩ = 𝛿𝑟𝑠 .
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Then the HGFT of S is the vector Ŝ ∈ R𝑅 with components

Ŝ𝑟 =
〈
S, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉
,

whose entries 𝜆𝑟 serve as the “hypergraph frequencies.

Example 2.10 (Hypergraph Signal Processing on a 3-Uniform Collaboration Hypergraph). Consider the
hypergraph 𝐻 = (𝑉, 𝐸) defined by

𝑉 = {Alice, Bob, Carol, Dave}, 𝐸 =
{
{Alice,Bob,Carol}, {Bob,Carol,Dave}

}
,

so that m.c.e.(𝐻) = 3. Assign to each vertex the “publication count” signal

s =


10
15
8
12

 ∈ R4.

Since 𝑀 = 3, the adjacency tensor A ∈ R4×4×4 has nonzero entries precisely when {𝑖, 𝑗 , 𝑘} ∈ 𝐸 :

A𝑖, 𝑗 ,𝑘 = 3
( 3!
1! 1! 1!

)−1
=

3
6
= 0.5,

and A𝑖, 𝑗 ,𝑘 = 0 otherwise.

Form the hypergraph signal tensor S ∈ R4×4 by

S𝑖, 𝑗 = 𝑠𝑖 𝑠 𝑗 ,

so that for example SAlice,Bob = 10 × 15 = 150.

The shifted (filtered) signal S′ = A ×3 S ∈ R4×4 is given by

S′
𝑖, 𝑗 =

4∑︁
𝑘=1

A𝑖, 𝑗 ,𝑘 𝑠𝑘 .

Hence, for example,

S′
Alice,Bob = AAlice,Bob,Carol × 𝑠Carol = 0.5 × 8 = 4, S′

Bob,Carol = 0.5 × 10 + 0.5 × 12 = 11.

2.4 Electric Circuit

An electric circuit is a closed loop that allows electric current to flow through connected electrical components
using conductors [11, 86, 98, 100].

Definition 2.11 (Electric Circuit). An electric circuit is a pair (𝐺, E) where:

• 𝐺 = (𝑉, 𝐸) is a finite, connected, oriented multigraph with vertex set𝑉 and edge set 𝐸 . Each edge 𝑒 ∈ 𝐸

has a chosen direction.

• E is a collection of circuit elements assigning to each edge 𝑒 ∈ 𝐸 a voltage–current relation

E(𝑒) : (𝑣𝑒, 𝑖𝑒) ↦→ 0,

such as Ohm’s law for a resistor 𝑒: 𝑣𝑒 − 𝑅𝑒 𝑖𝑒 = 0.

We associate to 𝐺 its incidence matrix 𝐴 ∈ {−1, 0, 1} |𝑉 |× |𝐸 | , where

𝐴𝑛,𝑒 =


+1, if edge 𝑒 leaves node 𝑛,

−1, if edge 𝑒 enters node 𝑛,

0, otherwise.

A state of the circuit consists of functions 𝑖 : 𝐸 → R (branch currents) and 𝑣 : 𝐸 → R (branch voltages)
satisfying:
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1. Kirchhoff’s Current Law (KCL):
𝐴 i = 0,

meaning the algebraic sum of currents at each node is zero.

2. Kirchhoff’s Voltage Law (KVL): there exists a node–potential vector u ∈ R |𝑉 | such that

v = 𝐴⊤ u,

so the sum of voltage drops around any closed loop vanishes.

3. Element Constitutive Relations: for each 𝑒 ∈ 𝐸 , E(𝑒) (𝑣𝑒, 𝑖𝑒) = 0.

Together, these equations define the network equations of the circuit.

Example 2.12 (Resistive Network). A Resistive Network is an electrical circuit composed of interconnected
resistors used to control voltage, current, and power distribution (cf. [65, 69]). Let 𝐺 = (𝑉, 𝐸) be a connected
graph with 𝑉 = {1, 2, 3}, 𝐸 = {𝑒12, 𝑒23, 𝑒31}, each edge a resistor of resistance 𝑅𝑖 𝑗 . Then:

i = (𝑖12, 𝑖23, 𝑖31)⊤, v = (𝑣12, 𝑣23, 𝑣31)⊤,

and the incidence matrix is

𝐴 =
©­«
+1 0 −1
−1 +1 0
0 −1 +1

ª®¬ .
KCL: 𝐴 i = 0.
KVL: v = 𝐴⊤u for node potentials u = (𝑢1, 𝑢2, 𝑢3)⊤.
Ohm’s law on each edge 𝑒𝑖 𝑗 : 𝑣𝑖 𝑗 − 𝑅𝑖 𝑗 𝑖𝑖 𝑗 = 0. Solving these yields the currents and potentials in the network.

2.5 Bond graphs

Bond graphs are a domain-independent formalism for modeling the transfer and storage of energy in multi-
domain physical systems [48,82,115,116]. They consist of two kinds of vertices—element nodes and junction
nodes—connected by bonds carrying conjugate variables effort 𝑒 and flow 𝑓 .

Definition 2.13 (Bond Graph). [48, 115, 116] A bond graph is an undirected graph

𝐺 = (𝑉, 𝐸),

where

• 𝑉 = 𝑉elem ¤∪ 𝑉junc, a disjoint union of

– Element nodes 𝑉elem = 𝑉𝑆𝑒 ¤∪𝑉𝑆 𝑓 ¤∪𝑉𝑅 ¤∪𝑉𝐶 ¤∪𝑉𝐼 ¤∪𝑉𝑇𝐹 ¤∪𝑉𝐺𝑌 ,
– Junction nodes 𝑉junc = 𝑉0 ¤∪𝑉1,

• 𝐸 ⊆
{
{𝑢, 𝑣} : 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣

}
is the set of bonds, each representing a single power port connection.

Each bond {𝑢, 𝑣} ∈ 𝐸 carries two variables:

𝑒 (effort), 𝑓 (flow), with instantaneous power 𝑃 = 𝑒 𝑓 .

Element nodes denote:

• 𝑆𝑒: effort source (e.g. voltage, force),

• 𝑆 𝑓 : flow source (e.g. current, velocity),

• 𝑅: resistance (energy dissipation),

• 𝐶: capacitance (potential energy storage),
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• 𝐼: inertia (kinetic energy storage),

• 𝑇𝐹: transformer (scaling of effort and flow),

• 𝐺𝑌 : gyrator (cross-domain conversion of effort and flow).

Junction nodes denote:

• 0-junction: common effort, flows sum to zero,

• 1-junction: common flow, efforts sum to zero.

Example 2.14 (Bond Graph of a Series 𝑅–𝐶 Circuit). Consider a simple series circuit consisting of an effort
source 𝑆𝑒, a resistor 𝑅, and a capacitor 𝐶. Its bond-graph representation is:

𝑉elem = {𝑆𝑒, 𝑅, 𝐶}, 𝑉junc = { 1},

where “1” denotes a 1-junction (common flow, efforts sum to zero). The set of bonds is

𝐸 =
{
{𝑆𝑒, 1}, {𝑅, 1}, {𝐶, 1}

}
.

Each bond {𝑥, 1} carries conjugate variables effort 𝑒𝑥 and flow 𝑓𝑥 . At the 1-junction:

𝑓𝑆𝑒 = 𝑓𝑅 = 𝑓𝐶 = 𝑓 , 𝑒𝑆𝑒 + 𝑒𝑅 + 𝑒𝐶 = 0.

The constitutive relations on each element are:

𝑒𝑆𝑒 (𝑡) = 𝑢(𝑡), 𝑒𝑅 = 𝑅 𝑓 , 𝑓𝐶 = 𝐶
𝑑 𝑒𝐶

𝑑𝑡
.

Thus the bond graph fully captures the energy exchange: the same flow 𝑓 passes through all elements, while
the efforts across 𝑆𝑒, 𝑅, and 𝐶 sum to zero.

3 Result: 𝑛-SuperHyperGraph Signal Processing

SuperHypergraph Signal Processing generalizes signal analysis over nested multi-level hypergraphs using
tensor operations, spectral decomposition, and hierarchical shifting.

Definition 3.1 (𝑛-SuperHypergraph Signal Processing). Let SHT(𝑛) = (𝑉, 𝐸) be an 𝑛-SuperHyperGraph with
|𝑉 | = 𝑁𝑛 and maximum superedge cardinality

𝑀 = max
𝑒∈𝐸

|𝑒 |.

Define the adjacency tensor A ∈ R

𝑁𝑛 × · · · × 𝑁𝑛︸           ︷︷           ︸
𝑀 times by

A𝑖1 · · ·𝑖𝑀 =


𝑐

( ∑︁
𝑘1 ,...,𝑘𝑐≥1∑

𝑘𝑖=𝑀

𝑀!
𝑘1! · · · 𝑘𝑐!

)−1

if {𝑣𝑖1 , . . . , 𝑣𝑖𝑀 } enumerates superedge 𝑒 = {𝑤1, . . . , 𝑤𝑐},

0 otherwise,

where 𝑐 = |𝑒 | ≤ 𝑀 .

A signal on SHT(𝑛) is a vector s ∈ R𝑁𝑛 . Form the (𝑀 − 1)th-order signal tensor

S = s ◦ · · · ◦ s︸     ︷︷     ︸
𝑀−1 times

∈ R

𝑁𝑛 × · · · × 𝑁𝑛︸           ︷︷           ︸
𝑀−1 .
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The shifted signal is
S′ = A ×𝑀 S,

where ×𝑀 denotes the mode-𝑀 product. Finally, assume an orthogonal CANDECOMP/PARAFAC decompo-
sition

A =

𝑅∑︁
𝑟=1

𝜆𝑟 f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸
𝑀 times

, ⟨f𝑟 , f𝑠⟩ = 𝛿𝑟𝑠 .

The n-SuperHypergraph Fourier transform of S is the vector Ŝ ∈ R𝑅 with

Ŝ𝑟 =
〈
S, f𝑟 ◦ · · · ◦ f𝑟︸       ︷︷       ︸

𝑀 times

〉
.

Example 3.2 (2-SuperHypergraph Signal Processing on a Divisional Collaboration Structure). Let the base
set of employees be

𝑉0 = {Alice,Bob,Carol,Dave,Eve}.
Form the 1-supervertices (committees):

𝐶1 = {Alice,Bob}, 𝐶2 = {Carol,Dave,Eve}, 𝐶3 = {Bob,Carol},

and the 2-supervertices (divisions):

𝐷1 = {𝐶1, 𝐶2}, 𝐷2 = {𝐶2, 𝐶3}.

Define the 2-SuperHyperGraph SHT(2) = (𝑉, 𝐸) with

𝑉 = {𝐷1, 𝐷2}, 𝐸 =
{
{𝐷1, 𝐷2}

}
,

so that |𝑉 | = 2 and 𝑀 = 2.

Assign to each division the “active project count” signal

s =

[
5
7

] (
𝑠1 = 5, 𝑠2 = 7

)
.

Since 𝑀 = 2, the adjacency tensor A ∈ R2×2 has entries

A𝑖, 𝑗 =

{
1, if {𝐷𝑖 , 𝐷 𝑗 } = {𝐷1, 𝐷2},
0, otherwise,

i.e. A =

(
0 1
1 0

)
.

The (𝑀 − 1)th-order signal tensor is just the vector s. The shifted signal is

S′ = A s =
(
0 1
1 0

) (
5
7

)
=

(
7
5

)
.

Finally, the adjacency matrix admits the orthogonal eigen-decomposition

A = F
(
1 0
0 −1

)
F⊤, F =

1
√

2

(
1 1
1 −1

)
.

Hence the 2-SuperHypergraph Fourier transform of s is

ŝ = F⊤s =
1
√

2

(
1 1
1 −1

) (
5
7

)
=

( 12√
2

−2√
2

)
=

(
6
√

2

−
√

2

)
.

This example shows how 2-SuperHypergraph Signal Processing generalizes both graph and hypergraph signal
frameworks to a three-layer corporate structure.
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Example 3.3 (3-SuperHypergraph Signal Processing for Department Collaboration). Let the base set of
employees be

𝑉0 = {Alice,Bob,Carol}.
Form the 1-supervertices (committees):

𝐶1 = {Alice,Bob}, 𝐶2 = {Bob,Carol},

the 2-supervertices (divisions):
𝐷1 = {𝐶1}, 𝐷2 = {𝐶2},

and the 3-supervertices (departments):

𝐻1 = {𝐷1}, 𝐻2 = {𝐷2}, 𝐻3 = {𝐷1, 𝐷2}.

Define the 3-SuperHyperGraph SHT(3) = (𝑉, 𝐸) by

𝑉 = {𝐻1, 𝐻2, 𝐻3}, 𝐸 =
{
{𝐻1, 𝐻2, 𝐻3}

}
,

so that |𝑉 | = 3 and 𝑀 = 3.

Assign to each department the “active project count” signal

s =
©­­«
3
4
5

ª®®¬ .
The adjacency tensor A ∈ R3×3×3 has entries

A𝑖, 𝑗 ,𝑘 =


3∑

𝑘1+𝑘2+𝑘3=3
3!

𝑘1! 𝑘2! 𝑘3!
=

3
6
= 0.5, {𝑖, 𝑗 , 𝑘} = {1, 2, 3},

0, otherwise.

Form the order-2 signal tensor S ∈ R3×3 by
S𝑖, 𝑗 = 𝑠𝑖 𝑠 𝑗 ,

so that for instance S1,2 = 3 × 4 = 12. The shifted signal S′ = A ×3 S ∈ R3×3 has entries

S′
𝑖, 𝑗 =

3∑︁
𝑘=1

A𝑖, 𝑗 ,𝑘 𝑠𝑘 ,

giving

S′ =
©­­«

0 0.5 × 5 0.5 × 4
0.5 × 5 0 0.5 × 3
0.5 × 4 0.5 × 3 0

ª®®¬ =
©­­«

0 2.5 2.0
2.5 0 1.5
2.0 1.5 0

ª®®¬ .
Theorem 3.4 (GSP and HGSP as Special Cases). Let NSP(𝑛) denote the 𝑛-SuperHypergraph Signal Processing
above, with parameters 𝑛 and 𝑀 . Then:

1. If 𝑛 = 0, NSP(0) coincides with Hypergraph Signal Processing on the hypergraph 𝐻 = (𝑉0, 𝐸).

2. If moreover 𝑀 = 2, NSP(0) further reduces to Graph Signal Processing on the simple graph (𝑉0, 𝐸).

Proof. For 𝑛 = 0, one has 𝑉 ⊆ P0 (𝑉0) = 𝑉0 and 𝐸 ⊆ P0 (𝑉0) = 𝑉0, so SHT(0) is exactly a hypergraph on 𝑉0.
By construction, the adjacency tensor and all subsequent operations in NSP(0) agree with those of Hypergraph
Signal Processing.

If additionally 𝑀 = 2, then all superedges have size at most 2, so A is a matrix (order-2 tensor). The
tensor definitions collapse to vector–matrix operations: S = s, S′ = A s, and the CANDECOMP/PARAFAC
decomposition reduces to the eigen-decomposition of A. These are precisely the definitions of Graph Signal
Processing. □
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Theorem 3.5 (Underlying 𝑛-SuperHyperGraph Structure). The 𝑛-SuperHypergraph Signal Processing NSP(𝑛)

is built intrinsically on the combinatorial structure of the 𝑛-SuperHyperGraph SHT(𝑛) .

Proof. By definition, every element of the domain𝑉 of signals is an 𝑛-supervertex in P𝑛 (𝑉0), and every nonzero
entry of the adjacency tensor A corresponds exactly to an 𝑛-superedge in 𝐸 ⊆ P𝑛 (𝑉0). All signal operations
(outer-product, mode products, tensor decompositions) are indexed by these supervertices and superedges.
Hence the entire signal-processing pipeline is a direct translation of the combinatorial data of SHT(𝑛) into
multilinear algebra, proving that NSP(𝑛) inherits and requires the full 𝑛-SuperHyperGraph structure. □

Theorem 3.6 (Spectral Diagonalization of the Shift Operator). Let A =
∑𝑅
𝑟=1 𝜆𝑟 (f𝑟 ◦· · ·◦f𝑟 ) be the orthogonal

CANDECOMP/PARAFAC decomposition of the adjacency tensor and let S′ = A×𝑀 S. Then for each spectral
component 𝑟 ,

Ŝ′
𝑟 = 𝜆𝑟 Ŝ𝑟 ,

where Ŝ𝑟 = ⟨S, f𝑟 ◦ · · · ◦ f𝑟 ⟩.

Proof. By definition,
Ŝ′
𝑟 =

〈
S′, f𝑟 ◦ · · · ◦ f𝑟

〉
=

〈
A ×𝑀 S, f⊗𝑀𝑟

〉
.

Using the multilinear contraction property,〈
A ×𝑀 S, f⊗𝑀𝑟

〉
=

〈
A, f⊗(𝑀−1)

𝑟 ◦ S×𝑀 f𝑟
〉
=

〈
A, f⊗𝑀𝑟

〉
Ŝ𝑟 .

But from the CP-decomposition, 〈
A, f⊗𝑀𝑟

〉
= 𝜆𝑟

〈
f⊗𝑀𝑟 , f⊗𝑀𝑟

〉
= 𝜆𝑟 ,

by orthonormality. Hence Ŝ′
𝑟 = 𝜆𝑟 Ŝ𝑟 . □

Theorem 3.7 (Inversion Formula). The collection {f⊗𝑀𝑟 }𝑅
𝑟=1 forms an orthonormal basis for the signal-tensor

space. Consequently, any signal tensor S admits the expansion

S =

𝑅∑︁
𝑟=1

Ŝ𝑟 (f𝑟 ◦ · · · ◦ f𝑟 ), Ŝ𝑟 =
〈
S, f⊗𝑀𝑟

〉
.

Proof. Orthonormality of the rank-one factors implies ⟨f⊗𝑀𝑟 , f⊗𝑀𝑠 ⟩ = 𝛿𝑟𝑠 . Any tensor in R𝑁
×(𝑀−1)
𝑛 can be

uniquely decomposed in this basis. The coefficients are given by the inner products Ŝ𝑟 . Summing over 𝑟 yields
the reconstruction formula. □

Theorem 3.8 (Parseval’s Identity). For any signal tensor S,

∥S∥2 =
∑︁

𝑖1 ,...,𝑖𝑀−1

S2
𝑖1 · · ·𝑖𝑀−1

=

𝑅∑︁
𝑟=1

(
Ŝ𝑟

)2
.

Proof. From the inversion formula, S =
∑
𝑟 Ŝ𝑟 f⊗𝑀𝑟 , so

∥S∥2 =

〈∑︁
𝑟

Ŝ𝑟 f⊗𝑀𝑟 ,
∑︁
𝑠

Ŝ𝑠 f⊗𝑀𝑠
〉
=

∑︁
𝑟 ,𝑠

Ŝ𝑟 Ŝ𝑠 ⟨f⊗𝑀𝑟 , f⊗𝑀𝑠 ⟩ =
∑︁
𝑟

(
Ŝ𝑟

)2
.

□

Theorem 3.9 (Filter Diagonalization). Let A =
∑𝑅
𝑟=1 𝜆𝑟 f⊗𝑀𝑟 be the orthogonal CANDECOMP/PARAFAC

decomposition of the adjacency tensor. For any real polynomial 𝑔(𝑡) = ∑𝐾
𝑘=0 𝑎𝑘 𝑡

𝑘 , define the filter operator

H =

𝐾∑︁
𝑘=0

𝑎𝑘 A ×𝑀 A ×𝑀 · · · ×𝑀 A︸                         ︷︷                         ︸
𝑘 times

∈ R

𝑁𝑛 × · · · × 𝑁𝑛︸           ︷︷           ︸
𝑀 times .

Then for any signal tensor S, �H ×𝑀 S𝑟 = 𝑔(𝜆𝑟 ) Ŝ𝑟 , 𝑟 = 1, . . . , 𝑅,
i.e. the filter acts as pointwise multiplication by 𝑔(𝜆𝑟 ) in the spectral domain.
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Proof. Since A×𝑘 =
∑𝑅
𝑟=1 𝜆

𝑘
𝑟 f⊗𝑀𝑟 by repeated application of the CP decomposition, it follows that

H =

𝐾∑︁
𝑘=0

𝑎𝑘 A×𝑘 =
𝑅∑︁
𝑟=1

( 𝐾∑︁
𝑘=0

𝑎𝑘𝜆
𝑘
𝑟

)
f⊗𝑀𝑟 =

𝑅∑︁
𝑟=1

𝑔(𝜆𝑟 ) f⊗𝑀𝑟 .

Hence for any S, �H ×𝑀 S𝑟 =
〈
H ×𝑀 S, f⊗𝑀𝑟

〉
= 𝑔(𝜆𝑟 ) ⟨S, f⊗𝑀𝑟

〉
= 𝑔(𝜆𝑟 ) Ŝ𝑟 .

□

Theorem 3.10 (Shift-Invariant Operator Characterization). A multilinear operator H : R𝑁
×(𝑀−1)
𝑛 → R𝑁

×(𝑀−1)
𝑛

commutes with the shift A ×𝑀 (·) if and only if it is simultaneously diagonalizable, i.e.,

H =

𝑅∑︁
𝑟=1

ℎ𝑟 f⊗𝑀𝑟 ,

for some scalars ℎ𝑟 . In this case, H ×𝑀 A = A ×𝑀 H .

Proof. (⇒) If H ◦ (A×𝑀 ) = (A×𝑀 ) ◦ H , then H preserves each one-dimensional eigenspace spanned by
f⊗𝑀𝑟 . By orthonormality, H(f⊗𝑀𝑟 ) = ℎ𝑟 f⊗𝑀𝑟 for some ℎ𝑟 .

(⇐) Conversely, if H =
∑

ℎ𝑟 f⊗𝑀𝑟 , then

H ×𝑀 A =

𝑅∑︁
𝑟=1

ℎ𝑟𝜆𝑟 f⊗𝑀𝑟 = A ×𝑀 H .

□

Theorem 3.11 (Operator Norm and Spectral Radius). Let 𝑇 : S ↦→ A ×𝑀 S be the shift operator. Then its
induced spectral norm equals the maximum absolute hypergraph frequency:

∥𝑇 ∥2 = max
1≤𝑟≤𝑅

��𝜆𝑟 ��.
Proof. Since 𝑇 is diagonalizable in the orthonormal basis {f⊗𝑀𝑟 }, its operator norm is the largest magnitude of
its eigen-values, which are exactly {𝜆𝑟 }𝑅𝑟=1. □

4 Result: Electric HyperCircuit

We define the concepts of the Electric HyperCircuit and the Electric SuperHyperCircuit, and provide concrete
examples and mathematical theorems to illustrate their structures and properties.

Definition 4.1 (Electric HyperCircuit). An electric hypercircuit is a pair (𝐻, E) where:

• 𝐻 = (𝑉, 𝐸, 𝐼, 𝜋, 𝜎) is a finite oriented hypergraph:

– 𝑉 is the set of nodes.
– 𝐸 is the set of hyperedges (multi-terminal elements).
– 𝐼 is a finite set of incidences, with surjections 𝜋 : 𝐼 → 𝑉 (attaching each incidence to a node) and

𝑒 : 𝐼 → 𝐸 (attaching each incidence to a hyperedge).
– 𝜎 : 𝐼 → {+1,−1} is an orientation on incidences.

• E = {E𝑒}𝑒∈𝐸 assigns to each hyperedge 𝑒 a constitutive relation

E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0, 𝑣𝑒 = (𝑣𝑘)𝑘∈𝐼𝑒 , 𝑖𝑒 = (𝑖𝑘)𝑘∈𝐼𝑒 ,

where 𝐼𝑒 = {𝑘 ∈ 𝐼 : 𝑒(𝑘) = 𝑒} is the set of incidences of 𝑒.
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A state of the hypercircuit consists of functions 𝑖 : 𝐼 → R (port currents) and 𝑣 : 𝐼 → R (port voltages)
satisfying:

1. Kirchhoff’s Current Law (KCL): ∑︁
𝑘∈𝐼: 𝜋 (𝑘 )=𝑛

𝑖(𝑘) = 0, ∀ 𝑛 ∈ 𝑉.

2. Kirchhoff’s Voltage Law (KVL): there exists a node-potential function 𝑢 : 𝑉 → R such that

𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
, ∀ 𝑘 ∈ 𝐼 .

3. Element Constitutive Relations: for each 𝑒 ∈ 𝐸 ,

E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0.

Example 4.2 (Common–Emitter BJT Amplifier as an Electric HyperCircuit). A Common–Emitter BJT Am-
plifier is a transistor circuit configuration that amplifies voltage signals with significant gain and phase inversion
(cf. [58, 59]). Consider the hypercircuit (𝐻, E) defined as follows:

Hypergraph structure 𝐻 = (𝑉, 𝐸, 𝐼, 𝜋, 𝑒, 𝜎):

𝑉 = {𝑉𝐶𝐶 , 𝐵, 𝐶, 𝐸}, 𝐸 = {𝑅𝐵, 𝑅𝐶 , 𝑇},

where
𝐼 = { 𝑘𝑉𝐶𝐶 ,𝑅𝐵

, 𝑘𝐵,𝑅𝐵
, 𝑘𝑉𝐶𝐶 ,𝑅𝐶

, 𝑘𝐶,𝑅𝐶
, 𝑘𝐵,𝑇 , 𝑘𝐶,𝑇 , 𝑘𝐸,𝑇 }.

The attachment maps are
𝜋(𝑘𝑉𝐶𝐶 ,𝑅𝐵

) = 𝑉𝐶𝐶 , 𝑒(𝑘𝑉𝐶𝐶 ,𝑅𝐵
) = 𝑅𝐵,

𝜋(𝑘𝐵,𝑅𝐵
) = 𝐵, 𝑒(𝑘𝐵,𝑅𝐵

) = 𝑅𝐵,

𝜋(𝑘𝑉𝐶𝐶 ,𝑅𝐶
) = 𝑉𝐶𝐶 , 𝑒(𝑘𝑉𝐶𝐶 ,𝑅𝐶

) = 𝑅𝐶 ,

𝜋(𝑘𝐶,𝑅𝐶
) = 𝐶, 𝑒(𝑘𝐶,𝑅𝐶

) = 𝑅𝐶 ,

𝜋(𝑘𝐵,𝑇 ) = 𝐵, 𝑒(𝑘𝐵,𝑇 ) = 𝑇,

𝜋(𝑘𝐶,𝑇 ) = 𝐶, 𝑒(𝑘𝐶,𝑇 ) = 𝑇,

𝜋(𝑘𝐸,𝑇 ) = 𝐸, 𝑒(𝑘𝐸,𝑇 ) = 𝑇.

Orient all incidences from the first-listed node to the second, so 𝜎(𝑘𝑋,𝑒) = +1 if 𝑋 is listed first, and −1
otherwise.

Constitutive relations E:

E𝑅𝐵
: 𝑣𝑅𝐵

− 𝑅𝐵 𝑖𝑅𝐵
= 0, 𝑣𝑅𝐵

= 𝑣(𝑘𝑉𝐶𝐶 ,𝑅𝐵
) − 𝑣(𝑘𝐵,𝑅𝐵

), 𝑖𝑅𝐵
= 𝑖(𝑘𝑉𝐶𝐶 ,𝑅𝐵

);
E𝑅𝐶

: 𝑣𝑅𝐶
− 𝑅𝐶 𝑖𝑅𝐶

= 0, 𝑣𝑅𝐶
= 𝑣(𝑘𝑉𝐶𝐶 ,𝑅𝐶

) − 𝑣(𝑘𝐶,𝑅𝐶
), 𝑖𝑅𝐶

= 𝑖(𝑘𝑉𝐶𝐶 ,𝑅𝐶
);

E𝑇 : 𝑣(𝑘𝐵,𝑇 ) − 𝑣(𝑘𝐸,𝑇 ) −𝑉𝐵𝐸 = 0,
𝑖(𝑘𝐸,𝑇 ) − 𝑖(𝑘𝐵,𝑇 ) − 𝑖(𝑘𝐶,𝑇 ) = 0,
𝑖(𝑘𝐶,𝑇 ) − 𝛼 𝑖(𝑘𝐸,𝑇 ) = 0,

where 𝑉𝐵𝐸 is the base–emitter threshold and 𝛼 the common-base gain.

KCL and KVL: A state consists of 𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R, and node potentials 𝑢 : 𝑉 → R, satisfying∑︁
𝑘: 𝜋 (𝑘 )=𝑛

𝑖(𝑘) = 0 (KCL at each 𝑛 ∈ 𝑉), 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
(KVL for each 𝑘 ∈ 𝐼).

This hypercircuit model captures the two resistors and the three-terminal transistor in one unified oriented
hypergraph framework.
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Theorem 4.3 (Generalization of Electric Circuit). If each hyperedge 𝑒 ∈ 𝐸 has exactly two incidences
𝐼𝑒 = {𝑘1, 𝑘2} and E𝑒

(
𝑣𝑒, 𝑖𝑒

)
depends only on the voltage difference and a single current (as in Ohm’s law),

then the electric hypercircuit reduces to the classical electric circuit on the graph 𝐺 = (𝑉, 𝐸).

Proof. When |𝐼𝑒 | = 2, index the two incidences by 𝑘1, 𝑘2 with 𝜋(𝑘1) = 𝑛1, 𝜋(𝑘2) = 𝑛2. KVL gives

𝑣(𝑘1) = 𝑢(𝑛1), 𝑣(𝑘2) = −𝑢(𝑛2) =⇒ 𝑣𝑛1𝑛2 = 𝑢(𝑛1) − 𝑢(𝑛2),

recovering the usual branch voltage. KCL at each node
∑
𝑘: 𝜋 (𝑘 )=𝑛 𝑖(𝑘) = 0 becomes the sum of incident branch

currents. Finally, if E𝑒 (𝑣𝑒, 𝑖𝑒) ≡ 𝑣𝑛1𝑛2 − 𝑅𝑒 𝑖𝑒 = 0, we obtain Ohm’s law. Thus the hypercircuit equations
coincide with the network equations of an electric circuit on the graph 𝐺. □

Theorem 4.4 (Underlying Hypergraph Structure). The electric hypercircuit (𝐻, E) is intrinsically built on the
combinatorial data of the oriented hypergraph 𝐻.

Proof. By definition, the set of nodes 𝑉 , hyperedges 𝐸 , incidences 𝐼, and orientation 𝜎 completely determine
the incidence relations 𝜋 and 𝑒. All circuit equations—KCL, KVL, and constitutive relations—are indexed
by these hypergraph components (𝑉, 𝐼, 𝐸). Therefore the signal-processing and network-analysis formalisms
operate directly on the hypergraph structure, proving that the electric hypercircuit inherits and requires the full
hypergraph. □

Definition 4.5 (Electric 𝑛-SuperHyperCircuit). Let 𝑉0 be a finite base set of fundamental nodes and let
SHT(𝑛) = (𝑉, 𝐸) be an oriented 𝑛-SuperHyperGraph with

𝑉 ⊆ P𝑛 (𝑉0), 𝐸 ⊆ P𝑛 (𝑉0),

and incidence structure (𝐼, 𝜋, 𝑒, 𝜎) where

𝐼 = {(𝑣, 𝑒) : 𝑣 ∈ 𝑒, 𝑒 ∈ 𝐸}, 𝜋(𝑣, 𝑒) = 𝑣, 𝑒(𝑣, 𝑒) = 𝑒, 𝜎(𝑣, 𝑒) ∈ {+1,−1}.

An electric 𝑛-superhypercircuit is the pair (SHT(𝑛) , E) where E = {E𝑒}𝑒∈𝐸 assigns to each superedge 𝑒 a
constitutive relation

E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0, 𝑣𝑒 =

(
𝑣(𝑘)

)
𝑘∈𝐼𝑒 , 𝑖𝑒 =

(
𝑖(𝑘)

)
𝑘∈𝐼𝑒 ,

with 𝐼𝑒 = {𝑘 ∈ 𝐼 : 𝑒(𝑘) = 𝑒}. A state consists of port-voltage and port-current functions

𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R,

and a supervertex potential 𝑢 : 𝑉 → R, satisfying:

1.
∑︁

𝑘∈𝐼: 𝜋 (𝑘 )=𝑣
𝑖(𝑘) = 0 for all supervertices 𝑣 ∈ 𝑉 (generalized KCL).

2. 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
for all ports 𝑘 ∈ 𝐼 (generalized KVL).

3. E𝑒
(
𝑣𝑒, 𝑖𝑒

)
= 0 for each superedge 𝑒 ∈ 𝐸 (constitutive laws).

Example 4.6 (Electric 2-SuperHyperCircuit for a BJT Amplifier Subnetwork). Let the base set of fundamental
nodes be

𝑉0 = {𝑉𝐶𝐶 , 𝐵, 𝐶, 𝐸},

and consider the electric hypercircuit with three hyperedges:

𝑒1 = {𝑉𝐶𝐶 , 𝐵} (𝑅𝐵), 𝑒2 = {𝑉𝐶𝐶 , 𝐶} (𝑅𝐶 ), 𝑒3 = {𝐵,𝐶, 𝐸} (𝑇).

We form the 2-supervertices by grouping overlapping hyperedges:

𝐷1 = { 𝑒1, 𝑒2}, 𝐷2 = { 𝑒2, 𝑒3}.

Thus the set of 2-supervertices is
𝑉 = {𝐷1, 𝐷2},
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and there is a single 2-superedge connecting them:

𝐸 =
{
{𝐷1, 𝐷2}

}
.

The incidence set is
𝐼 = { 𝑘1 = (𝐷1, 𝐸), 𝑘2 = (𝐷2, 𝐸)},

with 𝜋(𝑘𝑖) = 𝐷𝑖 , 𝑒(𝑘𝑖) = 𝐸 , and choose 𝜎(𝑘𝑖) = +1.

We assign to each 2-superedge 𝐸 the constitutive relations of an ideal connection:

E𝐸 : 𝑣(𝑘1) − 𝑣(𝑘2) = 0, 𝑖(𝑘1) + 𝑖(𝑘2) = 0,

where 𝑣(𝑘𝑖) and 𝑖(𝑘𝑖) are the port-voltage and port-current at incidence 𝑘𝑖 .

A state consists of port-functions 𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R and supervertex potentials 𝑢 : 𝑉 → R satisfying:∑︁
𝑘: 𝜋 (𝑘 )=𝐷𝑖

𝑖(𝑘) = 0, 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
, E𝐸

(
𝑣𝐸 , 𝑖𝐸

)
= 0.

Concretely,
𝑖(𝑘1) + 𝑖(𝑘2) = 0, 𝑣(𝑘1) = 𝑣(𝑘2),

ensuring that the two subnetworks {𝑅𝐵, 𝑅𝐶 } and {𝑅𝐶 , 𝑇} are perfectly connected in this 2-superhypercircuit.

Example 4.7 (Electric 3-SuperHyperCircuit for a BJT Amplifier Meta-Connection). Let the base set of
fundamental nodes be

𝑉0 = {𝑉𝐶𝐶 , 𝐵, 𝐶, 𝐸},
and consider the three 1-superedges (ordinary hyperedges)

𝑒1 = {𝑉𝐶𝐶 , 𝐵}, 𝑒2 = {𝑉𝐶𝐶 , 𝐶}, 𝑒3 = {𝐵,𝐶, 𝐸}.

Form the 2-supervertices (elements of P2 (𝑉0)) by grouping overlapping 1-superedges:

𝐷1 = {𝑒1, 𝑒2}, 𝐷2 = {𝑒2, 𝑒3}, 𝐷3 = {𝑒3, 𝑒1}.

Thus
𝑉 (2) = {𝐷1, 𝐷2, 𝐷3}.

Next form the 3-supervertices (elements of P3 (𝑉0)) by grouping overlapping 2-supervertices:

𝐴1 = {𝐷1, 𝐷2}, 𝐴2 = {𝐷2, 𝐷3}, 𝐴3 = {𝐷3, 𝐷1},

so
𝑉 (3) = {𝐴1, 𝐴2, 𝐴3}.

Finally, the single 3-superedge
𝑆 = {𝐴1, 𝐴2, 𝐴3}

yields the oriented 3-SuperHyperGraph SHT(3) = (𝑉 (3) , {𝑆}).

The incidence set is
𝐼 = { 𝑘𝑖 = (𝐴𝑖 , 𝑆) | 𝑖 = 1, 2, 3},

with attachments 𝜋(𝑘𝑖) = 𝐴𝑖 , 𝑒(𝑘𝑖) = 𝑆, and orientation 𝜎(𝑘𝑖) = +1.

Assign to the 3-superedge 𝑆 the constitutive (ideal coupling) relations

E𝑆 : 𝑣(𝑘1) − 𝑣(𝑘2) = 0, 𝑣(𝑘2) − 𝑣(𝑘3) = 0, 𝑖(𝑘1) + 𝑖(𝑘2) + 𝑖(𝑘3) = 0.

A state consists of port-voltage and port-current functions 𝑣 : 𝐼 → R, 𝑖 : 𝐼 → R and a supervertex potential
𝑢 : 𝑉 (3) → R, satisfying:∑︁

𝑘: 𝜋 (𝑘 )=𝐴𝑖

𝑖(𝑘) = 0, 𝑣(𝑘) = 𝜎(𝑘) 𝑢
(
𝜋(𝑘)

)
, E𝑆

(
𝑣𝑆 , 𝑖𝑆

)
= 0.

Concretely:
𝑖(𝑘1) + 𝑖(𝑘2) + 𝑖(𝑘3) = 0, 𝑣(𝑘1) = 𝑣(𝑘2) = 𝑣(𝑘3),

ensuring an ideal three-port connection that unifies the two subnetworks {𝑒1, 𝑒2}, {𝑒2, 𝑒3}, and {𝑒3, 𝑒1} into a
single 3-superhyperconnection.
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Theorem 4.8 (Reduction to Hypercircuit and Circuit). The electric 𝑛-superhypercircuit (SHT(𝑛) , E):

1. For 𝑛 = 0,𝑉 ⊆ 𝑉0 and 𝐸 ⊆ 𝑉0, so SHT(0) is an oriented hypergraph on𝑉0. The above equations recover
exactly those of an electric hypercircuit.

2. If furthermore each superedge 𝑒 has |𝐼𝑒 | = 2 and E𝑒 (𝑣𝑒, 𝑖𝑒) depends only on the voltage difference and
the single branch current, then SHT(0) is a graph and the hypercircuit reduces to a classical electric
circuit on 𝐺 = (𝑉0, 𝐸).

Proof. When 𝑛 = 0, each supervertex is a base node and each superedge is a subset of nodes in 𝑉0. The
incidence set 𝐼 and orientation 𝜎 coincide with those of an oriented hypergraph. Hence KCL and KVL match
the hypercircuit laws, and E𝑒 are the same constitutive relations.

If in addition |𝐼𝑒 | = 2, label the two incidences 𝑘1, 𝑘2 with 𝜋(𝑘1) = 𝑛1, 𝜋(𝑘2) = 𝑛2. Then

𝑣(𝑘1) = 𝑢(𝑛1), 𝑣(𝑘2) = −𝑢(𝑛2) =⇒ 𝑣𝑛1𝑛2 = 𝑢(𝑛1) − 𝑢(𝑛2),

and KCL becomes the node-current sum law. If E𝑒 (𝑣𝑒, 𝑖𝑒) : 𝑣𝑛1𝑛2 − 𝑅𝑒 𝑖𝑒 = 0, one recovers Ohm’s law. Thus
the model reduces to the classical electric circuit network equations. □

Theorem 4.9 (Intrinsic 𝑛-SuperHyperGraph Structure). The electric 𝑛-superhypercircuit (SHT(𝑛) , E) is built
intrinsically on the oriented 𝑛-SuperHyperGraph SHT(𝑛) .

Proof. All components—supervertices 𝑉 , superedges 𝐸 , incidences 𝐼, attachment maps 𝜋, 𝑒, and orienta-
tions 𝜎—are data of SHT(𝑛) . The network laws (generalized KCL, KVL) and constitutive equations are
formulated directly in terms of these hypergraph elements. No additional structure or external indexing is
required. Therefore the circuit model inherently carries and exploits the full combinatorial structure of the
𝑛-SuperHyperGraph. □

5 Result: Bond HyperGraph and Bond SuperHyperGraph

We define the concepts of the Bond HyperGraph and the Bond SuperHyperGraph as follows.

Definition 5.1 (Bond HyperGraph). Let 𝑉elem be the set of bond-graph element nodes and 𝑉junc the set of
junction nodes, and let

𝐺 =
(
𝑉elem ¤∪𝑉junc, 𝐸

)
be the classical bond graph. The Bond HyperGraph is the hypergraph

𝐻 =
(
𝑉elem, E

)
,

where
E =

{
𝑒 𝑗 ⊆ 𝑉elem : 𝑗 ∈ 𝑉junc, 𝑒 𝑗 = { 𝑢 ∈ 𝑉elem : {𝑢, 𝑗} ∈ 𝐸}

}
.

Each hyperedge 𝑒 𝑗 collects exactly those element nodes incident on junction 𝑗 .

Example 5.2 (Bond HyperGraph of a Series R–C Circuit Driven by a Voltage Source). Consider the bond
graph with element nodes and junctions as follows:

𝑉elem = {𝑆𝑒, 𝑅, 𝐶}, 𝑉junc = { 𝑗1, 𝑗2}.

The bond connections are
𝐸 =

{
{𝑆𝑒, 𝑗1}, {𝑅, 𝑗1}, {𝑅, 𝑗2}, {𝐶, 𝑗2}

}
,

where 𝑆𝑒 is an effort source, 𝑅 a resistor, 𝐶 a capacitor, and 𝑗1, 𝑗2 are 1-junctions.

Forming the Bond HyperGraph 𝐻 = (𝑉elem, E), each junction 𝑗𝑘 induces a hyperedge

𝑒 𝑗1 = { 𝑆𝑒, 𝑅}, 𝑒 𝑗2 = { 𝑅, 𝐶},

so that
E = { 𝑒 𝑗1 , 𝑒 𝑗2 }.

Thus 𝐻 is the hypergraph with vertex set {𝑆𝑒, 𝑅, 𝐶} and hyperedge set {{𝑆𝑒, 𝑅}, {𝑅,𝐶}}, exactly capturing
which element nodes meet at each junction.
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Theorem 5.3 (Generalization of Bond Graph). Every bond graph 𝐺 arises from a unique Bond HyperGraph
𝐻 via the construction above, and conversely any Bond HyperGraph 𝐻 defines a bond graph 𝐺 in which each
hyperedge 𝑒 𝑗 becomes a junction node 𝑗 connected by bonds to every element 𝑢 ∈ 𝑒 𝑗 .

Proof. Starting from 𝐺, we form 𝐻 = (𝑉elem, E) by setting each hyperedge 𝑒 𝑗 to be the neighborhood of
junction 𝑗 . Conversely, given 𝐻, define

𝑉junc = E, 𝐸 =
{
{𝑢, 𝑒 𝑗 } : 𝑢 ∈ 𝑒 𝑗 , 𝑒 𝑗 ∈ E

}
.

Then 𝐺′ = (𝑉elem ¤∪𝑉junc, 𝐸) is a bond graph whose junction-neighborhoods recover exactly the hyperedges of
𝐻. These two operations are inverse to one another, proving the bijective correspondence. □

Theorem 5.4 (Underlying Hypergraph Structure). The Bond HyperGraph 𝐻 = (𝑉elem, E) carries by definition
the full structure of a finite hypergraph: its vertex set is 𝑉elem and its hyperedge set is E ⊆ P(𝑉elem).

Proof. By construction, E is a collection of subsets of𝑉elem, and there are no additional constraints: 𝐻 satisfies
exactly the axioms of a finite hypergraph. All bond-graph junction connectivity is encoded solely in these
hyperedges. □

Definition 5.5 (Bond 𝑛-SuperHyperGraph). Let 𝑉0 be the finite set of element nodes in a bond-graph domain.
For each integer 𝑘 ≥ 0 define

P0 (𝑉0) = 𝑉0, P𝑘+1 (𝑉0) = P
(
P𝑘 (𝑉0)

)
.

A Bond 𝑛-SuperHyperGraph is a pair
BnSHT(𝑛) = (𝑉, 𝐸),

where
𝑉 ⊆ P𝑛 (𝑉0) (the 𝑛-supervertices), 𝐸 ⊆ P𝑛 (𝑉0) (the 𝑛-superedges),

together with the canonical incidence relation that each 𝑛-superedge 𝑒 ∈ 𝐸 attaches to its member 𝑛-
supervertices in 𝑉 .

Example 5.6 (Bond 2-SuperHyperGraph of a Series R–L–C Circuit). Let the base set of element nodes be

𝑉0 = {𝑆𝑒, 𝑅, 𝐿, 𝐶},

and consider the bond graph with three 1-junctions 𝑗1, 𝑗2, 𝑗3 defined by the bonds

𝐸 =
{
{𝑆𝑒, 𝑗1}, {𝑅, 𝑗1}, {𝑅, 𝑗2}, {𝐿, 𝑗2}, {𝐿, 𝑗3}, {𝐶, 𝑗3}

}
.

The corresponding Bond HyperGraph 𝐻 = (𝑉elem, E) has

𝑉elem = {𝑆𝑒, 𝑅, 𝐿, 𝐶}, E =
{
𝑒 𝑗1 , 𝑒 𝑗2 , 𝑒 𝑗3

}
,

where
𝑒 𝑗1 = {𝑆𝑒, 𝑅}, 𝑒 𝑗2 = {𝑅, 𝐿}, 𝑒 𝑗3 = {𝐿, 𝐶}.

Now form the 2-supervertices (elements of P2 (𝑉0)) by grouping overlapping hyperedges:

𝐷1 = { 𝑒 𝑗1 , 𝑒 𝑗2 }, 𝐷2 = { 𝑒 𝑗2 , 𝑒 𝑗3 }.

Thus the set of 2-supervertices is
𝑉2 = {𝐷1, 𝐷2}.

A natural 2-superedge arises by connecting those two 2-supervertices that share the common hyperedge 𝑒 𝑗2 :

𝐸2 =
{
{𝐷1, 𝐷2}

}
.

Therefore, the Bond 2-SuperHyperGraph is

BnSHT(2) =
(
𝑉2, 𝐸2

)
=

(
{𝐷1, 𝐷2}, {{𝐷1, 𝐷2}}

)
.

This 2-SuperHyperGraph encodes a higher-level “meta-junction” that links the two 1-junction subnetworks
{𝑆𝑒, 𝑅}–{𝑅, 𝐿} and {𝑅, 𝐿}–{𝐿, 𝐶}, thus generalizing both the bond graph and its hypergraph representation.
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Example 5.7 (Bond 3-SuperHyperGraph of a Series 𝑅–𝐿–𝐶 Circuit). Let the base set of element nodes be

𝑉0 = {𝑆𝑒, 𝑅, 𝐿, 𝐶},

and consider the bond graph with three 1-junctions 𝑗1, 𝑗2, 𝑗3 defined by the bonds

𝐸 =
{
{𝑆𝑒, 𝑗1}, {𝑅, 𝑗1}, {𝑅, 𝑗2}, {𝐿, 𝑗2}, {𝐿, 𝑗3}, {𝐶, 𝑗3}

}
.

The corresponding Bond HyperGraph 𝐻 = (𝑉elem, E) has

𝑉elem = {𝑆𝑒, 𝑅, 𝐿, 𝐶}, E = { 𝑒1, 𝑒2, 𝑒3},

where
𝑒1 = {𝑆𝑒, 𝑅}, 𝑒2 = {𝑅, 𝐿}, 𝑒3 = {𝐿, 𝐶}.

Form the 2-supervertices (elements of P2 (𝑉0)) by grouping overlapping hyperedges:

𝐷1 = {𝑒1, 𝑒2}, 𝐷2 = {𝑒2, 𝑒3}, 𝐷3 = {𝑒3, 𝑒1}.

Thus the set of 2-supervertices is
𝑉2 = {𝐷1, 𝐷2, 𝐷3},

and there is a natural 2-superedge for each pair of adjacent 2-supervertices:

𝐸2 =
{
{𝐷1, 𝐷2}, {𝐷2, 𝐷3}, {𝐷3, 𝐷1}

}
.

Now form the 3-supervertices (elements of P3 (𝑉0)) by grouping adjacent 2-supervertices:

𝐴1 = {𝐷1, 𝐷2}, 𝐴2 = {𝐷2, 𝐷3}, 𝐴3 = {𝐷3, 𝐷1}.

Hence
𝑉3 = {𝐴1, 𝐴2, 𝐴3}.

Finally, the single 3-superedge connects all three 3-supervertices:

𝐸3 =
{
{𝐴1, 𝐴2, 𝐴3}

}
.

Therefore, the Bond 3-SuperHyperGraph is

BnSHT(3) =
(
𝑉3, 𝐸3

)
=

(
{𝐴1, 𝐴2, 𝐴3}, {{𝐴1, 𝐴2, 𝐴3}}

)
.

This structure captures a three-level meta-junction that links the overlapping sub-circuits {𝑆𝑒, 𝑅}–{𝑅, 𝐿},
{𝑅, 𝐿}–{𝐿, 𝐶}, and {𝐿, 𝐶}–{𝑆𝑒, 𝑅} in one unified 3-superhypergraph.

Theorem 5.8 (Reduction to Bond HyperGraph and Bond Graph). Let BnSHT(𝑛) = (𝑉, 𝐸) be a Bond 𝑛-
SuperHyperGraph on base set 𝑉0. Then:

1. If 𝑛 = 1, and we take
𝑉 =

{
{𝑣} : 𝑣 ∈ 𝑉0

}
, 𝐸 =

{
𝑒 𝑗 : 𝑗 ∈ 𝑉junc

}
,

where each 𝑒 𝑗 ⊆ 𝑉0 is the set of element-nodes incident on junction 𝑗 , then BnSHT(1) coincides with the
Bond HyperGraph.

2. If moreover each hyperedge 𝑒 𝑗 ∈ 𝐸 has |𝑒 𝑗 | = 2, then this Bond HyperGraph is exactly the classical
Bond Graph.

Proof. (1) For 𝑛 = 1, P1 (𝑉0) = P(𝑉0). Choosing𝑉 = {{𝑣} : 𝑣 ∈ 𝑉0} identifies each singleton with the original
element node. Setting 𝐸 = {𝑒 𝑗 : 𝑗 ∈ 𝑉junc} reproduces exactly the hyperedges of the Bond HyperGraph, since
each 𝑒 𝑗 collects the element-nodes attached to junction 𝑗 .

(2) If each 𝑒 𝑗 has size two, then every hyperedge is a pair of singletons { {𝑢}, {𝑣} }. Collapsing the singletons
back to their underlying nodes yields an undirected graph with vertex set𝑉0 and edge set {{𝑢, 𝑣} : 𝑒 𝑗 = {𝑢, 𝑣}}.
This is precisely the Bond Graph. □
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Theorem 5.9 (Intrinsic 𝑛-SuperHyperGraph Structure). Any Bond 𝑛-SuperHyperGraph BnSHT(𝑛) = (𝑉, 𝐸)
is by definition an 𝑛-SuperHyperGraph: its supervertex set 𝑉 and superedge set 𝐸 satisfy

𝑉 ⊆ P𝑛 (𝑉0), 𝐸 ⊆ P𝑛 (𝑉0),

and the incidence relation is the natural membership relation of superedges on supervertices.

Proof. The construction of BnSHT(𝑛) uses exactly the data of an 𝑛-SuperHyperGraph on base set 𝑉0. By
hypothesis 𝑉 and 𝐸 are subsets of P𝑛 (𝑉0), and each superedge 𝑒 ∈ 𝐸 attaches precisely to the supervertices
it contains. No additional structure is needed, hence BnSHT(𝑛) inherits the full combinatorial and incidence
structure of an 𝑛-SuperHyperGraph. □

Theorem 5.10 (Skeleton Consistency). Let BnSHT(𝑛) = (𝑉 (𝑛) , 𝐸 (𝑛) ) be a Bond 𝑛-SuperHyperGraph over
base set 𝑉0. For each 𝑘 = 𝑛 − 1, 𝑛 − 2, . . . , 1, define recursively

𝑉 (𝑘 ) =
⋃

𝑆∈𝑉 (𝑘+1)

𝑆, 𝐸 (𝑘 ) =
{
𝐹 ⊆ 𝑉 (𝑘 ) : 𝐹 ⊆ 𝑒 for some 𝑒 ∈ 𝐸 (𝑘+1)}.

Then for every 1 ≤ 𝑘 ≤ 𝑛,
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is a Bond 𝑘-SuperHyperGraph. In particular:

•
(
𝑉 (1) , 𝐸 (1) ) coincides with the Bond HyperGraph.

•
(
𝑉 (0) , 𝐸 (0) ) is the classical Bond Graph.

Proof. We prove by downward induction on 𝑘 . For 𝑘 = 𝑛, the result is given. Suppose
(
𝑉 (𝑘+1) , 𝐸 (𝑘+1) ) is a

Bond (𝑘 + 1)-SuperHyperGraph with 𝑉 (𝑘+1) ⊆ P 𝑘+1 (𝑉0), 𝐸 (𝑘+1) ⊆ P 𝑘+1 (𝑉0). By definition,

𝑉 (𝑘 ) =
⋃

𝑆∈𝑉 (𝑘+1)

𝑆 ⊆
⋃

𝑆∈P𝑘+1 (𝑉0 )
𝑆 = P𝑘 (𝑉0),

and each 𝐹 ∈ 𝐸 (𝑘 ) is a subset of some 𝑒 ∈ 𝐸 (𝑘+1) ⊆ P𝑘+1 (𝑉0), so 𝐹 ⊆ ⋃
𝑒 ⊆ P𝑘 (𝑉0). The canonical

incidence (membership) relation restricts correctly. Hence
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) satisfies the definition of a Bond 𝑘-

SuperHyperGraph. Taking 𝑘 = 1 and then 𝑘 = 0 yields the Bond HyperGraph and Bond Graph, respectively.
□

Theorem 5.11 (Connectivity Inheritance). If the underlying Bond Graph (the 0-skeleton
(
𝑉 (0) , 𝐸 (0) )) is

connected, then for every 1 ≤ 𝑘 ≤ 𝑛, the Bond 𝑘-SuperHyperGraph
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is connected in the sense that

its 2-section graph is connected.

Proof. Recall that the 2-section of a hypergraph (𝑉, 𝐸) is the graph on𝑉 where two vertices are adjacent if they
belong to a common hyperedge. We show by induction on 𝑘 that the 2-section of

(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is connected.

Base (𝑘 = 0). The 2-section of the Bond Graph is itself, which is connected by hypothesis.

Inductive Step. Assume the 2-section of
(
𝑉 (𝑘 ) , 𝐸 (𝑘 ) ) is connected. Consider

(
𝑉 (𝑘+1) , 𝐸 (𝑘+1) ) . By skeleton

consistency (Theorem 5.10), every superedge 𝑒 ∈ 𝐸 (𝑘+1) is a subset of 𝑉 (𝑘 ) . Thus in the 2-section of(
𝑉 (𝑘+1) , 𝐸 (𝑘+1) ) , any two 𝑘-supervertices 𝑆1, 𝑆2 ∈ 𝑉 (𝑘+1) that share an underlying 𝑘−1-vertex become adjacent

if 𝑆1 ∩ 𝑆2 ≠ ∅. Since the 2-section at level 𝑘 is connected, one can traverse from any 𝑘-supervertex to any other
by stepping through overlapping sets. Therefore the 2-section at level 𝑘 + 1 is also connected. □

Theorem 5.12 (Superedge-Induced Subgraph Connectivity). In a Bond 𝑛-SuperHyperGraph BnSHT(𝑛) =

(𝑉 (𝑛) , 𝐸 (𝑛) ), for each superedge 𝑒 ∈ 𝐸 (𝑛) , the induced subgraph of the underlying Bond Graph on the union
of all base-nodes in 𝑒 is connected.

Proof. Let 𝑒 ∈ 𝐸 (𝑛) be an 𝑛-superedge. By recursive definition of skeletons, each element of 𝑒 is a (𝑛 − 1)-
supervertex, whose member set is connected at the (𝑛−2)-level, and so on down to base-level. Since hyperedges
at each level correspond to junction connectivity in the lower level, the union of all base-nodes in 𝑒 forms a
connected set in the Bond Graph. More formally, for any two base-nodes 𝑢, 𝑣 in

⋃
𝑒, there exists a chain of

overlapping supervertices linking them, which projects to a path in the 2-section of the 0-skeleton. Hence the
induced subgraph is connected. □
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6 Conclusion and Future Works

In this paper, we extended the frameworks of Graph Signal Processing, Electric Circuits, and Bond Graphs by
incorporating the mathematical structures of hypergraphs and superhypergraphs. We examined their formal
properties and provided illustrative examples to demonstrate their applicability and expressiveness.

In future work, we aim to conduct computational experiments related to these frameworks in order to ex-
plore their practical applications in real-world scenarios more concretely. In addition, we plan to investigate
theoretical extensions and applications to foundational concepts such as Ohm’s Law [114, 124], Kirchhoff’s
Laws [90, 96], AC/DC Analysis [2, 10], Transfer Functions [61, 113], and Integrated Circuits [117, 122].

And as a direction for future work, we plan to integrate advanced uncertainty-handling frameworks into
the proposed models by incorporating various set-theoretic generalizations, including Fuzzy Sets [128, 129],
Intuitionistic Fuzzy Sets [12, 13], Vague Sets [4, 47], Rough Sets [87, 88], Bipolar Fuzzy Sets [3], Tripolar
Fuzzy Sets [91–93], HyperFuzzy Sets [60, 108], Picture Fuzzy Sets [22, 54], Hesitant Fuzzy Sets [118, 119],
spherical fuzzy sets [6, 66], Neutrosophic Sets [102, 107], Quadripartitioned Neutrosophic Sets [62, 127],
HyperPlithogenic Sets [37,38], and Plithogenic Sets [36,42,103]. These advanced frameworks are expected to
significantly enhance the expressive power and practical applicability of hypergraph-based models, particularly
in capturing complex, multi-level, and hierarchical uncertainty across a variety of domains.

Data Availability

This research is purely theoretical, involving no data collection or analysis. We encourage future researchers
to pursue empirical investigations to further develop and validate the concepts introduced here.

Ethical Approval

As this research is entirely theoretical in nature and does not involve human participants or animal subjects, no
ethical approval is required.

Disclaimer

This work presents theoretical concepts that have not yet undergone practical testing or validation. Future
researchers are encouraged to apply and assess these ideas in empirical contexts. While every effort has been
made to ensure accuracy and appropriate referencing, unintentional errors or omissions may still exist. Readers
are advised to verify referenced materials on their own. The views and conclusions expressed here are the
authors’ own and do not necessarily reflect those of their affiliated organizations.
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