
MATHEMATICAL MODEL OF CERVICAL CANCER INCORPORATING

PROTECTION MEASURES AGAINST THE DISEASE

Abstract

Cervical cancer caused by human papillomavirus (HPV) has at-
tracted more attention due to its social economic ramifications and its
complex behavior. Even with the introduction of routine screening pro-
grams and vaccination, the disease prevalence remains high especially
in Sub-saharan Africa. However, Cervical cancer is a major preventable
public health problem. Due to the high cost of treatment, protection
against the infection may be preferable in scarce resource settings. In
this paper a deterministic model incorporating protection against cer-
vical cancer infection is considered. Specifically the model considers
maximum protection against the infection. The model is shown to be
positively invariant as well as bounded. The endemic states are shown
to exist provided that the reproduction number is greater than unity
R0 > 1 . By use of Routh-Hurwitz criterion and suitable Lyapunov func-
tions, the endemic states are shown to be locally and globally asymptot-
ically stable respectively. This implies that disease transmission levels
can be kept quite low or manageable with minimal deaths at the peak
times of the re-occurrences. Numerical simulations indicate that en-
hanced protection against the disease lowers new incidences and hence
low disease prevalence rates. Therefore, public awareness campaign ef-
forts on protective measures against cervical cancer should be enhanced.

Keywords: Protection, cervical cancer, Human papilloma Virus, Repro-
duction Number.

1 Introduction

HPV is the world’s most widespread sexually transmitted infection, affecting
80 percent of people worldwide at least once in their lives. Typically, the body
naturally clears the infection. However, in some cases, the infection becomes
persistent. When you contract HPV, it takes 10 to 15 years to develop into
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cancer, but during this period, precancerous lesions may appear. Over one
hundred dissimilar strains of HPV being identified and classified with HPV
types 16, 18, 31 and 45 been classified as “high-risk”. Approximately 85 per-
centage cancer of the cervix are reported to be as a result of these four strains
alone. Africa, in particular, bears a significant burden, contributing 21 percent
of global cervical cancer deaths in 2020, largely due to the prevalence of HIV,
which compromises patients’ immune systems, leaving them more vulnerable
to the cancer-causing human papilloma virus (HPV). However, if prevented
cervical cancer is a form of cancer that can be successfully managed [5].

There is no treatment for HPV but in most cases it disappears naturally. How-
ever, with persistent infections the high risk strains may become chronic and
shed HPV virions. Cervical cancer treatment is dependent on a multiplicity of
factors. Key among them include the stage of the cancer when it was initially
diagnosed, age of the patient and the overall health status of the person in
question. The type of treatment administered is dependent on the stage where
the specific cancer manifests itself. Treatment options include but not limited
to chemotherapy, surgery and radiography. Palliative care is a key plank in
management and containment of cancer, especially in the assuaging of severe
pains and mollifying the suffering of cancer patients [2].

According to the World Health Organization (WHO) and recent data, in 2023,
cervical cancer is estimated to have caused around 660,000 new cases and
350,000 deaths globally, making it the fourth most common cancer among
women worldwide, the highest rates of incidence and mortality are observed
in low and middle-income countries due to limited access to HPV vaccination
and screening services [11].

Numerous mathematical models have been developed to explore transmission
dynamics and treatment of cervical cancer and their intervention strategies
by many researchers. Investigations have been done on the dynamics of HPV
infections among women despite of the presence of vaccination [14]. A mathe-
matical model exploring the transmission dynamics of human papilloma virus
(HPV) was formulated by [9]. In their model, infected individuals can recover
with a limited immunity that results in a lower probability of being infected
again. In practice, it is necessary to revaccinate individuals within a period af-
ter the first vaccination to ensure immunity against HPV infection. A between
host model for cervical cancer infection incorporating diagnosis was formulated
and analysed by [12, 13]. Results showed that,the disease related mortality is
eradicated if diagnosis is done at an early stage hence late diagnosis increases
the risk of cervical cancer infection among the infected individuals.

Cervical cancer diagnosis sounds like a death sentence to many in Kenya,
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though the cancer is among the most treatable. It’s crucially also almost
totally vaccine-preventable. The fourth most common cancer among women
worldwide, cervical cancer is the second most prevalent in Kenya, trailing only
behind breast cancer. However, with 5,200 fatalities annually, it’s the primary
cause of cancer-related deaths in the country, claiming approximately nine
Kenyan women’s lives each day. In many developing nations, the public health
goals that can help prevent and control the spread of cancer among potential
patients include, absolute adherence to vaccination, regular cervical screening
and treatment arrangement [7]. However, they are not 100 percent effective and
the disease prevalence remains high. Therefore, maximum protection against
HPV may help prevent the rapid progression of the cervical cancer infection
especially in scarce resource setting where treatment is not readily available.
Protection involves limiting exposure to risk factors that can lead to HPV
infection. The most important and widely contributing risk factor is long-
term use of oral contraceptives. If oral contraceptives are used by girls at the
same time having first sexual intercourse before the age of 17 years, this may
increase the risk of cervical cancer more. These two risks are associated with
high hormone levels and thus exaggerating the progression of cervical cancer.
Other risk factors include; Sexual history (becoming sexually active at a young
age especially younger than 18 years old, having many sexual partners, having
one partner who is considered high risk), smoking, having a weakened immune
system, having multiple full-term pregnancies, economic status and having a
diet low in fruits and vegetables [8].

2 The model

We formulate a model in which the total human population at any time t
denoted by N is subdivided into classes, S(t) the class of individuals suscep-
tible to cervical cancer infection. Recruitment into susceptible class is done at
a rate (1− θ)Λ . The class P (t) consist of individuals protected against HPV
infection. Recruitment into the protected class is done at the rate θΛ. The
class I(t) consists of individuals who are asymptomatically infected with HPV
infection, this infection occurs at the rate λ . Most HPV infected Individuals
recover from the infection at a rate α and slide back to the S(t) class, ρ is the
rate of progression to the cervical cancer C(t) class due to persistence of the
HPV infection. Mortality occurs among cervical cancer patients at the rate ν
while natural death is assumed to occur in all classes at the rate µ .

The rate at which the susceptible individuals acquire HPV infection is defined
as
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λ =
κωI(t)

N(t)
(1)

Where κ is the effective contact rate with HPV infected individuals while ω
is the probability rate of acquiring HPV infection. With the assumption that,
high viral load increases the probability of persistence of the HPV infection
and thus exposes the individuals to cervical cancer. Let δ be the probability of
success of protection against HPV infection, thus the effective force of infection
λp becomes

λp =
κω(1− δ)I(t)

N(t)
(2)

From the above definitions, the resulting diagram for the model is given below.
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Figure 1: Model flow diagram

The dynamics described can be represented mathematically as:

Ṡ(t) = (1− θ)Λ + αI(t) + βP (t)− κω(1− δ)I(t)

N(t)
S(t)− µS(t)

Ṗ (t) = θΛ− (β + µ)P (t)

İ(t) =
κω(1− δ)I(t)

N(t)
S(t)− (ρ+ α + µ)I(t)

Ċ(t) = ρI(t)− (ν + µ)C(t) (3)
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3 Analysis of the Model

Since the model describes a human population, all population compartments
will be non negative t > 0 in the feasible region Ω where S(t), P (t), I(t), C(t) ∈
Ω ⊂ R4

+ . It can be shown that all the solutions are bounded in Ω, ∀t > 0
such that 0 ≤ N ≤ Λ

µ
. Thus the model is epidemiologically well posed in the

region Ω and can be analysed.

4 The basic reproduction number

The dynamics of the model are highly dependant on the basic reproduction
number. The basic reproduction R0 is the average number of secondary in-
fections produced by a single infectious individual during his or her entire
life time as an infective when introduced into a purely susceptible population.
The basic reproduction number, R0 , for model (3) is computed using the
next generation matrix method as used in [4, 18]. It is the spectral radius of
a matrix.

FV −1 (4)

Where F is the Jacobian of f and f is the rate of appearance of new infections
in compartment. V is the Jacobian of v where v is the rate of transfer of
individuals into and out of compartment. From the model,

f :=

(
κω(1−δ)IS

N

0

)
(5)

v :=

(
(ρ+ α + µ)I

−ρI + (µ+ ν)C

)
(6)

The Jacobian of f at disease free equilibrium N = S) denoted as F is given
by

F =

(
κω(1− δ) 0

0 0

)
(7)

Similarly, the Jacobian of v at the disease free equilibrium is denoted by V
and is given by
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V =

(
α + ρ+ µ 0

−ρ µ+ ν

)
(8)

On computing V −1 we have

V −1 =

( 1
α+ρ+µ

0
ρ

(µ+ν)(α+ρ+µ)
1

(µ+ν)

)
(9)

thus

FV −1 =

(
κω(1−δ)
(α+ρ+µ)

0
0 0

)
(10)

. The reproduction number R0 which is the spectral radius of the matrix
FV −1 is given by ;

R0 =
κω(1− δ)

(α + ρ+ µ)
(11)

which is the measure of the severity of an epidemic and one of the most im-
portant concern parameter for the disease to invade a population.

5 Disease-free Equilibrium point (DFE)

The disease-free equilibrium point, denoted by Eo is a steady-state solution
for which there is no disease or infection in the population [15]. To obtain
the disease-free equilibrium point we set the normalized model system (3)
equal to zero. Since there are no infections in the human populations, we
set P (t) = I(t) = C(t) = 0 . This implies that E0 = {S0, P0, I0, C0} =

{Λ(µ+β−θµ)
µ(µ+β)

, Λθ
µ+β

, 0, 0}

6 Local Stability Analysis of the Disease Free

Equilibrium

The model in Equation (1) has disease free equilibrium (DFE) given by E0 =

{S0, P0, I0, C0} = {Λ(µ+β−θµ)
µ(µ+β)

, Λθ
µ+β

, 0, 0}

Theorem 6.1. If R0 < 1 then E0 = {S0, P0, I0, C0} = {Λ(µ+β−θµ)
µ(µ+β)

, Λθ
µ+β

, 0, 0}
is an equilibrium state in Ω and is locally asymptotically stable otherwise un-
stable.
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.

Proof. Consider the Jacobian matrix of Equation (3) given by

J =


−κω(1−δ)I(t)

N(t)
− µ β −κω(1−δ)S(t)

N(t)
+ α 0

0 −(β + µ) 0 0
κω(1−δ)I(t)

N(t)
0 κω(1−δ)S(t)

N(t)
− (ρ+ α + µ) 0

0 0 ρ −(µ+ ν)

(12)

The Jacobian matrix of Equation (3) at DFE is given by

JE0 =


−µ β −κω(1− δ) + α 0
0 −(β + µ) 0 0
0 0 κω(1− δ)− (ρ+ α + µ) 0
0 0 ρ −(µ+ ν)

 (13)

Then, investigate the stability of equation (13) and its effect due to the re-
production number R0

JE0 =


−µ β −κω(1− δ) + α 0
0 −(β + µ) 0 0
0 0 (ρ+ α + µ)(R0 − 1) 0
0 0 ρ −(µ+ ν)

 (14)

Using Routh-Hurwitz criterion [16], to analyzing the stability of the Jacobian
at DFE, compute the trace (Tr) and the determinant (Det) and set the
conditions. The Trace at DFE, is given by

Tr(JE0) = −µ− (β + µ) + (ρ+ α + µ)(R0 − 1)− (µ+ ν) (15)

which is negative provided that R0 < 1 , and the determinant is given by

Det(JE0) = µ2(β + µ)(1−R0) (16)

The determinant of the Jacobian matrix at DFE remains positive provide
that R0 < 1 . Therefore, by Routh-Hurwitz criterion [16], the disease-free
equilibrium of model (3) is locally asymptotically stable. Given a small initial
infective population, each infected individual in the entire period of infectivity
will produce less than one infected individual on average if R0 < 1 .
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6.1 Global stability of Disease-free Equilibrium point

For global stability of the DFE, the technique by Castillo [3] is used. There
are two conditions that if met guarantee the global asymptotic stability of the
disease free state. Equation (3) may be written in the form

dX

dt
= H(X,Z),

dZ

dt
= G(X,Z), G(X, 0) = 0 (17)

where X = {S(t), P (t)} with X ∈ R2‘ denoting the number of uninfected
compartments and Z ∈ R2 where Z = (I(t), C(t)) denotes the number of in-

fected individuals. E0 = {S0, P0, I0, C0} = {Λ(µ+β−θµ)
µ(µ+β)

, Λθ
µ+β

, 0, 0} denotes the
disease free equilibrium point of this system. Conditions below must be met
to guarantee a local asymptotic stability:

dX
dt

= H(X, 0), X∗ is globally asymptotically stable (GAS)

G(X,Z) = PZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0for(X,Z) ∈ Ω (18)

Where P = DzG(X∗, 0) is an M-matrix (the off-diagonal elements of P are
non-negative) and Ω is the region where the model makes medical sense.

Theorem 6.2. If system (17) satisfies conditions (18) , then the fixed point E0

= (X∗, 0) is a globally asymptotically stable equilibrium provided that R0 < 1
and the assumptions in (18) are satisfied.

Proof. Consider
H(X,O) = 1− θΛ− µS(t), θΛ− (β + µ)P (t) and G(X,Z) = PZ − Ĝ(X,Z)

Where P =

(
−(α + ρ+ µ) 0

ρ −(µ+ ν)

)
And

G(X,Z) =

(
Ĝ1(X,Z)
Ĝ2(X,Z)

)
=

(
−κω(1− δ)I(t)

0

)
Considering the Jacobian matrix, and replacing I(t) = 0 C(t) = 0 , we obtain
Ĝ1(X,Z) = 0 and so the conditions in (18) are met and therefore, E0 is glob-
ally asymptotically stable when R0 < 1 . Epidemiologically, any perturbation
of the model by the introduction of infectives shows that the model solutions
will converge to the DFE whenever R0 < 1 .
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7 Existence of Endemic Equilibrium

At the Endemic equilibrium point, we have persistence of infection thus at
least one of the infected classes is greater than zero. The positive endemic
equilibrium of model (3) is denoted by

Ee(S
∗(t), P ∗(t), I∗(t), C∗(t)). (19)

Theorem 7.1. Cervical cancer infections exist and persist in the population
where I∗h > 0 and C∗ > 0 whenever R0 > 1

Proof. Using mathematica software, the endemic states were given as

S∗(t) =
N(α + µ+ ρ)

κω(1− δ)

P ∗(t) =
Λθ

(µ+ β)

I∗(t) =
1

µ+ ρ
{Λ− Λµθ

β + µ
− Nµ(α + µ+ ρ)

(1− δ)κω
}

C∗(t) = −ρ{Nµ(β + µ)(α + µ+ ρ)− ωΛκ(1− δ)(β + µ− µθ)}
κω(1− δ)(β + µ)(µ+ ν)(µ+ ρ)

(20)

7.1 Local stability of endemic equilibrium point

Theorem 7.2. If R0 > 1 , then the endemic equilibrium Ee(S
∗(t), (P ∗(t), I∗(t), C∗(t)) ,

is locally asymptotically stable

Proof. The Jacobian of Equation (3) at endemic state is given by

Je =


−κω(1−δ)I∗(t)

N(t)
− µ β −κω(1−δ)S∗(t)

N(t)
+ α 0

0 −(β + µ) 0 0
κω(1−δ)I∗(t)

N(t)
0 κω(1−δ)S∗(t)

N(t)
− (ρ+ α + µ) 0

0 0 ρ −(µ+ ν)

(21)

Where I∗(t) = 1
µ+ρ

{Λ− Λµθ
β+µ

− Nµ(α+µ+ρ)
(1−δ)κω

} and S∗(t) = N(α+µ+ρ)
κω(1−δ)

Using Routh-Hurwitz criterion [16], the Trace (Tr) at Ee is given by

Tr(Je) = −κω(1−δ)I∗(t)
N(t)

− µ− (β + µ) + κω(1−δ)S∗(t)
N(t)

− (ρ+ α+ µ)− (µ+ ν)
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upon substitution

Tr(Je) = −(β + µ)− (µ+ ν)− µRo (22)

Then the trace of matrix Je is negative provided that Ro > 1 and the deter-
minant will be given by

Tr(Dete) = µ2(µ+ β)(µ+ ρ+ α)(Ro − 1) (23)

Clearly the determinant of the matric is positive provided that Ro > 1 . This
implies that the Routh-Hurwitz criterion holds and thus the endemic Equilib-
rium (Ee)of model (3) is locally asymptotically stable otherwise unstable.

7.2 Global stability of endemic equilibrium point

The global stability of the equilibrium is obtained by means of Lyapunov’s
direct method and LaSalle’s invariance principle De Leon [6].

Theorem 7.3. The endemic equilibrium Ee of model (1) is globally asymp-
totically stable in Ω whenever R0 > 1 .

Proof. Consider the non-linear Lyapunov function
V : (S(t), P (t), I(t), C(t)) ∈ Ω ⊂ R4

+ : S(t), P (t), I(t), C(t) > 0

defined as

V = S − S∗ lnS + P − P ∗ lnP + I − I∗ ln I + C − C∗ lnC (24)

where V is in the interior of the region Ω. Ee is the global minimum of V
on Ω and V : {S(t), P (t), I(t), C(t)} = 0. Differentiating V with respect to
time gives

dV

dt
= V̇ = Ṡ(1− S∗

S
) + Ṗ (1− P ∗

P
) + İ(1− I∗

I
) + Ċ(1− C∗

C
) (25)

Replacing Ṡ, Ṗ , İ , Ċ from equation (3) in equation (25) we obtain

V̇ = [(1 − θ)Λ + αI(t) + βP (t) − κω(1−δ)I(t)
N(t)

S(t) − µS(t)](1 − S∗

S
) + [θΛ −

(β + µ)P (t)](1− P ∗

P
) + [κω(1−δ)I(t)

N(t)
S(t)− (ρ+ α + µ)I(t)](1− I∗

I
)+

[ρI(t)− (ν + µ)C(t)](1− C∗

C
)
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At boundary N ≤ Λ
µ
, we let N = Λ

µ

V̇ = [(1− θ)Λ + αI(t) + βP (t)− κµω(1−δ)I(t)
Λ

S(t)− µS(t)](1− S∗

S
) + [θΛ−

(β + µ)P (t)](1− P ∗

P
) + [κµω(1−δ)I(t)

Λ
S(t)− (ρ+ α + µ)I(t)](1− I∗

I
)+

[ρI(t)− (ν + µ)C(t)](1− C∗

C
)

At steady state the following results from model (3) were obtained

(1− θ)Λ =
κµω(1− δ)I(t)

Λ
S(t) + µS(t)− αI(t)− βP (t)

θΛ = (β + µ)P (t)

κµω(1− δ)I(t)

Λ
S(t) = (ρ+ α + µ)I(t)

ρI(t) = (ν + µ)C(t) (26)

Thus we have

V̇ = [κµω(1−δ)I(t)
Λ

S(t)+µS(t)−αI(t)−βP (t)+αI(t)+βP (t)−κµω(1−δ)I(t)
Λ

S(t)−
µS(t)](1− S∗

S
) + [(β + µ)P (t)− (β + µ)P (t)](1− P ∗

P
) + [κµω(1−δ)I(t)

Λ
S(t)− (ρ+

α + µ)I(t)](1− I∗

I
) + [ρI(t)− (ν + µ)C(t)](1− C∗

C
)

V̇ = [κµω(1−δ)I∗S∗

Λ
+ µS∗ − αI∗ − βP ∗](2− S

S∗ − S∗

S
) + (β + µ)P ∗(2− P

P ∗ −
P ∗

P
) + κµω(1−δ)I∗S∗

Λ
(1− S

S∗
I∗

I
) + ρI∗(1− I

I∗
C∗

C
)

At S = S∗ ,P = P ∗ ,I = I∗ , C = C∗ and from the property that the geometric
mean is less than or equal to the arithmetic mean, the inequality V̇ ≤ 0 holds
iff (S(t), P (t), I(t), C(t)) takes the equilibrium values S∗(t), P ∗(t)I∗(t), C∗(t) .
Thus, by LaSalle’s invariance principle [6], the endemic equilibrium Ee is glob-
ally asymptotically stable.

Epidemiologically, any perturbation of the model by the introduction of infec-
tives, the model solutions will converge to the Ee whenever Ro > 1 . This
implies that the disease transmission levels can be kept quite low or manage-
able with minimal deaths at the peak times of the re-occurrence

If DFE and EE are locally and globally asymptotically stable, then all the epi-
demiological situation different from the given stable equilibria t → 0 evolve
to the equilibrium points. This is significant to epidemiologists, as the condi-
tions required for stability of the model when Ro < 1 , will provide a basis for
the necessary indicators to be controlled in the reduction of the transmission
of Human papilloma virus.
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8 Numerical simulation

Numerical simulations were carried out to graphically illustrate the effect of
protection on the dynamics of infection. To do this, some parameter values
were used as indicated in table (1) .

Table 1: Parameter values used in simulation of model (1)

Parameter description Value Source
S(t) Susceptible individuals 3000 Estimate
P (t) Protected individuals 1000 Estimate
I(t) HPV infected individuals 500 Estimate
C(t) Cervical cancer infected individuals 100 Estimate
Λ Recruitment rate 149 per year [2]
β Loss of protection 0.001 Estimate
θ Adjustment parameter 0.001 Estimate
ω probability rate of acquiring HPV infection 0.31 per year [1, 10]
κ Contact rate with HPV infective 0.80 per year [10, 14]
µ Natural mortality rate 0.05393 per year [10]
ν Cervical cancer related death rate 0.61325 per year [2]
α Recovery rate of HPV infection 0.70 per year [10]
ρ Rate of progression to Cervical cancer 0.1271 per year [10, 14, 17]
δ Modification parameter 0 < δ < 1 Estimate
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Based on the initial conditions and parameter values in table (1) , the following
graphs were obtained;

Figure 2: Simulation of Equation (3)
showing the evolution of the infection
against time.

Figure 3: The effect of varying the
protection term on HPV.

Figure 2 shows the evolution of cervical cancer infection in the presence of
protection against time in days. With high success of protection, there is low
contact rate and low prevalence rate hence the HPV infected and Cervical
cancer individuals in the population decreases sharply over time. With low
protection there is high contact rate and hence a high disease prevalence in
the population.

From Figure 3 , we observe that the number of individuals infected with HPV
reduces with increased protection. On the contrary, when the protection rate
is low, the number of HPV infected individuals will be high. This is consistent
with reality.

This is in agreement with the mathematical analysis which showed that the
disease free equilibrium point for Equation (3) is locally and globally asymp-
totically stable when R0 < 1 . The endemic states are shown to exist provided
that the reproduction number is greater than unity. By use of Routh-Hurwitz
criterion and suitable Lyapunov functions, the endemic states are shown to be
locally and globally asymptotically stable respectively.
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In order to eliminate cervical cancer infections, there is need to employ strate-
gies such as increasing the public awareness drive to behaviour change, pro-
moting increased condom use to reduce the spread of HPV infection, avoid use
of oral contraceptives especially by girls before the age of 17 years, being faith-
ful to one partner and avoid smoking. These strategies will help in reducing
the economic burden that are borne by a country in giving care and treating
the infected individuals. As evidenced from these results, it is indeed true that
prevention is better than cure.

9 Conclusion

Effective control of HPV infection prevents progression to cervical cancer es-
pecially in scarce resource setting where treatment is not readily available.
Screening and vaccination are effective prevention measures. Moreover, in-
creasing public awareness drive to behaviour change, promoting increased con-
dom use to reduce the spread of HPV infection, avoid use of oral contraceptives
especially by girls before the age of 17 years, being faithful to one partner, avoid
smoking, will reduce the probability of the infection hence resulting to less peo-
ple contacting the infection. Protection against Hpv infection is perceived to
yield better results in the reduction of cervical cancer mortality rate.
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