
NEW PROOFS OF THE EQUIVALENT STATEMENT OF THE
DIRICHLET ETA FUNCTION AND OF THE RIEMANN

HYPOTHESIS

Abstract. We will present two new proofs (and some of our old results)

for the �Dirichlet eta� function S (s) =
P
n�1

(�1)n
ns

which would lead us to
announce some new conjectures equivalent to that of the Riemann hypothesis.

The �rst conjecture announced: In the band s (s = r+ ic) a complex such
that its real part is strictly between 0 and 1 (0 < r < 1), we have the real part
of the Dirchlet function (S (s)) can only be zero in the straight line "the real
part of s is equal to 0.5" (r = 0; 5). While the second conjecture informs us
about what the zeros can be in the straight line r = 0:5.

1. Introduction

The Riemann Hypothesis is a conjecture formulated in 1859 by the mathemati-
cian Bernhard Riemann, according to which the nontrivial zeros of the Riemann
zeta function are in�nite and all have a real part equal to 1=2. see [5] [2]
His proof would improve knowledge of the distribution of prime numbers and

open up new areas of mathematics. Riemann�s article (see [3]) on the distribution
of prime numbers is his only text dealing with number theory. He develops the

properties of the zeta function C(s) =
+1P
n=1

1

ns
and proves the prime number theorem

by admitting several results, including what is now called the Riemann Hypothesis.
Hardy then demonstrated that there are in�nitely many zeros on the critical line
(Hardy�s Theorem: see [4] [7], [8]), which gives us hope that the RH might be true...
This paper is a continuation of our last "A Contemporary Conjecture for the

Riemann Hypothesis" work already published (see [1]).

Let

S(s) =
+1P
n=1

(�1)n
ns = �

+1P
n=1

(�1)n�1
ns = �� (s)

so
S (s) = � (s) ei�(s)S (1� s)

Remark 1. (Functional equation of Hardy)
We have 8s 2 C such Re (s) 2 ]0; 1[

S (s) = ' (s)S (1� s)
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with ' (s) = 2 1�2
s�1

1�2s �
s�1 sin

�
s
2�
�
� (1� s) = � (s) ei�(s).

see [7] & [8]

2. Preliminary

2.1. Analytic extension of the function � and its auxiliary functions C1
and C2:

Theorem 1. There exists a unique function, denoted � (Riemann zeta function),
verifying:
� � is meromorphic on the entire C, holomorphic outside a simple pole at s =

1,with residue 1;
� � (s) = L(1; s), if Re(s) > 1

see [10] page 412.

Proposition 1. Let s = r + ic, so

S =
+1X
n=1

(�1)n e
�i ln(n)c

nr

S =

+1X
n=1

(�1)n e
i�n

nr

The serie S is convergent for strictly positive real s, by application of the alter-
nating series criterion; it is in fact the same for Re(s) > 0, which is demonstrated
using Abel�s lemma (we can also show more simply the absolute convergence of the

serie
+1P
n=1

(2n)s�(2n�1)s
(2n)s(2n�1)s )

And The Riemann � function is a meromorphic complex analytic function de-
�ned, for any complex number s such that
Re(s) > 1, by the Riemann serie:

� =
+1X
n=1

1

ns
=

+1X
n=1

e�i ln(n)c

(2n)
r =

+1X
n=1

ei�n

(2n)
r

� =
S (s)

21�s � 1 =
� (s)

1� 21�s

with �n = � ln (n) c.
According to the theory of Dirichlet series, we deduce that the function thus

de�ned is analytic over its domain of convergence. The series does not converge at

s = 1 because we have
mP
n=1

1
n �

Rm+1
1

dx
x = ln (m+ 1).

If Re (s) > 1, � (s) =
+1P
n=1

1
ns = 2

+1P
n=1

1
(2n)s � S (s) = �S (s) + 2

2s � (s) ; so

� (s) = S(s)
21�s�1

This thus realizes the extension of the � function over Re(s) > 0, except for
s = 1 + 2k�

ln(2) i, k 2 Z:
Also we will realize the extension of the C1 and C2 such
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C1 =
+1X
n=1

1

(2n)
s =

1

2s
� (s) =

+1X
n=1

e�i ln(2n)c

(2n)
r =

+1X
n=1

ei�2n

(2n)
r = R1 + iI1

C2 =
+1X
n=1

1

(2n� 1)s = � � C1 =
+1X
n=1

e�i ln(2n�1)c

(2n� 1)r =
+1X
n=1

ei�2n�1

(2n� 1)r = R2 + iI2

and

R1 =
+1X
n=1

cos (�2n)

(2n)
r , I1 =

+1X
n=1

sin (�2n)

(2n)
r , R2 =

+1X
n=1

cos (�2n�1)

(2n� 1)r , I2 =
+1X
n=1

sin (�2n�1)

(2n� 1)r

R =
+1X
n=1

cos (�n)

(2n)
r = R1 +R2, I =

+1X
n=1

sin (�n)

(2n)
r = I1 + I2

R0 =

+1X
n=1

(�1)n cos (�n)
nr

, I 0 =
+1X
n=1

(�1)n sin (�n)
nr

, R0 = R1 �R2, I 0 = I1 � I2

S = C1 � C2 = R0 + iI 0 , � = C1 + C2 = R+ iI

Proposition 2. Let s = r + ic = r + i �
ln(2) (since � = ln (2) c)

C1 =
e�i�

2r
�

C2 =

�
1� e

�i�

2r

�
�

S =
�
21�re�i� � 1

�
�

Proof. � = ln (2) c) e�i ln(2)c = e�i�

Therefore,

C1 =
+1X
n=1

e�i ln(2n)c

(2n)
r =

e�i ln(2)c

2r

+1X
n=1

e�i ln(n)c

nr

C1 =
e�i ln(2)c

2r
� =

e�i�

2r
�

C2 = � � C1 = � � e�i�

2r � )

C2 =

�
1� e

�i�

2r

�
�

and
S = C1 � C2 = e�i�

2r � �
�
1� e�i�

2r

�
� =)

S =
�
21�re�i� � 1

�
�

�
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3. Our previous contributions

3.1. Introduction. All the results we will cited here are taken and slightly dis-
torted from others already cited and demonstrated for a long time by other re-
searchers and books. To demonstrate Lemma 1 we used the classic course of Com-
plex Analysis like [11] and [6].

De�nition 1. (di¤erentiability and holomorphy)
A function f : U ! C on an open set of the complex plane is said to be complex

di¤erentiable at the point z0 2 U if the limit f 0(z0) = limh!0
f(z0+h)�f(z0)

h exists.
The function f is said to be holomorphic on U if it is complex di¤erentiable at every
point of U , and it is said to be holomorphic on a set A if there exists an open set
V containing A on which f is de�ned and holomorphic. A holomorphic function
on the entire C is called an entire function.

De�nition 2. (analytic functions)
We say that a function f(z) de�ned on an open set U of the complex plane C is

analytic on U if, at every point z0, there exists a � (z0) > 0 and complex numbers
cn(z0) such that for jz � z0j < � (z0), we have f(z) =

P1
n=0 cn(z0) (z � z0)

n.

Theorem 2. Every analytic function is holomorphic, and indeed in�nitely di¤er-
entiable in the complex sense; moreover, all its derived functions are also analytic
functions.

Remark 2. Cauchy�s theory leads us to a fundamental theorem: every holomor-
phic function is an analytic function. In particular, every holomorphic function is
automatically in�nitely di¤erentiable in the complex sense.

Theorem 3. 1- If f and g are holomorphic on U and coincide on a set with a
non-isolated point, they are equal.
2- If the set of points of a domain U where two analytic functions f and g

on U take the same values has an accumulation point in U , then in fact the two
functions f and g take the same values everywhere in U . They are, in fact, the
same functions.

Theorem 4. (Adherent Point and Closure)
Let X be a topological space and A � X be a subset. A point x 2 X is said to be

an adherent point (Closure point) of A if every open neighborhood of x intersects
A. The closure of A, denoted by A, consists of all adherent points of A.

Theorem 5. (Adherent Point and Existence of Convergent Sequences)
Let X be a topological space and A � X be a subset. A point x 2 X is an

adherent point (Closure point) of A if and only if there exists a sequence xn in A
such that

lim
n!+1

xn = x

3.2. The �rst announcement.

Lemma 1. Assuming that there exists an s1 with r1 = Re [s1] 2
�
0; 12

�
and c =

Im [s1] > 0 such that S2 (s1) 2 IR, so
(i) 9V (s1) � C such 8s 2 V (s1)� fs1g, S2 (s) =2 IR
(ii) 9un 2 V (s1)�fs1g such limun = s1 (since s1 2 V (s1)� fs1g with A is the

adherant of A).
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Proof. Obvious.
(i) Reasoning by the absurd. Suppose
8V (s1) � C; 9s 2 V (s1)� fs1g such S2 (s) 2 IR (�)
Let s (0) 6= s1 such s (0) very close to s1, and V0 (s1) such s (0) 2 V0 (s1)
=) 9s (1) 2 V0 (s1)� fs1g such S2 [s (1)] 2 IR
s (1) 6= s1 =) 9V1 (s1) such s (1) =2 V1 (s1) and V1 (s1)  V0 (s1)
=) 9s (2) 2 V1 (s1)� fs1g such S2 [s (2)] 2 IR
...
and so on
if
9Vn�1 (s1) such s (n� 1) =2 Vn�1 (s1) and Vn�1 (s1)  Vn�2 (s1)
and 9s (n) 2 Vn�1 (s1)� fs1g such S2 [s (n)] 2 IR
+
9Vn (s1) such s (n) =2 Vn (s1) and Vn (s1)  Vn�1 (s1)
=) 9s (n+ 1) 2 Vn (s1)� fs1g such S2 [s (n+ 1)] 2 IR
so, we construct a sequence s (n) which converges to s1 such that S2 (s (n)) 2 IR,
such

limVn (s1) = lim
n\
k=0

Vk (s1) = fs1g

since fs1g  Vn (s1)  Vn�1 (s1) 8n (the decrease of Vn (s1))
consequently
S2 (s (n))� S2 (s (n)) = 0
S2 and S2 are analytic and holomorphic functions,
it su¢ ces to see that if f satis�es the Cauchy-Riemann equations then f also

satis�es it (Using the Cauchy-Riemann equations and Schwarz�s theorem).
so S2 (s)� S2 (s) is analytic and holomorphic function,
let U = fs (n) =n 2 INg [ fs1g
S2 (s)� S2 (s) and 0 are two analytic functions take the same values on U
and U has an accumulation point (in U)
according to the theorem we have
S2 (s)� S2 (s) = 0
=) S2 (s) 2 IR absurd!!
(ii) Using (i) and the last theorem. �

Lemma 2. Let D1 =
�
z 2 C=Re (z) 2 ]0; 1[ ;Re (z) 6= 1

2 and Im (z) 6= 0
	
, so

8s 2 D1
S2 (s) 2 IR, S2 (1� s) 2 IR

Proof. Since the �rst lemma:
Assuming that there exists an s1 with r1 = Re [s1] 2

�
0; 12

�
and c > 0

such that S2 (s1) 2 IR, so
(i) 9V (s1) � C such 8s 2 V (s1)� fs1g, S2 (s) =2 IR
(ii) 9un 2 V (s1)� fs1g such limun = s1
(since s1 2 V (s1)� fs1g with A is the adherant of A).
limun = s1 =) 9N 2 IN such 8n � N; un 2 V (s1)� fs1g
) 9N 2 IN such 8n � N; S2 (un) =2 IR
)
�
S (un) ; S (un)

�
is a basis of C

) 9! (an; bn) 2 IR2 such S (1� un) = anS (un) + bnS (un)
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S (s) = ' (s)S (1� s)
) S (1� un) = an' (un)S (1� un) + bn' (un)S (1� un)
) [1� an' (un)]S (1� un) =

h
bn' (un)

i
S (1� un)

)
h
1� an' (un)

i
S (1� un) = [bn' (un)]S (1� un)

) bn' (un)S
2 (1� un) =

h
1� an' (un)

i
jS (1� un)j2

' (s)' (1� s) = 1 8s
) bnS

2 (1� un) = ' (1� un)
h
1� an' (un)

i
jS (1� un)j2

) bnS
2 (1� un) =

h
' (1� un)� an' (un)' (1� un)

i
jS (1� un)j2

' (s)' (1� s) = 1) j' (s)j2 ' (1� s) = ' (s)
) ' (s) = �2' (1� s)
)

bnS
2 (1� un) = jS (1� un)j2

�
' (1� un)� an�2n'2 (1� un)

�
= jS (1� un)j2 ' (1� un)

�
1� an�2n' (1� un)

�
) jbnj = j' (1� un)j

��1� an�2n' (1� un)�� or jS (1� un)j = 0
we have S2 (un) =2 IR) S (un) 6= 0) jS (1� un)j 6= 0
) jbnj = j' (1� un)j

��1� an�2n' (1� un)��
also �n 6= 0 since jS (un)j = �n jS (1� un)j
) jbnj = 1

�n

��1� an�2n' (1� un)��
) b2n�

2
n =

��1� an�2n' (1� un)��2
)

b2n�
2
n = 1 + a

2
n�

2
n � 2an�n cos (�n) (1)

S (1� un) = anS (un) + bnS (un)
) jS (1� un)j2 =

�
a2n + b

2
n

�
jS (un)j2 + anbn

�
S2 (un) + S2 (un)

�
) �2n jS (1� un)j

2
=
�
a2n�

2
n + b

2
n�

2
n

�
jS (un)j2 + anbn�2n

�
S2 (un) + S2 (un)

�
)
jS (un)j2 =

�
a2n�

2
n + 1 + a

2
n�

2
n � 2an�n cos (�n)

�
jS (un)j2+anbn�2n

�
S2 (un) + S2 (un)

�
) 0 =

�
2a2n�

2
n � 2an�n cos (�n)

�
jS (un)j2 + anbn�2n

�
S2 (un) + S2 (un)

�
) an�n

h
2 (an�n � cos (�n)) jS (un)j

2
+ bn�n

�
S2 (un) + S2 (un)

�i
= 0

) an�n = 0 or 2 [an�n � cos (�n)] jS (un)j
2
+ bn�n

h
S2 (un) + S2 (un)

i
= 0

2 [an�n � cos (�n)] jS (un)j
2
+ bn�n

h
S2 (un) + S2 (un)

i
= 0 =)

bn�n

h
S2 (un) + S2 (un)

i
= �2 [an�n � cos (�n)] jS (un)j

2

) b2n�
2
n

h
S2 (un) + S2 (un)

i2
= 4 [an�n � cos (�n)]

2 jS (un)j4

)
�
1 + a2n�

2
n � 2an�n cos (�n)

� h
S2 (un) + S2 (un)

i2
= 4 [an�n � cos (�n)]

2 jS (un)j4

)
h
(an�n � cos (�n))

2
+ sin2 (�n)

i h
S2 (un) + S2 (un)

i2
= 4 [an�n � cos (�n)]

2 jS (un)j4
)
sin2 (�n)

h
S2 (un) + S2 (un)

i2
= [an�n � cos (�n)]

2

�
4 jS (un)j4 �

�
S2 (un) + S

2
(un)

�2�
)
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sin2 (�n)
h
S2 (un) + S2 (un)

i2
= [an�n � cos (�n)]

2
h
2 jS (un)j4 � S4 (un)� S

4
(un)

i
) sin2 (�n)

h
S2 (un) + S2 (un)

i2
= � [an�n � cos (�n)]

2
h
S2 (un)� S2 (un)

i2
) [i sin (�n)]

2
h
S2 (un) + S2 (un)

i2
= [an�n � cos (�n)]

2
h
S2 (un)� S2 (un)

i2
)

[an�n � cos (�n)]
h
S2 (un)� S2 (un)

i
= �i sin (�n)

h
S2 (un) + S2 (un)

i
)
[an�n � cos (�n)� i sin (�n)]S2 (un) = [an�n � cos (�n)� i sin (�n)]S2 (un) = Z
as Z = Z so Z = [an�n � cos (�n)� i sin (�n)]S2 (un) 2 R
) �

an�n � e�i�n
�
S2 (un) 2 R

)
S2 (un) = Kn

�
an�n � e�i�n

�
with Kn 2 R
)

Im
�
S2 (un)

�
= �Kn sin (�n)

since limun = s1 & S2 (s1) 2 IR� so
lim [sin (�n)] = sin (� (s1)) = 0
)

� (s1) � 0 [�]
as S (s) = ' (s)S (1� s) & ' (s) = � (s) ei�(s)
) S (s1) = � (s1) e

i�(s1)S (1� s1)
) S2 (s1) = �

2 (s1) e
2i�(s1)S2 (1� s1)

� (s1) � 0 [�]) S2 (s1) = �
2 (s1)S

2 (1� s1)
so
S2 (s) 2 IR, S2 (1� s) 2 IR
Another proof :
If lim an = a and lim bn = b, and as we have

bnS
2 (1� un) = jS (1� un)j2

�
' (1� un)� an�2n'2 (1� un)

�
with �n = j' (un)j
where n �! +1 we would have
bS2 (1� s1) = jS (1� s1)j2

h
' (1� s1)� a' (s1)' (1� s1)

i
)

bS2 (1� s1) = jS (1� s1)j2
�
' (1� s1)� a�2'2 (1� s1)

�
with S (s1) = ' (s1)S (1� s1) = �ei�(s1)S (1� s1)
) S2 (1� s1) = ��2e�i2�(s1)S2 (s1) (or � = 0)
(S (s1) 6= 0, � 6= 0)

)

8<: b��2e�i2�(s1)S2 (s1) = jS (1� s1)j2
�
' (1� s1)� a�2'2 (1� s1)

�
or
S2 (s1) = S

2 (1� s1) = 0
Moreover
S2 (1� s1) = ��2e�i2�(s1)S2 (s1) and S2 (s1) 2 IR) jS (1� s1)j2 = ���2S2 (s1)
) �be�i2�(s1) = ' (1� s1)� a�2'2 (1� s1) or S2 (s1) = S2 (1� s1) = 0
' (s1) = �e

i�(s1) and ' (s1)' (1� s1) = 1
) �b�2 = ' (s1)� a�2 or S2 (s1) = S2 (1� s1) = 0
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) (a� b) �2 = ' (s1) or S2 (s1) = S2 (1� s1) = 0
(a� b) �2 = ' (s1) = �ei�(s1) )

(ja� bj � = 1 and � (s1) � 0 [�]) or � = 0
) S2 (1� s1) = ��2e�i2�(s1)S2 (s1) = ��2S2 (s1) 2 IR or S (s1) = 0
Conclusion: S2 (s1) 2 IR) S2 (1� s1) 2 IR or S2 (s1) = S2 (1� s1) = 0 �

Remark 3. If s 2 IR, S (s) =
+1P
n=1

(�1)n
ns 2 IR and S (1� s) =

+1P
n=1

(�1)n
n1�s 2 IR.

Lemma 3. Let D = fz 2 C=Re (z) 2 ]0; 1[g, so 8s 2 D
S2 (s) 2 IR, S2 (1� s) 2 IR

Proof. Since D �D1 =
�
z 2 C=Re (z) = 1

2 and Im (z) 6= 0
	

Re (s) = 1
2 ) 1� s = s

so S (1� s) = S (s) = S (s)
and S2 (s) 2 IR, S2 (1� s) 2 IR �

Claim 1. Let D = fz 2 C=Re (z) 2 ]0; 1[g, so 8s 2 D
S (s) 2 IR, S (1� s) 2 IR
S (s) 2 iIR, S (1� s) 2 iIR

Proof. S (s) 2 IR or S (s) 2 iIR) S2 (s) 2 IR) � (s) � 0 [�]
S (s) = ' (s)S (1� s) = �ei�(s)S (1� s1) = ��S (1� s1) �

3.3. Other results. Let be S = S (s) and S0 = S (1� s)such S2 (s) 2 IR
so C1 = e�i�

2r �, C2 =
�
1� e�i�

2r

�
� and S =

�
21�re�i� � 1

�
�

with C2 = � � C1, S = C1 � C2
&
C 01 =

ei�

21�r �
0, C 02 =

�
1� ei�

21�r

�
� 0 and S0 =

�
2rei� � 1

�
� 0

with C 02 = �
0 � C 01, S0 = C 01 � C 02

as 1� s = r0 + ic0 = 1� r� ic, � = ln (2) c) r0 = 1� r , c0 = �c) r0 = 1� r ,
�0 = ��

Remark 4. Let be S = S (s) such S2 (s) 2 IR, so
1) 2C1C 01 = ��

0

2) C1�
0
= 21�2r�C

0
1

3) 2C1C
0
1 = e

�i2���
0

4) 2C1C 02 = S�
0

5) 2C2C 02 = SS
0 2 IR

6) SC 01 = �C
0
2 (& S

0C1 = �
0C2)

Proof. 1) C1C 01 =
e�i�

2r �
ei�

21�r �
0 = ��0

2

2) C 01 =
ei�

21�r �
0 ) � 0 = 21�re�i�C 01

C1�
0
=
�
e�i�

2r �
��
21�re�i�C 01

�
C1�

0
=
�
e�i�

2r �
��
21�rei�C 01

�
= 21�2r�C

0
1

3) 2C1C
0
1 = 2

�
e�i�

2r �
��

ei�

21�r �
0
�
= 2 e

�i�

2r �
e�i�

21�r �
0



9

2C1C
0
1 = e

�i2���
0

4) If S 2 IR we have S = 2C1 � � = 2C1 � � = S 2 IR
=) 2C1 + � = 2C1 + �

=) 2C 01� + ��
0 = 2C

0
1� + ��

0

=) 2C 01� + ��
0 = 2C

0
1� + 2C1C

0
1

=) 2C 01� � 2C1C 01 = 2C
0
1� � �� 0

=) 2C1
�
� 0 � C 01

�
=
�
2C1 � �

�
� 0

=) 2C1C
0
2 = S�

0 = S� 0.
If S 2 iIR we have S = 2C1 � � = � � 2C1 = �S 2 iIR
=) 2C1 � � = �2C1 + �
=) 2C1�

0 � �� 0 = �2C1� 0 + �� 0
=) 2C1�

0 � �� 0 = �2C1� 0 + 2C1C 01
=) 2C1�

0 � 2C1C 01 = �2C
0
1� + ��

0

=) 2C1
�
� 0 � C 01

�
=
�
�2C1 + �

�
� 0

=) 2C1C
0
2 = �S� 0 = S� 0.

5) 2C1C 02 = S�
0 ) 2 (S + C2)C

0
2 = S�

0

) 2SC 02 + 2C2C
0
2 = S�

0 ) S
�
� 0 � S0

�
+ 2C2C

0
2 = S�

0

) S� 0 � SS0 + 2C2C 02 = S� 0
) SS0 = 2C2C

0
2.

6) is 4)+5) �

Lemma 4.
S2 (s) 2 IR) C2 (s)C2 (1� s) 2 IR

Proof. Since the last Claim 8s 2 D = fz 2 C=Re (z) 2 ]0; 1[g
S (s) 2 IR, S (1� s) 2 IR
S (s) 2 iIR, S (1� s) 2 iIR

=) SS0 = S (s)S (1� s) 2 IR
and from the last Remark 5)
2C2C

0
2 = SS

0 2 IR. �

3.4. The second announcement.

Claim 2.
9s0=S (s0) 2 iIR() 9s1 2 (r0; s0] =S (s1) = 0

such r0 = Re (s0) 2
�
0; 12

�
[
�
1
2 ; 1
�
and (r0; s0] = fr0 + ic 2 C=0 � c � c0g

Proof. Assuming that
9s0 = r0 + ic0 such S (s0) 2 iIR�
with r0 2

�
0; 12

�
Let

c0 = min
�
c 2 IR+=9n 2 IN�; Sn (r0 + ic) 2 iIR�

	
(�)

so 9m 2 IN�; Sm (s0) 2 iIR� with s0 = r0 + ic0 (c0 � c0)
) S2m (s0) 2 IR��
without forgetting S2m (r0) 2 IR+� ,
since

S (r) =
X
n�1

(�1)n

nr
2 IR; 8r 2 IR+�
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Let now S2m (s) = R (s) + iI (s)
we have R (s0) � 0 and R (r0) � 0, so
9s1 = r0 + ic1 2 (r0; s0) such R (s1) = 0
) S2m (s1) 2 iIR with 0 � c1 � c0
0 � c1 � c0 ) S2m (s1) =2 iIR� (since (�))

S2m (s1) 2 iIR & S2m (s1) =2 iIR� ) S2m (s1) = 0

) S (s1) = 0

Conclusions:
- 9s0 such S (s0) 2 iIR ) S (s0) 2 iIR� or S (s0) = 0 ) 9s1 2 (r0; s0] such

S (s1) = 0:
- The other implication is obvious:
9s1 2 (r0; s0] such S (s1) = 0) 9s1 2 (r0; s1] such S (s1) = 0
with s1 = s0 S (s0) = S (s1) = 0) 9s0 such S (s0) 2 iIR. �

4. News contributions

Corollary 1.

(9m0 & 9s0 such Sm0 (s0) 2 iIR)() 9s1 2 (r0; s0] such S (s1) = 0
() 9c 2 ]0; c0] such S (r0 + ic) = 0

such r0 = Re (s0) 2
�
0; 12

�
[
�
1
2 ; 1
�
and (r0; s0] = fr0 + ic 2 C=0 � c � c0g

Proof. Same proof as the previous one. �
Conjecture 1. 8r 2 ]0; 1[ and s = r + ic

r 6= 1

2
) Re [S (s)] 6= 0

Re [S (s)] = 0 =) r =
1

2

so
+1X
n=1

(�1)n cos [ln (n) c]
nr

= 0 =) r =
1

2

Proof. Re [S (s)] = 0 =) S (s) 2 iIR =) 9s1 2 (r; s] such S (s1) = 0 (according to
the last Claim)
and according to the Riemann hypothesis:
S (s1) = 0 =) Re (s1) =

1
2

s1 2 (r; s] =) s1 = r + ic1 such 0 � c1 � c
since s1 2 (r; s] & s = r + ic
=) Re (s1) = r =

1
2 . �

Conjecture 2.

( r =
1

2
& �

�
1

2
+ ic

�
= (2k + 1)� ) =) S

�
1

2
+ ic

�
= 0

Proof. Assuming that
9s = 1

2 + ic such �
�
1
2 + ic

�
= (2k + 1)� & S

�
1
2 + ic

�
6= 0

S (s) = ' (s)S (1� s), 1� s = s, ' (s) = �ei�(s) = �1
=) S (s) = �S (s)
=) S (s) 2 iIR�
=) S2 (s) 2 IR��
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8r 2
�
0; 12

�
, S (r) 2 IR� =) S2 (r) 2 IR+�

Let now S2 = R+ iI
we have R (s) � 0 and R (r) � 0, so
9s0 = r0 + ic0 2 (r; s) such R (s0) = 0
=) 9s0 = r0 + ic0 such r0 2

�
0; 12

�
& S2 (s0) 2 iIR

since r0 + ic0 2
�
r; 12 + ic

�
=) r < r0 <

1
2

we have seen in the last corollary that
(9m0 & 9s0 such Sm0 (s0) 2 iIR)=) 9s1 2 (r0; s0] =S (s1) = 0
with m0 = 2 & s0 = r0 + ic0
s1 2 (r0; s0] =) Re (s1) = r0 2

�
0; 12

�
Absurd according to the Riemann hypothesis.
=) S

�
1
2 + ic

�
= 0. �

5. Conclusions

We have two new conjectures based on the Riemann hypothesis, and so this is
a new way to see if this hypothesis is correct, and if not, we also have a useful new
method for determining a counterexample.
The �rst conjecture announced: In the band s (s = r + ic) a complex such that

its real part is strictly between 0 and 1 (0 < r < 1), we have the real part of the
Dirchlet function (S (s)) can only be zero in the straight line "the real part of s is
equal to 0.5" (r = 0; 5). So instead of studying and �nding the zeros of the Dirchlet
function (S (s) or � (s)), we just need to study its real part which is equivalent to

studying and �nding the zeros of the real function R0 =
+1P
n=1

(�1)n cos[ln(n)c]
nr with

two variables (r; c).
While the second conjecture informs us about what the zeros can be (�

�
1
2 + ic

�
=

(2k + 1)�) in the straight line r = 0; 5.
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