
The Existence of Solutions for Second Order Hamiltonian Systems with

Periodic Potentials

Abstract This paper is dedicated to investigating the solutions of second order Hamiltonian

systems with periodic potentials. We generalized some results to the operator equation Ax −

∇Φ(x) = 0 by virtue of the critical point theory and the index theory of operator equations. And

then we discuss the Sturm-Liouville boundary value problem and the generalized periodic boundary

value problem with periodic potential, the existence of solutions is obtained.
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1 Introduction

In last decades, variational methods and critical point theorem have been used successfully in

studying the existence and multiplicity solutions for second Hamiltonian systems by many math-

ematicians. Jean Mawhin and Michel Willen in [10] (see also [23] for reference) investigated the

existence of solutions to the second Hamiltonian system

ẍ(t) + V ′(t, x) = 0, (1.1)

x(0)− x(1) = ẋ(0)− ẋ(1) = 0, (1.2)

where V ∈ C([0, 1]×Rn,R) and V ′(t, x) denotes the gradient of V (t, x) with respect to x. Under

the periodic conditions: V (t, x+Tiei) = V (t, x)(1 ≤ i ≤ n) for all (t, x) ∈ [0, 1]×Rn, some positive
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real numbers T1, T2, · · · , Tn and the canonical basis {ei}ni=1 of Rn, they have proved that (1.1)-

(1.2) has one solution. These above conditions have also been used by many mathematicians, see

[2, 10, 7, 23] for examples. J. Pipan, M. Schechter and L. Lin have made outstanding contributions

to solve the second order Hamiltonian systems [11, 12, 13, 14, 15, 17]. They obtained some bril-

liant results for non-autonomous second order Hamiltonian systems by linking methods. Y. Dong

considered different boundary values such as x(1) = Mx(0), ẋ(1) = Nẋ(0), x(0) cosα− ẋ(0) sinα =

0, x(1) cosβ − ẋ(1) sinβ = 0 and obtained some excellent results by index theory[4, 16]. Very

recently, C. Li studied the solutions with minimal period for non-autonomous second-order Hamil-

tonian systems with x(0) = x(pT ), ẋ(0) = ẋ(pT ) by critical point [18, 19]. Z.Wang and his collab-

orators unified many previous known results of the non-autonomous second order in [22].

In this paper, we will generalize the result to operator equations. Let X be a real infinite-

dimensional Hilbert space with norm || · ||X and inner product (·, ·)X . Let A : D(A) ⊂ X → X

be an unbounded self-adjoint operator satisfying σ(A) = σd(A) and is bounded below by 0 and

assume

(Φ0) Φ : Z ≡ D(|A|
1
2 ) → R is differentiable and for any x ∈ Z there exists M > 0 such that

|Φ′(x)y| ≤ M ||y||X , ∀y ∈ Z.

From the Riesz Representation Theorem, it is easy to see that (Φ0) implies that for any x ∈ Z

there exists a unique element in X denoted by ∇Φ(x) such that Φ′(x)y = (∇Φ(x), y)X for all y ∈ Z.

We consider the following operator equations:

Ax−∇Φ(x) = 0. (1.3)

If we define X = L2([0, 1],Rn) and (Ax)(t) = −ẍ(t) with D(A) = {x ∈ H2([0, 1],Rn)|x satisfies

(1.2)}, Φ(x) =
∫ 1
0 V (t, x)dt defined on Z = D(|A|

1
2 ) = {x ∈ H1([0, 1],Rn)|x(0) − x(1) = 0} is

continuously differentiable via [4, Prop. 7.3.2] and

Φ′(x)y =

∫ 1

0
(V ′(t, x(t)), y(t))dt,∀y ∈ Z.

Therefore, (1.1)-(1.2) is a special case of (1.3).

The main results of this paper is the following theorem.

Theorem 1.1 Assume that Φ satisfies (Φ0),

(Φ1) Φ ∈ C1(Z,R) and Φ is weak continuous i.e. Φ(xj) → Φ(x0) as xj ⇀ x0,

(Φ2) Φ(x) ≤ C for all x ∈ X and C > 0 is a constant, and

(Φ3) if dimker(A) = m ≥ 1, there exist a basis {e1, e2, · · · , em} of ker(A) and some positive real

numbers T1, T2, · · · , Tm such that Φ(x+ Tjej) = Φ(x) for all x ∈ Z, 1 ≤ j ≤ m.
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Then (1.3) has one solution.

In section 2 we will prove Theorem 1.1, and in the last section as applications we will investigate

second order Hamiltonian systems.

2 Proof

In this section, we prove Theorem 1.1. Recall that A is a self-adjoint operator. Let E be the

spectral measure associated with A. Set P+ = E(0,+∞), P 0 = E({0}) and P− = (−∞, 0), and

set Z+ = P+, Z0 = P 0Z and Z− = P−Z. Since σ(A) = σd(A) is bounded from below by 0, then

Z = Z0 ⊕Z+. We define an equivalent norm on Z by

||x||2 = |||A|
1
2 ||2X + ||x0||2X , (2.4)

and define

I(x) =
1

2
||x+||2 − Φ(x), (2.5)

where x ∈ Z, x+ ∈ Z+ and x0 ∈ Z0. It is easy to see that

I ′(x)y = (x+, y+)− Φ′(x)y,∀x, y ∈ Z. (2.6)

In [3], we see that if assumption (Φ0) holds, then any critical point of I(x) is a solution of (1.3).

Lemma 2.1 ([10], Theorem 1.1) If I is w.l.s.c.(weakly lower semi-continuous) on a Hilbert

space X and has a bounded minimizing sequence, then I has a minimum on X.

Proof of Theorem 1.1 Set I1(x) =
1
2 ||x

+||2. Since I1(x) is convex and continuous, I1(x) is

w.l.s.c.. By (Φ1), I(x) is w.l.s.c..

For any x ∈ Z,

I(x) =
1

2
||x+||2 − Φ(x)

≥ 1

2
||x+||2 − C (2.7)

via (Φ2). Let {xj} be a minimizing sequence for I such that I(xj) → inf I. By (2.7), ||x+j || is

bounded and xj = x+j + x0j . If we write x0j =
m∑
j=1

cjej , then cj = ĉj + kjTj(1 ≤ j ≤ m) for some

kj ∈ Z and ĉj ∈ [0, Tj). Set x̂j = x̂+j + x̂j
0 = x̂+j +

m∑
j=1

ĉjej , x̂
+
j = x+j and x̂j

0 is bounded. From

(Φ3),

I(xj) =
1

2
||x+j ||

2 − Φ(xj)
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=
1

2
||x+j ||

2 − Φ(x+j + x̂0j +
m∑
j=1

kjTjej)

=
1

2
||x+j ||

2 − Φ(x+j + x̂0j )

= I(x̂j) (2.8)

Hence I(x̂j) = I(xj) → inf
Z

I as j → ∞, that is {x̂j} is a bounded minimizing sequence of I. By

Lemma 2.1, I(x) has a minimum on Z. The minimum point is a critical point, and is also a solution

of (1.3) via ([3], Lemma 2.1). The proof is complete.

3 Applications

As applications, we can investigate the second order Hamiltonian systems as follows

ẍ(t) + V ′(t, x) = 0, (3.9)

x(0) cosα− ẋ(0) sinα = 0, (3.10)

x(1) cosβ − ẋ(1) sinβ = 0, (3.11)

where V : [0, 1]×Rn → R, V ′ : [0, 1]×Rn → Rn are continuous, V ′ denotes the gradient of V with

respect to x, α ∈ [0, π), β ∈ (0, π]. We need the following assumptions:

(V1) V ∈ C1([0, 1]×RRn,RR);

(V2) V (t, x) ≤ C1 for all x ∈ Rn and some C1 > 0;

(V3) V (t, x+Tjej) = V (t, x) for all (t, x) ∈ [0, 1]×Rn, where Tj > 0, j = 1, 2, · · · , n and {ej}nj=1

is basis of Rn;

(V ′
3) V (t, x+ Tj ēj) = V (t, x) for all (t, x) ∈ [0, 1]×Rn, where Tj > 0, j = 1, · · · ,m and {ēj}mj=1

is a basis of ker(M − I).

Theorem 3.1 Assume that (V1),(V2),(V3) hold with α = β = π
2 . Then (3.9)-(3.11) has one

solution.

(2) Assume that (V1)−(V2) hold with iα,β(0) = να,β(0) = 0. Then (3.9)-(3.11) has one solution.

Remark 1 In the assumptions we have used the index denoted by (να,β(B), iα,β(B)) concerning

the following system

ẍ(t) +B(t)x(t) = 0,

x(0) cosα− ẋ(0) sinα = 0,

x(1) cosβ − ẋ(1) sinβ = 0,
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where B ∈ L∞([0, 1],Ls(R
n)). From ([4], Definition 7.1.2), να,β(B) = the dimension of the solution

space of the system, iα,β(B) =
∑

λ<0 να,β(B + λIn).

Proof of Theorem 3.1 Define X = L2([0, 1],Rn) and (A1x)(t) = −ẍ(t) with D(A1) =

{x ∈ H2([0, 1],Rn)|x satisfies (3.2)-(3.3)}. By ([4], Proposition 7.1.1), A1 is self-adjoint and σ(A1)

is discrete and bounded from below. Then ker(A1) = Rn as α = β = π
2 . And define Zα,β =

H1([0, 1],Rn) as α ∈ (0, π); Z0,β = {x ∈ H1([0, 1],Rn)|x(0) = 0} as β ∈ (0, π); Zα,π = {x ∈

H1([0, 1],Rn)|x(1) = 0} as α ∈ (0, π) and Z0,π = {x ∈ H1([0, 1],Rn)|x(0) = 0 = x(1)}. Define

Z1 = Zα,β as α ∈ [0, π), β ∈ (0, π]; then Z1 ⊂ C([0, 1], Rn) and the embedding is compact. Since

iα,β(0) = να,β(0) = 0, X = X0 ⊕X+. By ([4], Proposition 7.3.1), Z1 = D(|A1|
1
2 ). Define

Φ(x) =
∫ 1
0 V (t, x(t))dt,∀x ∈ Z1. If xj ⇀ x0 in Z1, then xj → x0 in X. Hence (Φ1),(Φ2),(Φ3) follow

from (V1),(V2),(V3). The proof is complete.

Remark 2 During past years, K. C. Chang, P. Rabinowitz, I. Ekeland, Y. Long, J. Mawhin,

M. Willem and other authors investigated periodic solutions of second Hamiltonian systems under

different conditions, such as periodic conditions, coercivity conditions, convexity conditions and so

on. For related material, we refer to [1, 5, 6, 8, 9, 20, 21].

Then we investigate the following Hamiltonian system

ẍ(t) + V ′(t, x) = 0,

x(1) = Mx(0), ẋ(1) = Nẋ(0), (3.12)

where M,N ∈ GL(Rn) satisfy MTN = I.

Theorem 3.2 Assume that V satisfies (V1), (V2) and (V ′
3). Then the system (3.9) and (3.12)

has one solution.

Proof Define X = L2([0, 1],Rn) and (A2x)(t) = −ẍ(t) with D(A2) = {x ∈ H2([0, 1],Rn)|x

satisfies (3.12)}; then A2 is self-adjoint, ker(A2) = {c ∈ Rn|(M − I)c = 0} and Z2 = {x ∈

H1([0, 1]);Rn)|x(1) = Mx(0)} = D(|A2|
1
2 ) via [4, Proposition 7.3.2]. For any λ ∈ R and λ /∈

σp(A2), R(A2 − λId) = L2([0, 1],Rn) by the general theory of ordinary differential equations. So

σ(A2) = σd(A2) ⊂ [0,∞). Note that λ ≥ 0 is a eigenvalue of A2 if and only if det(MT +M − (In +

MTM) cos
√
λ) = 0 and σ(A2) = σd(A2) is unbounded from above, and we have X = X0 ⊕X+.

Define Φ(x) =
∫ 1
0 V (t, x(t))dt,∀x ∈ Z2. If xj ⇀ x0 in Z2, then xj → x0 in C([0, 1], Rn). And

hence, Φ is weakly continuous in Z2. Hence (Φ1),(Φ2),(Φ3) follow from (V1),(V2),(V
′
3). The proof

is complete.
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In this paper we eneralized some results to the operator equation Ax −∇Φ(x) = 0. And then we

discuss the Sturm-Liouville boundary value problem and the generalized periodic boundary value

problem with periodic potential.
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