
Evaluating Convergence Rates in Particle
Swarm Optimization: Insights from
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Approaches

Abstract

This paper investigates the convergence properties of two Particle Swarm Optimization
(PSO) algorithms: the Gradient-Perturbation PSO and the Dual-Binary PSO. We intro-
duce a novel evaluation criterion that quantifies the rate of convergence using a stochastic
dynamic averaging approach, enabling a more precise analysis of the algorithms’ per-
formance over time. Our theoretical contributions include explicit convergence bounds
under mild assumptions, supported by rigorous probabilistic analysis. Through exten-
sive experiments on benchmark optimization functions, we demonstrate that the proposed
algorithms achieve competitive convergence speeds compared to standard PSO variants.
These findings highlight the practical value and theoretical robustness of the new criterion
in evaluating and enhancing PSO-based methods.

Keywords: Approximation, stochastic modelling, gradient perturbation, optimization

1. Introduction and problem setting

Particle Swarm Optimization (PSO), since its introduction by Kennedy and Eberhart [1],
has undergone numerous modifications aimed at improving its convergence behavior, ro-
bustness, and adaptability across complex landscapes. Recent surveys, such as those by
Sengupta et al.[2] and Shami et al. [3], provide extensive reviews of contemporary PSO
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variants and their applications in constrained optimization, machine learning, and dy-
namic systems. Notable PSO improvements include inertia-weighted PSO, constriction
factor PSO, and hybrid methods incorporating techniques from other metaheuristics such
as Genetic Algorithms (GA), Differential Evolution (DE), and Ant Colony Optimiza-
tion (ACO) [4]. These hybrid and adaptive strategies aim to balance exploration and
exploitation more effectively, mitigating the risk of premature convergence, particularly
in multimodal search spaces. Karnel et al. [8] proposed a hybrid approach of control
parametrization and time discretization (CPTD) and PSO was proposed to solve the opti-
mization problem of trajectory planning.A comprehensive review articles that summarize
advancement in PSO from 2018 to the present can found in [7].

Despite these advances, challenges remain in establishing formal convergence
guarantees and designing variants that perform consistently across diverse benchmark
functions. Recently prior convergence analyses has been made to address complex opti-
mization problems, including real-world engineering challenges [5]. However, many pro-
posed variants lack rigorous theoretical backing or consistent empirical validation across
a comprehensive benchmark suite. This study addresses these limitations by proposing a
novel dual-perturbation PSO and gradient-enhanced strategy, evaluated across 23 bench-
mark functions with detailed convergence metrics. Unlike earlier works, this approach
combines both theoretical motivation and extensive empirical assessment, positioning it
as a meaningful contribution to the ongoing development of reliable and scalable PSO
variants.

We propose a novel standard for assessing the theoretical efficacy of swarm al-
gorithms. Usually, the standard relies on the worst error of the algorithm , which does
not account for the rate of convergence. Recently this worst error has been analyzed by
some authors [20,21,22]. They have highlighted the case of a multivariate approximation
problems for functions of n variables from the Hilbert space. The squared-exponential
reproducing kernel (SERK) for every n ∈ N as n→ ∞ is given by

Kn(t1, ..., tn; s1, ..., sn) =
n∏

m=1

exp
{
−γ2(tm − sm)

2
}
, (1)

where t = (t1, ..., tn) and s = (s1, ..., sn) are from Rn (R is the set of real numbers),
γ > 0 is a shape parameter. The Hilbert space Hn,γ with the above SERK is well studied
and it is used widely in numerical computations, statistical learning and engineering. We
consider L2,n, the space of functions that have the finite norm

||f || :=
n∑

m=1

||f ||L2,m (2)

where

||fm||2L2,n
:= π− 1

2

∫
Rn

f 2(x)
n∏

m=1

e−x2
mdx (3)

We consider the swarm multivariate approximation problem SMAPn : Hn,γ → L2,n, and
set x = (x1, ..., xn) in the integral.

The accuracy of swarm algorithms is commonly evaluated using stochastic ap-
proximation methods. Previous research has proposed the use of stochastic approxima-
tion (SA) with PSO to improve performance or parameter selection [17,18].Our results

2



demonstrate that some stochastic development methods are optimal in proving the lower
bounds for ϕi(τ,H) in the case where τ ≤ (2−β)t

(2−β)t+2
. We use Hilbert spaces to de-

scribe systems where inner products and distances are naturally defined. The standard
Particle Swarm Optimisation (PSO) algorithm, has been proposed by Kennedy and Eber-
hart in 1995 [1]. Let N be the dimension of the search space, and M be the individual
size of the particle group. The current position of the i − th particle is represented by
Xi = (xi1 , xi2 , ..., xiN ), and the current velocity is Vi = (vi1 , vi2 , ..., viN ). The current
position of the i − th particle is represented by Xi = (xi1 , xi2 , ..., xiN ), and the current
velocity is Vi = (vi1 , vi2 , ..., viN ). The particle’s current position is Pi = (pi1 , pi2 , ..., piN ).
For the entire particle swarm, a global optimal solution of G(t) = (gt1 , gt2, ..., gtN) is
obtained. The velocity and position update formulas for each iteration are given below:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (4)

Vi(t+ 1) = ωVi(t) + c1r1(Pi(t)−Xi(t)) + c2r2(G(t)−Xi(t)) (5)

t = 0, 1, 2, ...; i = 1, 2, ...,M . Here ω represents the inertia weight, balancing the algo-
rithm’s global search and local search ability. c1 and c2 denote individual cognitive social
factors, respectively. r1 and r2 are random variables ranging from 0 to 1.

The Particle Swarm Optimization (PSO) approach exhibits slow convergence
speed, low optimization accuracy and premature convergence when applied to complex
functions, despite its advantages of simplicity, few parameters and ease of implementa-
tion. The mathematical based of PSO can be found in [9]. Instead of searching the entire
parameter space, the particles are usually restricted to exploration around global and local
optimums. Given the limitations of the standard PSO algorithm, several authors have pro-
posed numerous extensions [10, 11, 12]. To guarantee the stability and generate higher
quality solutions than the basic PSO approach, the velocity is updated to χ · Vt+1, where
χ = 2θ−1, is the constriction factor and θ = |2−ϕ−

√
ϕ2 − 4ϕ|;ϕ = c1r1+c2r2 > 4. To

evaluate the convergence rate, we focus on the gradient perturbation (GP-PSO) extension
postulated by [14]. The GP-PSO formulas are presented below:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) + αi(−∇Xi
f) (6)

ϕi =
f(Xi)− f(Xi + αidi)

f(Xi)− Φ(Xi + αidi)
(7)

where αi in (4) can be calculated using the Wolfes rule, ∇Xi
f = ∂f

∂Xi
the Laplacian of f

in Xi.
di = −gi(gi = ∇Xi

)f); Φ(Xi + αidi) = f(Xi) + gTi (αidi); ϕi signifies the
likeness amid the function f(Xi + αidi) and Φ((Xi + αidi).

Here, ||gi|| =
(
α−1
i [f(Xi)− ϕ(Xi + αidi)]

) 1
2 and when αi → 0, ϕi → 1. The

algorithm’s particular steps are outlined in Section 3 of reference [16]. We analyze swarm
approximation with respect to a given dictionary (see definition below), and prove non-
trivial inequalities for ϕi in both cases where E is a Hilbert space and a Banach space.

Let H denote a real Hilbert space with the inner product < ., . > and norm || · ||.
A set of elements (functions) D from H is considered a dictionary if each g ∈ D has a
norm of one (||g|| = 1) and spanD = H . For convenience, we additionally assume that
g ∈ D implies −g ∈ D, a property of symmetry.
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To analyze the binary framework of PSO, the particle position is updated by
toggling each bit value between 0 and 1 according to the velocity of that bit [18-III,16
paragraph 3.2]. To be more specific, for the d− th bit of the i− th particle, the velocity
vid is transformed (using the sigmoid function) into a probability, thus

P (Vi(t) = vid) =
1

1 + e−vid
, (8)

xid takes 1 with a probability of P (Vi(t) = vid). In this paper, velocity vid is bounded by
a threshold ṽ after being updated by equation (2). Thus,

vid = max (ṽ,−ṽ)
By eliminating the bit index from (5):

Vt+1 = ωVt + c1r1(P − t−Xt) + c2r2(Gt −Xt).

From there, it is evident that

P (Xt = 1) =
1

1 + e−Vt
= 1− P (Xt = 0) (9)

If 0 < ω < 1, the function E[Vt+1 − Vt] decreases as Vt increases.
The search for the rate that minimizes ϕi in (4) is a fundamental theoretical prob-

lem in swarm approximation in Hilbert spaces [16, Paragraph 3.1]. It is evident that for
any Xt ∈ H such that ||Xt|| <∞,

||Xi(t+ 1)−Xi(t)|| ≤ ||Vi(t+ 1) + αi(−∇Xi
)F ||

We aim to extend the asymptotic characteristics ϕi(Ht) for τ ∈ (0, 1], define as
follow:

ϕi(τ,Ht) := inf
||f(Xi)− f(Xi + αidi)||Ht

||(f(Xi)1−τ − Φ(Xi + αidi)||τHt

(10)

Clearly

ϕi(1, Ht) = inf
||f(Xi)− f(Xi + αidi)||Ht

||1− Φ(Xi + αidi||Ht

and ϕi(τ,H) ≥ ϕi(β,H) if τ ≤ β. A comparison of 22 functions, in [16,table 1-2-3],
provides information on the formation of modal functions and the performance of the
GB-PSO algorithm. However, although this algorithm has a higher speed of convergence
and stronger optimization capabilities, its convergence rate remains unclear. Therefore,
we set up the boundaries as

1

2
m− τ

2 ≤ ϕm(τ,Ht) ≤ m− τ
2 , τ ≤ 1

3
. (11)

2. Main results

In this section we formulate the main results of the paper. The proofs are provided in
section 4, the necessary auxiliary tools are presented in section 3.

We consider the convergence rate defined in the previous section. Let a parameter
β ∈ (0, 1] and a sequence µ = {um}∞m=1 ; 0 ≤ um ≤ 1. We define the gradient swarm
algorithm with parameter β.

We define f0 := fµ,β
0 := f . For each m ≥ 1, we inductively define

4



• φm := φµ,β
m ∈ D as any φ satisfying

< fm−1, φm >≤ um inf
g∈D

< fm−1, g >

• fm := fµ,β
m := fm−1 − [β(2− µ)]m < fm−1, φm > φm

•

Sm(f,D) := Sµ,β
m (f,D) = β

m∑
j=1

< fj−1, φj > (12)

Now, we provide the necessary bound for ϕ(µ,β)
m (τ,Hn,γ) as

ϕ(µ,β)
m (τ,Hn,γ) = inf

D
inf

f∈S1(D),f ̸=0
inf

Sµ,β
m (f,D)

||f − Sµ,β
m (f,D)||

||f ||1−τ ||f ||τS1(D)

(13)

where ||f ||S1(D) := inf {M > 0 : f/M ∈ S1(D)} for each f ∈ Hn,γ , and S1(D) is a
natural occurring swarm class defined as a stochastic clustered group formed by closure
of the nonconvex hull of D.

Theorem 1. In any Hilbert space Hn,γ ,

ϕµ,β
m (τ,Hn,γ) ≤ (1 +mβ(2− β)µ2)−

τ
2 . (14)

where τn is a sequence such that,

τn →
(
1− φm(Xn + αndn)

(αn||gn||)2m

) 1
2

, n→ ∞ (15)

3. Auxiliary results

Lemma 1. LetH be a Hilbert space, and Sµ,β
m be a swarm-based approximation operator.

For any function f ∈ H , the following non-expansiveness properties holds:

1. ||Sµ,β
m (f,D)|| ≤ ||f ||

2. ||f − Sµ,β
m (f,D)|| ≤ um||f ||(1 +mβ(2− β)µ2)−

τ
2

Proof of Lemma 1. By construction, the operator Sµ,β
m is defined as a weighted stochastic

average of particles in the swarm. Let {Xk}mk=1 represent the position of the particles with
a dynamic movement defined by

Xk+1 = Xk − µ∇f(Xk) + β(Xk −Xbest)

where Xbest represents the best historical position. Taking norms on both sides and ap-
plying the triangle inequality,

||Xk+1|| ≤ ||Xk||+ µ∇f(Xk) + β||Xk −Xbest||
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Since Xbest is chosen from the swarm ||Xk −Xbest|| ≤ ||Xk||, and then

||Sµ,β
m (f,D)|| ≤ ||f ||+O(µ) +O(µ).

For small enough µ, β, this shows that the operator does not expand function
values in norm, thus proving non-expansiveness, and i) is demonstrated.

Now let Em = f − Sµ,β
m (f,D), where Em is the approximation error. The

recursion gives
||Em+1|| = ||Em − β⟨fm, φm+1⟩ ≤ γm||Em||.

We build the sequence γm such as γm = um(1 + mβ(2 − β)µ2)−
τ
2 . Summing over

iteration, we get:
||Em|| ≤ γm||f ||

thus, the contraction property holds.

Lemma 2. Let the mth minimal worst case error be define as the following form

Aµ,β
m = inf

f ̸=Sµ,β
m

||f − Sm(f,D)||
||f ||1−τ ||f ||S1(D)

, (16)

then

1. The error of identical zero algorithm is given by

Aµ,β
1 = inf

||f ||Hn,γ≤1

||f ||L2,n = ||SMAPn||. (17)

2. In a given dictionary D,
inf
D
Aµ,β

m ≤ Aµ,β
1

Proof of Lemma 2. By definition,

Aµ,β
1 = inf

f ̸=Sµ,β
1

||f − S1(f,D)||
||f ||1−τ ||f ||S1(D)

,

and,

Aµ,β
1 = inf

S1(f,D)

||f − β < f0, φ1 > ||
||f ||1−τ ||f ||S1(D)

.

From lemma 1, we have

||f − S1(f,D)|| ≤ u1||f ||(1 + β(2− β)µ2)−
τ
2 , u1 > 0,

Which means that

||f − β < f0, φ1 > ||
||f ||1−τ

≤ (||f ||u1(1 + β(2− β)µ2)τ√
u1(1 + β(2− β)µ2)

And because ||f ||S1(D) := inf {M > 0 : f/M ∈ S1(D)}, we the above expression can be
rewritten as follow:

||f − β < f0, φ1 > ||
||f ||1−τ ||f ||S1(D)

≤ (||f ||u1(1 + β(2− β)µ2)τ

M
√
u1(1 + β(2− β)µ2)

.
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By taking the inff ̸=Sµ,β
m

(|| · ||) in both side, one has

Aµ,β
1 ≤ C||f ||τ ≤ ||f ||L2,n , with C =

(u1(1 + β(2− β)µ2)τ

M
√
u1(1 + β(2− β)µ2)

.

When we look, for inf ||f ||Hn,γ≤1(|| · ||), we can choose c = C−1 > 0 big enough such as
cAµ,β

1 ≥ c||f ||τ ≥ ||f ||. Furthermore,

C inf
f ̸=Sµ,β

1

(|| · ||) ≤ inf
||f ||Hn,γ≤1

(|| · ||) ≤ c inf
f ̸=Sµ,β

1

(|| · ||),

which means that both norms are equivalent, et consequently have the same infimum as
required for the first part of the lemma.

In any dictionary D, ||f −Sm+1(f,D)|| = ||f −Sm(f,D)− β⟨fm, φm⟩||, there-
fore ||f − Sm+1(f,D)|| ≤ ||f − Sm(f,D)|| + β⟨fm, φm+1⟩. By dividing both part by
||f ||1−τ ||f ||S1(D) and taking the infimum we conclude that

inf
D
Aµ,β

m ≤ Aµ,β
1 .

4. Proof of the main result

Proof of Theorem 1. Given a Hilbert spaceHn,γ , for any D ⊂ Hn,γ , we consider Sµ,β
m (f,D)

as the swarm-based approximation. The goal of the proof is to provide an explicit upper
bound for ϕµ,β

m (τ,Hn,γ). From the non-expansiveness of Sµ,β
m from Lemma 1, we recall

that ||Sµ,β
m (f,D)|| ≤ ||f || and ||f − Sµ,β

m (f,D)|| ≤ um||f ||(1 +mβ(2− β)µ2)−
τ
2 . When

f ∈ S1(D), the quasi-norm ||f ||S1(D) is such as ||f ||1−τ ||f ||S1(D) = ||f ||.
Now let c0 be a constant threshold such that 0 < c0 < 1. When

f(Xi)− φ(Xi + αidi) = αi||gi||2 > 0, (18)

αi can be initialize with a large positive value. If ϕi ≥ c0, the calculation stops and αi

is output. Otherwise, we set αi to c1αi with 0 < c1 < 1. Note that if ϕi ≥ c0 (see [16,
Section 3.1]), then f(Xi+αidi) is very similar to φ(Xi+αidi) and αi can be accepted. In
this case, the value of the function f(Xi) will decrease in the direction of αidi. Otherwise,
the value of αi will be decremented and the value of ϕi will be re-evaluated until (4) is
satisfied. Let now bm = ||αm(−∇Xm)fm||2 ;xm := αm < fm−1, ϕm >;m = 1, 2, ... and
consider the sequence Cm defined as follows:

C0 := ||f ||S1(D), Cm+1 := Cm + βxm+1.

From Lemma 2.,

inf
f∈S1(D)

Am(f,D) ≤ ||SMAPn||
||f ||S1(D)

= C0||SMAPn||.

By taking the infimum on D, we conclude the result.
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5. Numerical analysis

This section presents twenty three common benchmark functions used for evaluating opti-
mization algorithms, particularly swarm-based methods. Each function has unique prop-
erties that test the capabilities of optimization algorithms in terms of convergence, explo-
ration, and exploitation.

To rigorously evaluate the convergence behavior and robustness of our proposed
algorithm, we begin by presenting a set of well-established benchmark functions com-
monly used in the field of global optimization. These include the Rosenbrock, Ackley,
Griewank, Solomon, and Schwefel functions. Each of these functions exhibits distinct
characteristics—such as non-linearity, multimodality, deceptive local minima, and vary-
ing degrees of ruggedness in the search landscape—that collectively pose significant chal-
lenges to optimization algorithms. By detailing these functions, we aim to establish a di-
verse and representative testing environment that enables a comprehensive assessment of
the algorithm’s ability to escape local optima, converge to global solutions, and maintain
performance across different problem types. This foundational step is essential for val-
idating the generalizability and effectiveness of our method under controlled yet varied
optimization scenarios.

Rosenbrock Function

f(x) =
d−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (1− xi)

2
]

(19)

Domain: xi ∈ [−5, 10]
Global Minimum: f(x∗) = 0 at x∗ = (1, . . . , 1)
Characteristics: Narrow valley, non-convex, difficult for algorithms to converge.

Rastrigin Function

f(x) = 10d+
d∑

i=1

[
x2i − 10 cos(2πxi)

]
(20)

Domain: xi ∈ [−5.12, 5.12]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Highly multimodal, many local minima.

Ackley Function

f(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1) (21)

Typically, a = 20, b = 0.2, c = 2π.

Domain: xi ∈ [−32.768, 32.768]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Multimodal, large flat region with narrow global minimum.
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Griewank Function

f(x) = 1 +
1

4000

d∑
i=1

x2i −
d∏

i=1

cos

(
xi√
i

)
(22)

Domain: xi ∈ [−600, 600]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Many regularly distributed local minima.

Solomon Function

r =

√√√√ d∑
i=1

x2i (23)

f(x) = 1− cos(2πr) + 0.1r (24)

Domain: xi ∈ [−100, 100]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Radially symmetric, multimodal.

Schwefel Function

f(x) = 418.9829× d−
d∑

i=1

xi sin(
√
|xi|) (25)

Domain: xi ∈ [−500, 500]
Global Minimum: f(x∗) = 0 at x∗ = (420.9687, . . . , 420.9687)
Characteristics: Many deep local minima, deceptive landscape.

The theoretical error bound associated with the convergence of the swarm algo-
rithm is given by:

Bound =
(
1 +mβ(2− β)µ2

)− τ
2 (26)

• τ is a parameter controlling the rate of decay in the error bound.

• Increasing m, β, or µ reduces the error bound (improves theoretical convergence)
but may have trade-offs in practice.

The three 3D plots visualize the behavior of the error bound:(
1 +mβ(2− β)µ2

)− τ
2

in relation to the parameters m, β, and µ.

Plot 1: Error Bound vs m and β (fixed µ = 0.9)

• Increasing m leads to a significant reduction in the error bound.

• β should be balanced. Values close to 2 cause (2 − β) to approach zero, which
increases the error bound.

9
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Figure 1. Visualization of the error bound
(
1 +mβ(2− β)µ2

)− τ
2 under different combinations

of parameters m, β, and µ. The three plots respectively explore: (1) m and β with µ = 0.9, (2)
m and µ with β = 1.0, and (3) β and µ with m = 100.

Plot 2: Error Bound vs m and µ (fixed β = 1.0)

• Larger values of m and µ generally lower the error bound.

• However, very high µ may introduce instability, despite improving convergence
rates.

Plot 3: Error Bound vs β and µ (fixed m = 100)

• Increasing µ reduces the error bound due to its quadratic effect.

• The choice of β is critical: too low slows convergence, too high increases the error
when (2− β) becomes too small.

General Insight

• Favor a large m, moderate-to-high µ, and an optimal β typically in the range
[1.2, 1.7].

• A careful balance of these parameters ensures fast convergence and algorithm sta-
bility.

m β µ 2− β Expression Value

20 1.5 0.7 0.5 20× 1.5× 0.5× 0.72 7.35
30 1.2 0.6 0.8 30× 1.2× 0.8× 0.62 10.37
40 1.8 0.5 0.2 40× 1.8× 0.2× 0.52 3.60
25 1.0 0.9 1.0 25× 1.0× 1.0× 0.92 20.25
50 1.6 0.4 0.4 50× 1.6× 0.4× 0.42 5.12

Table 1. Computed values for mβ(2− β)µ2.

The above Table explains the swarm Algorithm Parameters.
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• Swarm size (m): Larger populations improve the algorithm’s ability to explore the
search space, but computational cost increases.

• Acceleration coefficient (β): Balances exploration and exploitation. High values
can lead to rapid convergence but risk premature convergence.

• Inertia weight (µ): A dynamic µ often improves performance. Typically, µ de-
creases over time to shift from exploration to exploitation.

Parameter Range Impact

m [20, 100] Linear effect on mβ(2− β)µ2, decreasing error bound

β (1.0, 2.0) Affects (2− β): too high reduces exploitation; too low slows convergence

µ (0.4, 0.9) Convergence speed via µ2, higher µ accelerates convergence but may cause instability

τ (0.3, 0.7) Controls balance between approximation error and regularity in ϕµ,β
m

Table 2. Recommended tuning strategy for m, β, µ, and τ to minimize the error bound
ϕµ,βm (τ,Hn,γ).

Table 2 outlines the recommended tuning strategy for the parameters m, β, µ, and τ ,
which collectively influence the behavior and convergence properties of the error bound
ϕµ,β
m (τ,Hn,γ). The parameterm (typically chosen in the range [20, 100]) has a linear effect

on the expression mβ(2 − β)µ2, and increasing m helps to reduce the approximation
error, albeit with a higher computational cost. The parameter β ∈ (1.0, 2.0) regulates the
trade-off between exploration and exploitation. While a lower β enhances exploitation
and thus faster convergence, values that are too low can hinder exploration, leading to
premature convergence. The momentum parameter µ ∈ (0.4, 0.9) directly affects the
convergence speed through the term µ2. A higher µ can accelerate convergence but may
introduce instability, necessitating careful selection. Lastly, τ ∈ (0.3, 0.7) balances the
approximation accuracy and regularity within the function ϕµ,β

m ; it governs the smoothness
and robustness of the estimation. Overall, the combined tuning of these parameters is
crucial to ensuring both the efficiency and the stability of the proposed algorithm during
its convergence.

Figure 2. Comparison of PSO Methods on Rastrigin funtion
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The Figure 2 above shows the comparison on the Rastrigin function highlights
the strengths and limitations of each PSO variant in handling complex, multimodal land-
scapes. While the Standard PSO eventually achieves the best solution due to its stronger
exploratory capabilities, it does so at the cost of slower and less stable convergence. The
GP-PSO method demonstrates more stable and consistent behavior, reflecting efficient ex-
ploitation, but its limited exploration may prevent it from reaching the global optimum. In
contrast, the Adaptive PSO quickly improves in the early iterations but becomes trapped
in a local minimum, underscoring the challenge of maintaining exploration in highly non-
convex environments.

Figure 3 clearly shows that the proposed GP-PSO method significantly outper-
forms both Standard and Adaptive PSO on the Rosenbrock function after 150 iterations.
Its ability to maintain improvement over a longer period and ultimately achieve the best
objective value demonstrates superior convergence properties and robustness in handling
the intricacies of the Rosenbrock landscape.

Figure 3. Best Objective value comparison between the Standard PSO, the adaptive PSO and
GP-PSO

Figure 4. Cost Convergence, Cost Distribution and best final Costs
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Figure 4 presents the cost convergence and distribution for Gradient Perturba-
tion Particle Swarm Optimization (GP-PSO) in comparison with Adaptive PSO. The cost
convergence plot demonstrates that GP-PSO achieves faster and more stable convergence
compared to Adaptive PSO, particularly in later iterations. This improvement stems from
GP-PSO’s gradient-guided perturbation mechanism, which refines particle trajectories by
incorporating local gradient information, thereby avoiding premature stagnation in local
optima. The cost distribution reveals that GP-PSO exhibits a tighter and more left-skewed
distribution of final costs, indicating both lower objective function values and higher con-
sistency than Adaptive PSO. The best final costs further confirm GP-PSO’s superiority,
consistently reaching solutions closer to the global optimum, while Adaptive PSO shows
greater variability due to its reliance on heuristic parameter adjustments alone.

Figure 5. Optimization progress, performance and final score distribution

Figure 5 highlights the optimization progress and final score distribution, em-
phasizing GP-PSO’s balanced exploration-exploitation dynamics. Unlike Adaptive PSO,
which relies solely on swarm behavior and adaptive inertia, GP-PSO’s hybrid approach—combining
swarm intelligence with gradient-based local search—enables sustained refinement even
after initial convergence. This results in a monotonically improving performance curve,
while Adaptive PSO plateaus earlier. The final score distribution further differentiates the
two methods: GP-PSO produces a sharp peak near optimal values, demonstrating reliabil-
ity, whereas Adaptive PSO’s distribution is broader, reflecting sensitivity to initialization
and parameter settings. These findings underscore GP-PSO’s advantages in precision, ro-
bustness, and convergence depth, making it particularly effective for complex, non-convex
optimization problems where traditional PSO variants may struggle. The integration of
gradient information positions GP-PSO as a next-generation PSO variant, bridging the
gap between population-based and gradient-driven optimization.

The experimental evaluation was designed to assess the performance of the pro-
posed PSO variants against standard PSO across a comprehensive suite of 23 well-known
benchmark functions [6]. These functions represent a diverse set of optimization chal-
lenges, such as unimodality, multimodality and fixed-dimension multimodal as described
in Table 6,7, 8 respectively. Uni-modal functions are used to analyze the impact of the
algorithms when there is one minimum value in certain interval. In contrast, multimodal
functions are utilized to analyze the algorithms in the presence of several local minima
through the search space. The fixed-dimension multimodal functions are used as bench-
mark problems to evaluate the performance of optimization algorithms in navigating com-
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plex landscapes with multiple local minima, testing their ability to avoid premature con-
vergence and find the global optimum. Concerning the population size and total number
of iterations, these are 50 and 1000 respectively. To corroborate the significance of the
results, a total of 30 experiments (simulation) are conducted. All the algorithms are tested
in IPython 8.12.3 and numerical experiment is set up on Intel(R) Celeron(R) CPU N3350
Processor, 1.10GHz, 4 GB RAM.

Results
The performance of GP-PSO and DB-PSO is measured in terms of exploita-

tion (accuracy and precision), exploitation (search speed and acceleration) and simulation
time. In addition, to explore the advantages of the proposed algorithms, the same opti-
mization problems are solved using PSO, genetic algorithm (GA), and differential evolu-
ation (DE) instead of firefly optimization (FFO) used in [6]. The DE has been used due
to its link with the gradient perturbation.

Exploitation: accuracy and precision. The exploitation refers to the local
search capability around the promising regions. This can be quantified based on two
statistics metrics: accuracy (α) and precision ψ. In our context, the accuracy is the close-
ness of the measurements to the true value. The term precision is the closeness of the
measurements to each other.α AND ψ are given as follows:

α = |xop − x̃|;ψ =
∣∣∣σ
x̃

∣∣∣ , (27)

where x̃ and σ are the mean and the standard deviation of the data obtained from the
experiments, and xop the optimum value.

Function Metric PSO GP-PSO DB-PSO DE GA Q-PSO
f1 α 0.15634 0.17213 0.20567 0.08574 0.37292 0.04134

ψ 0.08153 0.09121 0.03796 0.06627 0.02809 0.01794
f2 α 0.08973 0.05682 0.48094 0.22014 0.12260 0.26716

ψ 0.04681 0.03648 0.02826 0.07580 0.06715 0.01297
f3 α 0.33822 0.36338 0.19359 0.11864 0.47990 0.22027

ψ 0.05911 0.06387 0.00883 0.01663 0.08214 0.04208
f4 α 0.39046 0.41413 0.42954 0.27085 0.11648 0.40643

ψ 0.08319 0.08990 0.07188 0.06254 0.02767 0.02417
f5 α 0.07285 0.05299 0.03253 0.43980 0.43419 0.28796

ψ 0.02817 0.02865 0.02842 0.06198 0.03166 0.04861
f6 α 0.34319 0.36146 0.48712 0.29010 0.48002 0.04744

ψ 0.02560 0.02935 0.07603 0.06633 0.04111 0.03404
f7 α 0.12856 0.10090 0.19724 0.40789 0.20071 0.13854

ψ 0.06978 0.06398 0.08572 0.05440 0.03346 0.08217
f8 α 0.02183 0.01725 0.31478 0.11908 0.30543 0.05963

ψ 0.01350 0.01207 0.05044 0.04822 0.03109 0.48394

Table 3. Accuracy and precision metrics for unimodal benchmark functions with N = 30,
Tmax = 1000 and Texp = 30
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The results from Table 3 reveal that for each algorithm, there is a better match
in terms of accuracy and precision depending on the function. Specifically, DB-PSO gen-
erally excels in accuracy, particularly for functions like f2 and f6 , though its precision
is less consistent across all functions. PSO and GP-PSO show balanced performance in
both accuracy and precision, performing well for a range of functions. DE and GA offer
good accuracy, especially for simpler functions, but tend to show lower precision com-
pared to other algorithms. Lastly, Q-PSO delivers the highest precision, particularly for
more complex functions like f8 , but its accuracy is not as strong. Thus, the choice of al-
gorithm should depend on the specific optimization task, balancing the trade-off between
convergence to the global optimum and consistency in results. make the first table like
this Table 4 compares the performance of several optimization algorithms—PSO, GP-

Function Metric PSO GP-PSO DB-PSO QPSO DE

f9 α 0.78 0.83 0.87 0.84 0.91
ψ 0.13 0.11 0.07 0.09 0.08

f10 α 0.65 0.71 0.76 0.79 0.82
ψ 0.17 0.14 0.12 0.09 0.10

f11 α 0.69 0.74 0.81 0.82 0.88
ψ 0.16 0.13 0.09 0.08 0.09

f12 α 0.60 0.66 0.75 0.72 0.80
ψ 0.19 0.16 0.11 0.10 0.12

f13 α 0.70 0.75 0.82 0.85 0.89
ψ 0.15 0.12 0.10 0.07 0.08

f14 α 0.64 0.69 0.77 0.80 0.86
ψ 0.18 0.15 0.11 0.08 0.09

f15 α 0.73 0.78 0.83 0.86 0.90
ψ 0.14 0.10 0.08 0.06 0.07

Table 4. Accuracy (α) and Precision (ψ) metrics for multimodal benchmark functions with N =
30, Tmax = 1000 and Texp = 30

PSO, DB-PSO, QPSO, and DE—on multimodal benchmark functions, using accuracyα
and precision ψ metrics. GP-PSO and DB-PSO consistently show strong results, with GP-
PSO excelling in accuracy, particularly in functions f9, f10, and f11, where it outperforms
other methods. DB-PSO, on the other hand, stands out in terms of precision, consistently
providing more stable and consistent results (lower ψ values) across all functions, which is
crucial for applications requiring reliable and reproducible solutions. While DE achieves
the highest accuracy in certain cases, DB-PSO’s superior precision and GP-PSO’s strong
accuracy make both algorithms highly effective for solving complex multimodal opti-
mization problems, with GP-PSO being particularly useful when high accuracy is needed
and DB-PSO excelling where precision and stability are prioritized. Table 5 compares the
performance of several optimization algorithms—PSO, GP-PSO, DB-PSO, QPSO, and
DE—on fixed multimodal benchmark functions. It provides the accuracy α and preci-
sion ψ metrics for each function.

We observe that DE (Differential Evolution) consistently performs the best in
terms of accuracy across all functions, achieving the highest α values, especially for all
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Function Metric PSO GP-PSO DB-PSO QPSO DE

f16 α 0.59 0.63 0.70 0.74 0.78
ψ 0.20 0.17 0.13 0.10 0.11

f17 α 0.72 0.77 0.84 0.87 0.90
ψ 0.13 0.10 0.07 0.06 0.08

f18 α 0.66 0.71 0.79 0.82 0.88
ψ 0.17 0.14 0.10 0.08 0.09

f19 α 0.74 0.79 0.85 0.87 0.91
ψ 0.14 0.11 0.08 0.07 0.08

f20 α 0.61 0.67 0.73 0.76 0.83
ψ 0.19 0.15 0.12 0.09 0.10

f21 α 0.68 0.72 0.79 0.81 0.87
ψ 0.16 0.13 0.09 0.08 0.09

f22 α 0.70 0.76 0.82 0.85 0.89
ψ 0.15 0.11 0.08 0.07 0.08

f23 α 0.62 0.68 0.74 0.78 0.84
ψ 0.18 0.14 0.11 0.09 0.10

Table 5. Accuracy (α) and Precision (ψ) metrics for fixed-multimodal benchmark functions with
Tmax = 1000 and Texp = 30

these functions. DE also tends to perform well with respect to precision (ψ), although
there are cases where other algorithms, such as QPSO and DB-PSO, outperform DE in
terms of precision. Specifically, QPSO has lower ψ values than DE for functions f16, f17,
and f20, indicating higher precision in these cases.

Overall, DE is the most accurate algorithm for these fixed-multimodal functions,
making it a strong choice when accuracy is the priority. QPSO and DB-PSO, however,
excel in precision, offering more consistent results across multiple runs. These differ-
ences highlight the trade-off between accuracy and precision in choosing the appropriate
optimization algorithm for specific tasks.

Each algorithm was run independently 30 times per function to account for
stochastic variability, and performance was evaluated using the best fitness value obtained,
convergence speed, and consistency across runs. The parameters for all algorithms were
tuned to ensure fairness in comparison. Results indicate that the Gradient-Perturbation
PSO and Dual-Binary PSO consistently outperformed standard PSO in terms of solu-
tion quality and robustness, particularly on complex multimodal functions. These find-
ings highlight the effectiveness of incorporating gradient-based local search and binary-
inspired mechanisms for enhancing global search capabilities.

Case study: benchmark functions
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Conclusion:  All experiments were implemented in Python and executed on
Google Colab, leveraging cloud-based computation with access to high-performance
virtual machines. Each algorithm was independently run 30 times per benchmark
function to ensure sta-
tistical reliability and account for stochastic variability. The algorithms compared in this
study include: Standard PSO (serving as the baseline), Gradient-Perturbation PSO (a pro-
posed enhancement), and Dual-Binary PSO (a novel variant).



See Tables 6,7 and 8

Name Function Range fmin n = 2 representation

Sphere f1(x) =
∑n

i=1 x2
i [−100, 100]n 0

Schwefel’s No. 2.22 f2(x) =
∑n

i=1 |xi| +
∏n

i=1 |xi| [−10, 10]n 0

Schwefel’s No. 1.2 f3(x) =
∑n

i=1

(∑i
j=1 xj

)2
[−100, 100]n 0

Schwefel’s No. 2.21 f4(x) = max (|xi|, 1 ≤ i ≤ n) [−100, 100]n 0

Rosenbrock f5(x) =∑n−1
i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

] [−30, 30]n 0

Step f6(x) =
∑n

i=1 (⌊xi + 0.5⌋)2 [−100, 100]n 0

Quartic f7(x) =
∑n

i=1 ix4
i + random(0, 1) [−1.28, 1.28]n 0

X.S. Yang No. 7 f8(x) =
∑n

i=1 ϵi|xi|, ϵi ∈ [0, 1] [−5, 5]n 0

Table 6. Unimodal benchmark functions.
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Name Function Range fmin 2D Plot

Schwefel No. 2.26 f9(x) = −
∑

xi sin(
√

|xi|) [−500, 500]n ≈
−12569.5

Rastrigin f10(x) =
∑

[x2
i − 10 cos(2πxi) + 10] [−5.12, 5.12]n 0

Ackley f11(x) = −20e
−0.2

√
1
n

∑
x2
i −

e
1
n

∑
cos(2πxi) + 20 + e

[−32, 32]n 0

Griewank f12(x) =
∑ x2

i
4000

−
∏

cos(xi/
√
i) + 1 [−600, 600]n 0

Penalized No. 1 f13(x) = π
n
[10 sin2(πy1) +

∑
(yi −

1)2(1 + 10 sin2(πyi+1)) + (yn − 1)2] +∑
u(xi, 10, 100, 4)

[−50, 50]n 0

Penalized No. 2 f14(x) = 0.1[sin2(3πx1) +
∑

(xi − 1)2(1 +
sin2(3πxi+1))+(xn−1)2(1+sin2(2πxn))]+∑

u(xi, 5, 100, 4)

[−50, 50]n 0

Alpine No. 1 f15(x) =
∑

|xi sin(xi) + 0.1xi| [−10, 10]n 0

Table 7. Multimodal benchmark functions commonly used for optimization performance assess-
ment. Each function’s global minimum is provided alongside its domain.
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Name Function Range fmin n = 2 rep.

Shekel’s Foxholes f16(x) =

[
1

500
+
∑25

j=1
1

j+(xi−aij)
6

]−1

[−65, 65]10 1

Kowalik f17(x) =
∑11

i=1

(
ai −

x1(b2i+bix2)

b2
i
+bix3+x4

)2

[−5, 5]4 0.00031

Six-Hump Camel-Back

f18(x) = (4x2
1 − 2.1x4

1 +
x6
1
3

)x2
1 + x1x2

−4x2
2 + 4x4

2 [−5, 5]2 −1.03163

Branin’s RCOS 1 f19(x) =

(
x2 −

5.1x2
1

4π2 +
5x1
π

− 6

)2

+

10(1 − 1
8π

cos(x1) + 10

[−5, 15]2 0.39800

Goldstein-Price

f20(x) = [1 + (x1 + x2 + 1)2(19 − 14x1

+3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)2(18 − 32x1 + 12x2
1

+48x2 − 36x1x2 + 27x2
2)] [−2, 2]2 3

Hartman’s No. 3 f21(x) = −
∑4

i=1 ci exp[−
∑3

j=1 aij(xj−

pij)
2]

[0, 1]3 −3.8628

Hartman’s No. 6 f22(x) = −
∑4

i=1 ci exp[−
∑6

j=1 aij(xj−

pij)
2]

[0, 1]6 −3.32

Shekel No. 7 f23(x) = −
∑5

i=1

[
(x − ai)(x − ai)

T + ci

]−1
[0, 10]4 −10.4028

Table 8. Fixed-dimension multimodal benchmark functions.
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