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Abstract
In this paper, we have considered a Delay Differential Equations model describing HIV-
AIDS transmission incorporating time lags τ1, and τ2 and use of Prophylaxis . The
formulated model has been analysed in which the Stationary points have been shown
to be asymptotically Stable. Numerical Simulations have been carried out to determine
the effects of time lags and Prophylaxis use. our results shows that when Rτ < 1, HIV
is controlled in the population and vice versa. Numerical simulations were carried out
to determine the impact of time delay and Prophylaxis use on the control of HIV. Our
results demonstrate that optimal use of Prophylaxis and minimal time delay within 3 days
resulted in Rτ < 1, hence resulting in predominance in the uninfected (Susceptibles),
coupled with the diminishing of the Exposed, Infected and AIDS individuals. The findings
imply that prophylaxis use and time delay are key parameters in regulation of Rτ and
therefore aids in the control of the spread of HIV/AIDS.
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2010 Mathematics Subject Classification: 53C25; 83C05; 57N16

1 Introduction
Human Immunodefiency Virus/Acquired Immunodefficiency Syndrome ( HIV/AIDS) remains
a significant public health challenge worldwide. According to UNAIDS [11] about 4000



people contracted HIV each day and a total of 1.3 million new HIV infections in the year
2023. From the onset of HIV/AIDS, there has been an increase of mathematical models
especially ODEs models describing the dynamics of the disease[1, 2, 3]. These models
provide an understanding of the transmission dynamics of HIV/AIDS. A number of studies
have been undertaken on delay models [4, 5] and reference therein, but these studies
did not incorporate post exposure prophylaxis use and it is effect on transmission of HIV
transmission. The combination of these parameters and variable are key in studying the
regulation of transmission of HIV/AIDS. Numerous epidemiological models use (SIR)
framework, for example Abueldahab, et al [3]. Even though such models illustrate transmission
dynamics of the disease, they may be inaccurate and limited to the extent that they presume
individuals become contagious as soon as they enter the Infected compartment. As such,
these models may be practically unsuitable in modelling diseases like HIV/AIDS where
exposed people take some time to be contagious. There is a need to study both delays
and effects of prophylaxis in the effort to control or eradicate HIV/AIDS in the society.
Wasike et al [6] studied a SIR DDE model for the spread of HIV/AIDS. In their study,
they considered a framework for the spread of HIV among people by mature voluntarily
sex age group enrolment at a constant value. Their study included two delays, that is,
time lag to become infective and the other to become full blown. In their findings, τ1 is
proportionate to the survival of the infected in the population i.e short τ1 leads to quick
elimination of the infected persons from the population and vice versa which increases the
force of infection. Though the model is rich in transmission dynamics with two delays,
it is limited in various ways. First, the model evidently lacks the exposure class and
therefore does not account for the exposure period, making it less suitable for diseases like
HIV/AIDS where such period is significant in the spread of the disease. By not including the
exposed class, the SIR model may misvalue the rate of new infections, leading to inaccurate
predictions. Secondly, the model only describes the dynamics of HIV/AIDs spread, but does
not have parameters for disease control. The aforementioned model was improved to have
exposure class and prophylaxis use, and categorised the first delay to capture the omitted
parameters in the preceding model. Therefore in our study, a SEIA compartmental model
was used. The exposed class in the SEIA model gave an allowance for intervention against
the transmission of the disease even if there was an interaction with the infective due to
availability of prophylaxis treatment. The period when an individual is exposed but not yet
infectious is significant for the spread or control of transmission of any disease [7].The next
sections are grouped as follows; In section 2, the framework of the HIV/AIDS and the basic
properties of the model are given. It is followed with section 3 that covers the numerical
simulations of the HIV/AIDS model and finally section 4 gives the conclusion of the study

2 Model Formulation
A framework is formulated in this section which categorizes the persons under study into
the following compartments; Susceptible persons, Exposed persons, Infected persons, and
AIDS persons. First the assumptions and description of the model are outlined , followed
by formulation of the model that defines the changes in transmission of HIV/AIDS. Then,
the reproduction number (Rτ ) and equilibrium points are computed.This section is finalized
by performing stability analysis of the stationary states in the interest of studying the long
term behaviour of the solutions of the model.
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2.1 Assumptions
We make the following assumptions in the model.

(i) The recruitment into the study population is sexually mature persons by birth who
are recruited into susceptible class.

(ii) After a person gets infected they remain infected pending symptoms or signs of
having AIDS or dies

(iii) An individual that has clinically tested and is infected will be categorized as being
infective.

(iv) An individual who is exposed and uses prophylaxis within the required time will not
be infected but becomes susceptible again at a rate of ϕ which ranges between
(0− 1).

(v) Individuals who are exposed and do not use prophylaxis will transit into HIV positive
at a rate of θ

(vi) The first time lag τ1 is between (0− 3) days

(vii) The second time lag τ2 is (10) years.

(viii) All who transit back to Susceptibles after exposure used Prophylaxis.

(ix) All who transit to infective did not use Prophylaxis.

(x) Prophylaxis implies PEP.

(xii) The natural death/mortality is the same from all the classes.
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Table 1: Description and Defination of variables and parameters.
Variable Description

S(t) The vulnerable group of uninfected persons
at a time t

E(t) These are individuals who have interacted
with the infected individuals and are
clinically not infected at a time t.

I(t) The equivalent group of HIV positive
persons at a time t who are clinically tested
and confirmed to be positive.

A(t) The equivalent group of HIV positive people
who are in AIDS phase, in this phase
the patient’s body’s defense mechanism is
totally damaged rendering it feeble to fight
opportunistic infections symptoms at a time
t.

Parameter Definition
ϱ The transmission probability.
∆ Recruitment rate of susceptibles into a

population.
κ The natural deaths which are not AIDS

related .
σc The number of sexual partners in a given

year.
τ1 The delay between being exposed and

getting infected.
τ2 The delay between being HIV positive and

having AIDS.
ϕ The rate at which exposed individuals are

transiting to the susceptible compartment.
θ The rate of transiting to the Infected

compartment by exposed persons.
α The rate of transiting to the AIDS

compartment by infected individuals.
δ The rate of exiting population due to AIDS

related reasons by AIDS individuals.
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2.2 Description of the Model
Figure (1) is an illustrative diagram with four compartments. The first compartment represents
susceptibles who get enrolled in this compartment at birth at rate ∆. This compartment
can either reduce due to natural mortality, or after sexual intercourse with HIV positive
individuals from the compartment of infectives causing them to transit to exposed class.
The second compartment comprises of exposed individuals. These individuals enter this
compartment from susceptible compartment at a rate ϱσcS

I
P as a result of their interractions

with the infectives. With the use of prophylaxis within the limits of time lag τ1, the exposed
individuals may not get infected. Such individuals transit back to the susceptible compartment
at the rate ϕ. Otherwise, the exposed individuals will transit to the third compartment
of infected people at the rate θ or exit the compartment through natural mortality . The
infected persons exit their compartment through natural mortality or enter the AIDS fourth
compartment after time lag τ2 at rate α. People from AIDS compartment leave as a result of
natural mortality or succumb to the disease at rate δ. At any given time, the total population
that is sexually active is the sum of individuals in all compartments given by P (t)

Those dynamics described above can thus be represented mathematically by the diagram
and equations below;

S E I A
ϱσcSI

P

ϕ

θ
τ1

α
τ2

κ κ κ κ

δ
∆

Figure 1: SEIA compartmental model

2.3 The Model’s equations
From the illustrative diagram, the system equations below govern the transmission changes;

Ṡ(t) = ∆− κS(t) + ϕE(t)− ϱσcSI

P (t)
,

Ė(t) =
ϱσcSI

P (t)
− (κ+ ϕ+ θ)E,

İ(t) = θE(t− τ1)− (κ+ α)I,

Ȧ(t) = αI(t− τ2)− (δ + κ)A(t), (2.1)

In order analyse the system of equations above, we begin by introducing some notes that
will be useful in the subsequent sections.

Let τ = max(τ1, τ2), then we define a Banach space B([−τ, 0],R4
+) consisting of all

continuous functions g(s) = (S(s), E(s), I(s), A(s)), s ∈ [−τ, 0] and map the interval [−τ, 0]
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into positive real Euclidean space R4
+. We endow this space with the norm ||g|| = sup−τ≤s≤0 |g(s)|,

where |g(s)| is the Euclidean norm in R4
+ which guarantees the continuity and boundedness

of functions over the delay interval [−τ, 0]. This space is key in taking care of the past
characteristics of the system, as well as the present. System (2.1) is appended with initial
conditions

S0(t) ≥ 0, E0(t) ≥ 0, I0(t) ≥ 0, A0(t) ≥ 0 for t ≥ 0. (2.2)

2.4 Basic Properties of the model
In epidemic models, the total number of persons or inhabitants is naturally definite or finite;
therefore solutions for model (2.1) must not go beyond an entire population size. Therefore
the study of boundedness and positivity conditions of the solutions of the above model
ensures that the population remains within genuine physical boundaries.

2.4.1 Positivity

Positivity is the property that ensures that solutions S(t), E(t), I(t) and A(t) stay positive
∀ t ≥ 0 if the initial functions in (2.2) are non-negative ∀ t ≥ 0.

Suppose that the initial conditions in (2.2) holds, then every solution of system (2.1)
remains positive for all t ≥ 0

Proof. We need to prove that S(t), E(t), I(t) and A(t) are all positive ∀ t ≥ 0.
From the first equation of system (2.1), it follows from comparison principle for ODEs that

dS

dt
> −(κ+

ϱσcI

P (t)
)S(t),

and consequently, we have

S(t) > S0(t)e
−
∫ t
0
(κ+ ϱσcI

P (t)
)dℓ ≥ 0 (2.3)

Similarly, one can show that E(t), I(t) and A(t) are positive. Hence all solutions of
system (2.1) remains positive ∀ t ≥ 0.

We define the region Γ as

Γ = {(S,E, I, A) ∈ R2
+ × B([−τ, 0],R2

+) : S + E + I +A ≤ P}

2.4.2 Boundedness

A function g(t) is bounded if there exists a positive real number M such that |g(t)| ≤ M ,
see [8]. All the solutions of system (2.1) with initial conditions (2.2) are bounded in the
feasible region Γ.
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Proof. Adding all the equations in system (2.1), we obtain

Ṗ (t) = ∆− κP (t)− dA(t) + θ(E(t− τ1)− E(t)) + α(I(t− τ2)− I(t)), (2.4)

For an increasing population, we must have that

θ(E(t− τ1)− E(t)) > 0 and α(I(t− τ2)− I(t)) > 0 (2.5)

Thus, equation (2.4), becomes
Ṗ (t) ≤ ∆− κP (t),

from which we obtain

P (t) ≤ ∆

κ
+

[
P (0)− ∆

κ

]
e−κt.

It follows that,

0 ≤ lim
t→∞

supP (t) ≤ ∆

κ
. (2.6)

Therefore, P (t) is bounded and all the possible solution sets of the system stay in the region
Γ. Hence, the region Γ = {(S,E, I, A) ∈ R2

+ × B([−τ, 0],R2
+) : S + E + I + A ≤ P ≤ ∆

κ } is
positively invariant.

2.4.3 Existence of Equilibrium Points

Here, we investigate the existence of the equilibrium points of the model system (2.1).

Let F ∗ = (S∗, E∗, I∗, A∗) be an equilibrium point of system (2.1), i.e.

∆− κS∗(t) + ϕE∗(t)− ϱσc
S∗(t)I∗(t)

P ∗(t)
= 0,

ϱσc
S∗(t)I∗(t)

P ∗(t)
− (κ+ ϕ+ θ)E∗(t) = 0,

θE∗(t− τ1)− (κ+ α)I∗(t) = 0, (2.7)
αI∗(t− τ2)− (δ + κ)A∗(t) = 0,

from which we have

S∗ =
(P ∗∆)(κ+ ϕ+ θ)

P ∗κ(κ+ ϕ+ θ) + ϱσc(κ+ θ)I∗
, E∗ =

ϱσc∆I∗

P ∗κ(κ+ ϕ+ θ) + ϱσc(κ+ θ)I∗

A∗ =
αe−λτ2I∗

δ + κ
(2.8)

Using equation (2.8) in the third equation of system (2.7) with P ∗ ≈ ∆
κ , we obtain

[(κ+ θ)(κ+ α)ϱσcI
∗ +∆(κ+ ϕ+ θ)(κ+ α)(1−Rτ )] I

∗ = 0 (2.9)

where

Rτ =
ϱσcθe

−λτ1

(κ+ ϕ+ θ)(κ+ α)
(2.10)
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is the reproduction number. The reproduction number can also be recovered using the
method used in [10]. If there is no delay then (2.10) reduces to

R0 =
ϱσcθ

(κ+ ϕ+ θ)(κ+ α)
(2.11)

The following theorem gives the number of equilibrium points for system (2.1).

i. The system (2.1) always has a disease free equilibrium point F0 =
(
∆
κ , 0, 0, 0

)
ii. If Rτ > 1, there exists a unique positive endemic equilibrium point F ∗ = (S∗, E∗, I∗, A∗)

where

S∗ =
∆

κRτ
, E∗ =

∆(Rτ − 1)

(κ+ θ)Rτ

A∗ =
α∆(κ+ ϕ+ θ)(Rτ − 1)e−λτ2

ϱσc(κ+ θ)(δ + κ)
I∗ =

∆(κ+ ϕ+ θ)(Rτ − 1)

ϱσc(κ+ θ)

(2.12)

Proof. i. I∗ = 0 is always a root of equation (2.9). Thus, from (2.8), we have that the
disease free equilibrium point of system (2.1) is F0 =

(
∆
κ , 0, 0, 0

)
.

ii. From (2.9), we have that I∗ = ∆(κ+ϕ+θ)(Rτ−1)
ϱσc(κ+θ) is a root and I∗ is positive if Rτ > 1.

Thus, a unique positive endemic equilibrium point F ∗ exists and is given by (2.12)

2.5 Local Stability Analysis of Uninfected Steady State F0

The stability analysis of this stationary point is performed through the Jacobian matrix of
the system (2.1).

If Rτ ≤ 1 , the uninfected steady state F0 of system (2.1) is locally asymptotically stable
for every time delay τ1 ≥ 0.

Proof. To determine the stability of the uninfected equilibrium point, we need to compute
the Jacobian matrix (J) of the system (2.1) at the point F0. The Jacobian matrix of the
system is given by

JF0
=


−κ ϕ −ϱσc 0
0 −(ϕ+ κ+ θ) ϱσc 0
0 θe−λτ1 −(κ+ α) 0
0 0 αe−λτ2 −(δ + κ)

 (2.13)

The characteristic equation Q(λ) = det(JF0
− λI) = 0 is given by

Q(λ, τ1) = (λ+κ)(δ+κ+λ)[λ2+(2κ+ϕ+θ+α)λ+(κ+α)(κ+ϕ+θ)−ϱσcθe
−λτ1 ] = 0 (2.14)

8



In the absence of delay, all the roots of equation (2.14) have negative real parts provided
R0 < 1. When τ1 ̸= 0, then two of the roots of equation (2.14) are given by λ = −κ and
λ = −(κ+ δ). The other roots can be obtained from

λ2 + (2κ+ ϕ+ θ + α)λ+ (κ+ α)(κ+ ϕ+ θ)− ϱσcθe
−λτ1 = 0

This equation can be written in the form

G(λ) +H(λ, τ1)e
−λτ1 = 0 (2.15)

where G(λ) = λ2 + (2κ + ϕ + θ + α)λ + (κ + α)(κ + ϕ + θ) and H(λ, τ1) = −ϱσcθ. The
roots of equation (2.15) will lie to the left of the complex plane provided all zeros of G(λ)
have negative real parts and |G(0)| ≥ |H(0)| for all τ1 > 0, see [[6], Lemma 3.2]. All the
coefficients of G(λ) are positive hence all its roots have negative real parts. For the second
condition, we see that R0 ≤ 1, where R0 is as defined in (2.11). Therefore, all the roots of
equation (2.14) lie to the left of the complex plane provided R0 ≤ 1.

2.6 Global stability of the uninfected Equilibrium
The uninfected state is globally attracting when Rτ < 1. We Use the method used in [9] to
show that the disease free equilibrium point F0 is globally stable. The uninfected equilibrium
F0 = (∆κ , 0, 0, 0) of (2.1) is a globally attracting if Rτ < 1 and assumptions (Ll) and (L2)
below fulfilled.

1 (Ll): For dS
dt = f1(S, 0); S∗ is globally attracting.

2 (L2): y(S, I) = MI − ŷ(S, I), ŷ(S, I) ≥ 0 for S, I ∈ Γ

Proof. S ∈ R1 and y(S, I) ∈ R3 denotes the elements of uninfected and infected(inclusive
of Exposed, Infected and AIDS) individuals respectively
S = S(t), y(S, I) = (E(t), I(t), A(t))

f1(S, I) = ∆− κS + ϕE(t)− ϱσcS(t)
I(t)

P (t)

f1(S, 0) = ∆− κS = 0,

lim
t→∞

S∗(t) =
∆

κ
(2.16)

Clearly, S∗ = (∆κ ) is globally asymptotically stable equilibrium of f1(S, 0), which satisfies
the first condition (L1)

y(S, I) =

 f2 = ϱσc
S(t)I(t)
P (t) − (κ+ ϕ+ θ)E(t),

f3 = θE(t− τ1)− (α+ κ)I(t),
f4 = αI(t− τ2)− (δ + κ)A(t),


From (L2) : y(S, I) = MI − ŷ(S, I); where M = ∂y(S0, 0) is the matrix of infected

subsystem y(S, I) after linearization around the uninfected equilibrium

9



MI =


ϱσcI − (κ+ θ + ϕ)E
θEe−(λτ1) − (κ+ α)I
αIe−(λτ2) − (δ + κ)A

 ;

But;

y(SI) = MI − ŷ(S, I), (2.17)

Rearranging equation (2.17) we get;

ŷ(S, I) =


ϱσcI(t)− (κ+ θ + ϕ)E(t)
θE(t)e−(λτ1) − (κ+ α)I(t)
αI(t)e−(λτ2) − (δ + κ)A(t)

−


ϱσc

S(t)I(t)
P (t) − (κ+ ϕ+ θ)E(t)

θE(t)e−(λτ1) − (α+ κ)I(t)
αE(t)e−(λτ2) − (δ + κ)A(t)

 ,

=

ϱσcI(1− S/P )
0
0

 .

Therefore, ŷ(S, I) ≥ 0 since 0 ≤ S ≤ P , which satisfies the second condition (L2).
Because both assumptions are satisfied, the uninfected equilibrium F0 is globally asymptotically
stable provided Rτ < 1.

2.7 Local Stability analysis of Infected Equilibrium
For τ1 > 0, the Infected steady state F ∗ of system (2.1) is locally asymptotically stable if
R2

τ > Rτ . In the absence of delay, the point F ∗ is locally asymptotically stable if Rτ ≥ R0.

Proof. We linearize the system at the point F ∗ to get

JF∗ =


−(κ+ κϱσcI

∗

∆ ) ϕ −κϱσcS
∗

∆ 0
κϱσcI

∗

∆ −(ϕ+ κ+ θ) κϱσcS
∗

∆ 0
0 θe−λτ1 −(κ+ α) 0
0 0 αe−λτ2 −(δ + κ)

 (2.18)

The Characteristic equation becomes

R(λ, τ1) = {λ+ δ + κ}
{
λ3 + [3κ+ α+ θ + ϕ+ κϱσc∆

−1I∗]λ2+

[(2κ+ α+ θ)κϱσc∆
−1I∗ + κ(2κ+ α+ θ + ϕ) + (κ+ θ + ϕ)(κ+ α)]λ

+(κ+ α)(κ+ θ)κϱσc∆
−1I∗ + κ(κ+ θ + ϕ)(κ+ α)−

[θκϱσc∆
−1S∗λ+ θκ2ϱσc∆

−1S∗]e−λτ1
}
= 0 (2.19)

One of the roots of (2.19) is given by λ = −(δ + κ). The other roots are obtained from

D(λ) + E(λ)e−λτ1 = 0 (2.20)
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where D(λ) = λ3 + [3κ + α + θ + ϕ + κϱσc∆
−1I∗]λ2 + [(2κ + α + θ)κϱσc∆

−1I∗ + κ(2κ +
α + θ + ϕ) + (κ + θ + ϕ)(κ + α)]λ + (κ + α)(κ + θ)κϱσc∆

−1I∗ + κ(κ + θ + ϕ)(κ + α) and
E(λ) = −[θκϱσc∆

−1S∗λ + θκ2ϱσc∆
−1S∗]e−λτ1 . In the absence of delay, we see that all

the roots of equation (2.19) have negative real parts provided Rτ ≥ R0. When τ1 ̸= 0, the
roots of equation (2.20) will lie to the left of the complex plane provided all zeros of D(λ)
have negative real parts and |D(0)| ≥ |E(0)| for all τ1 > 0. All the coefficients of D(λ)
are positive and hence all its roots have negative real parts. The second stability condition
implies that R2

τ ≥ R0. Therefore, for every τ1 > 0, the characteristic equation (2.19) has all
its roots having negative real parts provided R2

τ ≥ R0.

3 Numerical Simulations
In this section, the study presents the findings of the python simulations and discussion
of the results. In order to demonstrate the long term behaviour of the model, the model
(2.1), was assimilated mathematically by way of Python.Some parameters( σc, τ1, τ2) and
(I(t),were adopted from literature, while others reasonably estimated based on available
epidemiological data and assumptions about disease progression in Kenya as given in the
table below;

Table 2: Table of data
Parameter/Variable Initial Data Source

ϕ, rate of moving back to exposed class between 0-1 Estimate
θ, rate of progression to infected class 0.125 Estimate
α, rate of progression to AIDS class 0.125 Estimate

κ, mortality rate 1/66 Estimate
δ, AIDS related death 0.36 per year Estimate

σc, contact rate 3 per year [6]
ϱ, Probability of getting infected 0.44 [6]

∆ Recruitment rate into the Population 1000000 Estimate
S(t) Susceptibles 4000000 Estimate

E(t)Exposed 2000000 Estimate
I(t)Infected 1300000 [12]
A(t)AIDS 50000 Estimate

τ1, incubation delay [0,3) days [12]
τ2, second delay 10 years [12]

t-time 100 years Estimate
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Figure 2: graph at uninfected equilibrium point

3.1 (i)Uninfected Steady State (F0)
When Rτ < 1, HIV/AIDS is controlled in the population. i.e susceptibles individuals are
predominant and converge at F0 while the Exposed, infective and AIDS individuals will
converge to zero or are eliminated from the population as it is shown in figure 2. This is in
agreement with qualitative analysis in literature for instance, see [6, 13]. If Rτ > 1 we will
have infected equilibrium point.

3.2 (ii)Infected steady State (F ∗)

Figure 3: graph at infected equilibrium point

When the Rτ = 8.44, as exhibited in figure 3, the SEIA system is locally stable at Infected
steady state. If there is no use of prophylaxis, we have the disease being persistent in the
population ,the exposed being predominant and coexisting closely with infected and the full
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blown cases. The susceptibles therefore drops below the AIDS individuals. Our findings
are inconsistent with the findings of Wasike et al [6]. For them, a short τ1 leads to infectives
dying out faster from a population except for prophylaxis unlike in our case where infectives
become predominant and suceptibles diminish. However, the findings are consistent with
the ones in [14, 15].

3.3 (iii) Variation of τ1 and ϕ

In this section we show results and findings when τ1 is varied between 0 − 3 days and ϕ
varied between 0− 1;

Figure 4: graph when ϕ = 0 and τ1 = 0.01096

When there are no mitigation measures taken into consideration, there will be high exposure
leading to exposed individuals being predominant in the population and the susceptible
individuals diminishing as they become highly exposed as shown in figure 4. Again, if there
are no interventions, they will be converted to infectives and eventually full blown AIDS.
This could lead to a whole population being wiped out. It is worth noting that this is an
ideal situation. Even with the coming up of pre-exposure prophylaxis, if sensitization and
awareness of both PEP and PrEP are not carried out, the population can be wiped out.
Our findings are partly in agreement with the findings in [6] for prolonged τ1, where the
susceptibles diminish as the infectives and AIDS individuals increase.
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Figure 5: graph for ϕ = 0.56 and τ1 = 0.00487

As illustrated in figure 5, when the delay τ1 is reduced and there is use of Prophylaxis,
there is a resultant significant rise of susceptibles accompanied by a drop of those infected,
exposed , and AIDS Persons. Even though there are exposed, infected and AIDS coexisting
together in the population, their numbers have significantly dropped as a result of use of
prophylaxis with minimal delay.

Figure 6: graph for ϕ = 1 and τ1 = 0

When prophylaxis use rate is at 1 and the delay τ1 is at zero i.e no delay in using prophylaxis,
the susceptible individuals will be predominant while the exposed, infectives and AIDS
individuals will reduce significantly converging to zero. This demonstrates the high rate of
conversion back to susceptibles . From figure 6 it is evident after about 40 years we will
have HIV/AIDS controlled in a population as shown in figure 6. The graph is almost similar
to the graph in 2 at uninfected equilibrium point. This implies that if prophylaxis is used with
no delay, HIV/AIDS can be controlled in the population, and this can be achieved through
effective awareness and sensitization of the key parameters.
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4 Conclusion
In this study, A non linear mathematical model for the spread of HIV/AIDS was formulated
and analyzed. The reproduction number (Rτ ), uninfected and infected equilibrium were
determined. redour qualitative findings were in agreement with numerical simulations i.e
when Rτ < 1 the disease was controlled in the population and vice versa. Our results
demonstrate that ϕ and τ1 are key parameters in regulation of the value of Rτ . To maintain
Rτ < 1, ϕ needs to be at 1 and τ1 ≤ 3 days. Our findings highlight the importance
of prophylaxis use and reduction of initial delay after exposure before starting the use
of the prophylaxis. Amongst our assumptions was prophylaxis use between 0 and 1.
The assumption made the model uncomplicated and the primary dynamics demonstrated.
However, these assumptions might restrict the model’s applicability to situations in reality.
Future work will focus on extending the model to include more realistic aspects such as real
data on prophylaxis use.
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