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Abstract
In this paper, we study sumset inequalities concerning cardinalities of sumsets and functions
of finite subsets of integers such as entropy and additive energy. We also identify sufficient
conditions for existence of arithmetic progressions in difference sets and three-term progressions
in differences of squares of prime numbers.
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1 Introduction

When studying sumsets of subsets of the natural numbers, one has a myriad number of ways to
define functions of the sets involved. For given sets X,Y, Z ⊆ N, it is then possible to construct
relations and inequalities which include different functions of the sets (Ruzsa [2009]). Examples of
such functions include cardinality, entropy (Ruzsa [2008]) and additive energy (Balog and Szemerédi
[1994], Gowers [1998]) and the extent to which a natural number is represented as a sum of two
elements from the set. We prove some theorems, by elementary arguments, which exhibit certain
inequalities. One such theorem yields an inequality with additive energy, by means of concentration
of probability measures. One notes also the connection with ideas in probability and statistics such as
entropy, concentration, frequency and density. We then prove theorems about existence of arithmetic
progressions in difference set. When dealing with the set of prime numbers or squares of primes,
by counting the number of primes less than a number, one may show existence arbitrarily long and
three-term progressions in difference sets. In the context of difference sets generated by squares of
primes, we need a hypothesis which requires the non-existence of two distinct increasing triples of
prime squares, which are not translations of each other. Prior research in this topic may be found in
Ruzsa [1978a], Ruzsa [1989], Ruzsa [1996], Ruzsa [2008], Tao [2010], Green et al. [2025], Gowers
et al. [2025], Balog and Szemerédi [1994], Gowers [1998], Bourgain [1999], Ruzsa [1978b], Ruzsa
[1994], Chang [2002], Green [2005], Green and Tao [2008], Basu [2024], Tao and Vu [2016] and Tao
and Vu [2006].
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2 On certain sumset inequalities
In this section, we will consider some inequalities involving sumsets and relations between functions
of the sets such as set cardinality, additive energy etc., within additive combinatorics.

1) We consider a stronger conjecture than Ruzsa’s entropic conjecture for sumsets (Ruzsa [2008])
and identify certain sumset inequalities when specific sufficient conditions are met, such as arithmetic
progressions. The entropic counterpart involves the joint entropy of the pair of sums of random
variables.

2) When considering the sum with the largest number of combinations possible, we derive an inequality
concerning this object and sumsets by applying a concentration theorem by Markov’s inequality. The
probabilities in the concentration will lead to sumset inequalities.

3) We will then consider the problem of existence of arbitrarily long arithmetic progressions in the
difference set X −X, when X is dense. Particularly, we will be interested in situations when X is the
set of primes and three-term progressions when X is the set of squares of primes.

The following notation is for asymptotic order of growth. For a subset of the Euclidean space X ⊆ Rd1

and functions f, g : X → Rd2 we say f = O(g) if there exists a constant C > 0 such that
||f(x)|| ≤ C||g(x)|| for each x ∈ X . We say that f = Ω(g) if there exists an unbounded subset
X ′ ⊆ X and a constant C > 0 such that ||f(x)|| ≥ C||g(x)|| for each x ∈ X ′.

We will apply the same notation for X,Y, Z when X,Y, Z are finite sets or random variables. Suppose
that X,Y, Z are N-valued random variables which are finitely supported. The definition of entropy is
as follows.

H(X) =
∑
x

px ln(
1

px
) (2.1)

and one denotes by px, the probability that the outcome x will be realised. The summation is over x
such that px > 0. Then, a conjecture (Ruzsa [2008]) involving entropy, when X,Y, Z are independent,
is

H(X + Y ) +H(Z) ≤ H(X + Z) +H(Y + Z). (2.2)

A stronger version of this conjecture would be the following, when X,Y, Z are independent random
variables which satisfy certain sufficient conditions.

H(X + Y ) +H(Z) ≤ H(X + Z, Y + Z). (2.3)

In the above inequalities, H is the entropy function defined on random variables. This would be an
expectation of the logarithm of the probabilities. In this situation that X,Y, Z are finite subsets of the
natural numbers N, we have the corresponding sumset inequality involving cardinalities which is of
the following form.

|X + Y ||Z| ≤ |EX,Y,Z |. (2.4)

The set EX,Y,Z is defined as

EX,Y,Z = {(x+ z, y + z) : x ∈ X, y ∈ Y, z ∈ Z} (2.5)

Of course, we note that it is known (Ruzsa [1978a], Ruzsa [1989],Ruzsa [1996]) that

|X + Y ||Z| ≤ |X + Z||Y + Z|. (2.6)

2



Hence, any counterexamples to the entropic conjecture must involve non-uniform probabilities. This
leads us to understanding whether the same is true for the stronger conjecture.

We prove the following theorems.

Proposition 2.1. Suppose that c > 0. Further, suppose that X,Y, Z ⊆ N are finite sets such that

c|Z| ≤ min{|X|, |Y |} (2.7)

and

|X + Y | ≤ cmin |X|, |Y |. (2.8)

Then,

|X + Y ||Z| ≤ |EX,Y,Z |. (2.9)

Proof. Note that

c|X + Y ||Z| ≤ c(min |X|, |Y |)2 (2.10)

≤ c|X||Y | (2.11)

≤ |EX,Y,Z |. (2.12)

The next theorem is regarding arithmetic progressions.

Proposition 2.2. Suppose that X and Y finite subsets of N, which are arithmetic progressions with
the same difference term i.e. min{|x − x′| : x, x′ ∈ X;x ̸= x′} = min{|y − y′| : y, y′ ∈ Y ; y ̸= y′}.
Then,

|X + Y ||Z| ≤ |EX,Y,Z |. (2.13)

Proof. Since X,Y are arithmetic progressions with the same difference term,

|X + Y | = |X|+ |Y | − 1. (2.14)

Note that EX,Y,Z =
⋃

z∈Z(X × Y + {(z, z)}). We define the set

F = {(x, y) ∈ X × Y : x = maxx′
x′∈X or y = max y′

y′∈Y } (2.15)

which corresponds to the frontier of the set X × Y in N2. Note that |F | = |X|+ |Y | − 1. Hence,

|X + Y ||Z| = |Z|(|X|+ |Y | − 1). (2.16)

= |
⋃
z∈Z

F + {(z, z)}| (2.17)

≤ |EX,Y,Z |. (2.18)

The following theorem is a result concerning finite subsets with wide consecutive differences in
X and Y relative to Z.

Proposition 2.3. Suppose also that X and Y are finite subsets of the natural numbers. Further,
suppose that min{|x − x′| : x, x′ ∈ X;x ̸= x′} > maxz∈Z z and min{|y − y′| : y, y′ ∈ Y ; y ̸= y′} >
maxz∈Z z. Then,

|X + Y ||Z| ≤ |EX,Y,Z |. (2.19)
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Proof. Note that given the condition is satisfied, for (x, y) ̸= (x′, y′), we have that ({(x, y)} + Z) ∩
({(x′, y′)}+ Z) ̸= ∅. Since |X + Y | ≤ |X||Y |, the following equality proves the result.

|EX,Y,Z | = |
⋃

(x,y)∈X×Y

({(x, y)}+ Z)| (2.20)

=
∑

(x,y)∈X×Y

|{(x, y)}+ Z| (2.21)

= |X||Y ||Z|. (2.22)

We now define some functions of the set X such as additive energy and the sum which corresponds
to the maximum number of additive quadruples, which are vectors (x1, x2, x3, x4) with the property
that x1 + x2 = x3 + x4 (Tao and Vu [2006]).

Additive energy EX , is defined as follows.

EX =
|{(x1, x2, x3, x4) ∈ X4 : x1 + x2 = x3 + x4}|

|X|3 . (2.23)

Amongst all sums that are generated by additive quadruples, we find the one which is generated the
most number of times. For each m ∈ X +X, we define the function

nm = |{(x1, x2, x3, x4) ∈ X4 : x1 + x2 = x3 + x4 = m}| (2.24)

and the maximum over m which is

nX = max
m∈X+X

nm. (2.25)

Then, we define the following set. For a given ε > 0,

Mε = {m : nm ≥ εnX}. (2.26)

We prove the following theorem.

Proposition 2.4. Suppose that X ⊆ N is a finite subset of natural numbers and 0 < c < 1. If EX ≥ c,
then

(1−
√

1− c

nX
)|X +X| ≤ |M√

1−
√

1− c
nX

|. (2.27)

Proof. The additive energy may be written as

EX =

∑
m∈X+X n2

m

|X|3 . (2.28)

Now, we define the random variable φ(m) =
n2
m

n2
X

on X +X, with the uniform probability measure on
X +X. Denote as P and E the associated probability and expectation operators. Hence, if EX ≥ c,
then expectation of φ may be lower bounded as E[φ] ≥ c

nX
, since |X +X| ≤ |X|2 and nX ≤ |X|. By

Markov’s inequality, we may show that

P(φ ≥ 1−
√

1− c

nX
) ≥ 1−

√
1− c

nX
. (2.29)

Then, the result is proved by the fact that the probability measure was the uniform probability measure.
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Note the connection also with the Balog-Szemerédi-Gowers theorems (Balog and Szemerédi
[1994], Gowers [1998], Bourgain [1999], Gowers et al. [2025]).

We now move to some properties of the difference set X − X, for possibly infinite X ⊆ N in the
following context. Denote by P, the set of all prime numbers. Define

Qn = X ∩ {1, ..., n} and Q′
n = (X −X) ∩ {1, ..., n} (2.30)

We will be interested in elementary arguments which allows us to reason about nQn , nQ′
n

(Basu
[2024]) and stronger properties involving existence of arithmetic progressions in X−X (Basu [2024],Ruzsa
[1994], Chang [2002], Bourgain [1990], Szemerédi [1975], Gowers [2001], Tao and Vu [2006]). We
prove the following theorems. A sequence (x1, x2, ..., xk) is said to be a translation of a sequence
(x′

1, x
′
2, ..., x

′
k) if there exists an integer d such that x′

j = xj + d for all 1 ≤ j ≤ k.

Proposition 2.5. Suppose that X ⊆ N and δ > 0 such that

lim sup
n→∞

|Qn|
n

≥ δ > 0. (2.31)

Then, X − X contains arbitrarily long arithmetic progressions. Moreover, if |Qn| ≥ δn and δ =

Ω(

√
ln(n)

e
√

ln(n)
), then Q′

n contains an arithmetic progression of length Ω(
√

ln(n)).

Proof. We shall denote as k ∈ N, the length of the arithmetic progression. Define qn = |Qn|. The
cardinality of the largest set of increasing sequences (x1, x2, ..., xk) ∈ Qk

n (i.e. xj < xj+1) such that
no two distinct sequences in the set are translations of each other, is at least n−1

(
qn
k

)
. Now, select n

large enough such that

n−1

(
qn
k

)
> (8n+ 1)k−2. (2.32)

Note that the multiplier n−1 is present since the number of translations of a sequence in {1, ..., n}
is not more than n. Now, by the pigeon-hole principle, we find two distinct increasing sequences
(x1, x2, ...xk) and (x′

1, x
′
2, ...x

′
k) such that

xj−1 − 2xj + xj+1 = x′
j−1 − 2x′

j + x′
j+1, for all j ∈ {2, ..., k − 1}. (2.33)

Then, the difference (x1 − x′
1, x2 − x′

2, ...xk − x′
k) would yield a non-trivial arithmetic progression of

length k since the two sequences are not translations of each other.

Further, note that since kk ≥ k!, the above strict inequality is implied by

(qn − k) > k(8n+ 1)
k−1
k . (2.34)

Hence, by setting k = Ω(
√

ln(n)), we prove the second part of the theorem.

The following theorems now consider the set of prime numbers and the set of squares of prime
numbers (Green [2005], Green and Tao [2008], Tao and Vu [2006]). Define Pn = P ∩ {1, 2, ..., n} to
be the set of prime numbers less than or equal n. The arguments in these proofs also allows us to
reason about nPn and nP ′

n

Proposition 2.6. Suppose that X = P. Then, X−X contains arbitrarily long arithmetic progressions.
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Proof. Denote as [α], the largest natural number less than α > 0. The number of the increasing
sequences (x1, x2, ..., xk) i.e. xj < xj+1 in the set Pn is at least Ω(n−1

([ n
ln(n)

]

k

)
), by Chebychev’s

theorem, which would be greater than (8n + 1)k−2 for large n, and which is an upper bound on the
number of combinations of values of the vector ((xj−1 − 2xj + xj+1))

k−1
j=2 . Then, by the pigeon-hole

principle there exist distinct (x1, x2, ..., xk), (x
′
1, x

′
2, ..., x

′
k) ∈ P k

n such that the difference (x1−x′
1, x2−

x′
2, ...xk − x′

k) would again be an arithmetic progressions of length k.

Proposition 2.7. Suppose that X = {p2 : p ∈ P}. Suppose that no two distinct increasing triples in
X are translations of each other. Then, X −X contains an arithmetic progression of length three.

Proof. The number of increasing triples (x, y, z) ∈ X ∩ {1, 2, ..., n} is at least Ω(
([ √

n
ln(n)

]

3

)
), which

would be greater than 8n, for large n. By the same argument as the prior two propositions, we find
an arithmetic progression of length three in X −X.

3 Conclusion
In this paper, it was shown that sumset inequalities arise from inequalities from probabilistic concentration
and also elementary combinatorial identities which are in the form of inequalities. It becomes possible
to reason about certain functions of additive sets and identify specific statements that would hold
within the theory, with subsets of natural numbers.
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