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Abstract

Abstract - We examine two variations of the Jacobsthal Lucas numbers, denoted as G
(2)

j(n)(a) and
H

(2)

j(n)(a), which are derived through the addition or subtraction of a specific value {a} from the
square of the nth Jacobsthal Lucas numbers due to their relevance to the products of Jacobsthal
numbers. Consequently, we derive both the consecutive sum-subtraction relationships and Binet-
like expressions for these altered sequences, while also investigating the greatest common divisor
(Gcd) sequences of r–successive terms, represented by {G(2)

j(n),r(a)} and {H(2)

j(n),r(a)} for r ∈
{1, 2, 3, 4}, which are informed by the periodic properties of the Gcd of consecutive Jacobsthal
numbers.

Keywords: Altered Jacobsthal Lucas Number, Jacobsthal Lucas Sequence, Jacobsthal Sequence,
Greatest Common Divisor (Gcd) Sequence.
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1 Introduction

The Jacobsthal sequence Jn and the Jacobsthal-Lucas sequence jn are defined recursively by

Xn = Xn−1 + 2Xn−2, n ≥ 2 (1.1)

with the initial conditions J0 = 0, j0 = 2, and J1 = j1 = 1. Some elements of these sequences
are {Jn}n≥0 = {0, 1, 1, 3, 5, 11, 21, 43, . . . } and {jn}n≥0 = {2, 1, 5, 7, 17, 31, 65, . . . }. In addition, the
Jacobsthal and Jacobsthal Lucas numbers are respectively given with the Binet formulas

Jn =
2n − (−1)n

3
, jn = 2n + (−1)n, n ∈ N, (1.2)
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which are explicit formulas used to prove certain properties of these numbers. For example, these
numbers are extended to negative subscripts as

J−n =
(−1)n+1

2n
Jn, j−n =

(−1)n

2n
jn. (1.3)

Also, these are a mathematical sequence that plays a significant role in various fields. Primarily, these
numbers serve as a tool in mathematical analysis and computations. They are particularly useful for
analyzing the time complexity of algorithms.

In (Horadam, 1988, 1996a,b), basic properties of Jacobsthal Lucas numbers are given such
that Cassini-like formulas; j2n− jn+1jn−1 = 9(−1)n2n−1, their interrelationships; jn+1+2jn−1 = 9Jn,
indices sum formulas; 2jm+n−jmjn = 9JnJm, indices difference formulas; jmjn+(−1)n+12n+1jm−n =
9JmJn. It is seen that many results are equal to Jacobsthal numbers. This makes it possible to
transfer applications of Jacobsthal numbers onto these altered numbers.

Several studies have explored variations of Jacobsthal numbers by introducing modifications to
their standard recurrence relations. Several studies in the literature have introduced new sequences
derived from Jacobsthal-Lucas numbers. Furthermore, they have examined equations and properties
of these sequences that mirror those presented by Jacobsthal Lucas sequences (Bilgici and Bród,
2023; Catarino et al., 2015; Horadam, 1993; Uygun, 2021).

Horadam (1993) defines the kth associated sequences {j(k)n }n≥1 of the Jacobsthal Lucas {jn}
sequences to be, respectively, given by

j(k)n = j
(k−1)
n+1 + 2j

(k−1)
n−1 (1.4)

where j
(0)
n = jn and j

(1)
n = 9Jn are the generic values of these sequences. The following relationships

are seen to be valid:
j(2m)
n = 32mjn, j(2m−1)

n = 32mJn. (1.5)
Also, Horadam (1996a) gives two sequences, which are established by using the summation

formulas of the consecutive Jacobsthal Lucas numbers, defined by

ĵn =

n∑
i=1

ji =
1

2
(jn+2 − 5), ĵ0 = ĵ1 = 1. (1.6)

In addition, the basic properties of these sequences are arranged with recurrence relation; ĵn+2 =

ĵn+1 + 2ĵn + 5, Binet’s form; ĵn = 2n+2+(−1)n−5
2

. Further, a lot of properties of these numbers are
given in (Horadam, 1996a,b), and also, the associated sequences Ĵ

(k)
n , ĵ(k)n and their properties are

deduced by using the properties of previous sequences. In addition to these numbers, he studied the
Jacobsthal Lucas representation polynomials in (Horadam, 1996a,b).

Building on the work of (Cook and Bacon, 2013), the Jacobsthal recurrence relation was generalized
to higher-order cases, extending the foundational identities established by Horadam (1988, 1993,
1996a,b) and introducing a broader set of identities applicable to these advanced recurrence relations.

Also, the authors introduced a new Jacobsthal-type sequence,

Jr,n = 2rJr,n−1 + (2r + 4r)Jr,n−2, Jr,0 = 0, Jr,1 = 1 + 2r+1, (n ≥ 2) (1.7)

with properties examined in the present study (Bilgici and Bród, 2023; Brod, 2020).
Koken (2019) introduced the altered Jacobsthal sequences {j+n }n≥1 and {j−n }n≥1, obtained by

modifying the Jacobsthal Lucas numbers. They are given by the definitions

j+n =

{
jn + 5.2(n/2)−1, if n is even
jn − 2(n−1)/2, otherwise

, j−n =

{
jn − 5, 2(n/2)−1, if n is even
jn + 2(n−1)/2, otherwise

For the altered Jacobsthal Lucas numbers j+n and j−n , these identities are valid:

j+4k = 9J2k+1J2k−1, j+4k+1 = 9J2k+1J2k, j+4k+2 = j2k+2j2k, j+4k+3 = j2k+2j2k+1 (1.8)
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j−4k = j2k+1j2k−1, j−4k+1 = j2k+1j2k, j−4k+2 = 9J2k+2J2k, j−4k+3 = 9J2k+2J2k+1 (1.9)

He examined recurrence formulas, Binet-like formulas, Cassini-like identities, explicit relations, and
other noteworthy findings.

Also, Koken et al. (2025) defined with G
(2)

J(n) (a) = J2
n + (−1)n a and H

(2)

J(n) (a) = J2
n − (−1)n a,

which are called the altered Jacobsthal numbers squared, and are derived by incorporating a parameter
into the classical sequence

G
(2)

J(n) (Jt) = Jn+tJn−t, if t is odd, (1.10)

H
(2)

J(n) (Jt) = Jn+tJn−t, if t is even, (1.11)

where Jx be xth Jacobsthal number and a ∈ Z. These numbers exhibit notable divisibility properties,
particularly when examined through greatest common divisor (gcd) sequences, which display periodic
behavior. In addition, the theoretical framework surrounding altered Jacobsthal numbers is well
established through specific recurrence relations and identities. Various theorems provide insight
into their algebraic structure, while Binet-like formulas aid in proving fundamental properties (Koken
et al., 2025).

2 Altered Jacobsthal Lucas Numbers and Their Properties

In this section, two variations of altered Jacobsthal Lucas numbers are defined and examined, denoted
as G

(2)

j(n) (a) and H
(2)

j(n) (a), which are constructed by incorporating or subtracting a parameter {a}
from the square of the nth Jacobsthal Lucas number. The selection of addition or subtraction is
determined by whether the index of the altered number is odd or even, respectively.

These sequences produce subsequences that exhibit similarities to previously explored variations,
including the associated Jacobsthal Lucas (Horadam, 1993), consecutive Jacobsthal Lucas Horadam
(1996a), and the altered Jacobsthal Lucas sequences {j+n }n≥1 and {j−n }n≥1 (Koken, 2019), which
have been extensively studied in the context of Jacobsthal and Jacobsthal Lucas numbers.

Motivated by an identity established in the literature, we derive two equations that align with the
objectives of this study. In particular, we explore the summation and subtraction identities for the
squared Jacobsthal Lucas numbers, as formulated in Eqs. (2.1-2.2).

j2m+k−1 + 22k−1j2m−k = 9J2m−1J2k−1, (2.1)

j2m+k − 22kj2m−k = 9J2mJ2k, m > k (2.2)

where, m and k are positive integers. Although the identities given in Eqs. (2.1-2.2) have not been
explicitly identified in the literature, their validity can be verified through the application of the Binet
formulas presented in Eq. (1.2).

Definition 1. The nth terms of the altered Jacobsthal Lucas number sequences, represented by
G

(2)

j(n) (a) and H
(2)

j(n) (a), are formally defined in Eqs. (2.3-2.4).

G
(2)

j(n) (a) = j2n + (−1)n a (2.3)

H
(2)

j(n) (a) = j2n − (−1)n a (2.4)

where jn be nth Jacobsthal Lucas number and a ∈ Z.

By selecting a value a ∈
{
2n−tj2t

}
, where t < n, we can extend the notion of altered Jacobsthal

Lucas numbers introduced in Eqs. (2.3-2.4) to the sequences G
(2)

j(n)

(
2n−tj2t

)
and H

(2)

j(n)

(
2n−tj2t

)
,

where j2t denotes a square of the tth Jacobsthal Lucas number.
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Theorem 1. Let G
(2)

j(n)

(
2n−tj2t

)
and H

(2)

j(n)

(
2n−tj2t

)
represent the nth altered Jacobsthal Lucas

numbers squared. Then, the statements given in Eqs. (2.5-2.6) hold true.

G
(2)

j(n)

(
2n−tj2t

)
= 9Jn+tJn−t, if t is odd (2.5)

H
(2)

j(n)

(
2n−tj2t

)
= 9Jn+tJn−t, if t is even (2.6)

Proof. By setting m = u + t+1
2

and k = u − t−1
2

in Eqs. (2.1-2.2), respectively, when t is odd, an
according to n = 2u and n = 2u+ 1, the following identities hold:

j22u + 22u−tj2t = 9J2u+tJ2u−t

j22u+1 − 22u+1−tj2t = 9J2u+1+tJ2u+1−t.

Thus, for a = 2n−tJ2
t in Equation (2.3), we obtain G

(2)

j(n)

(
2n−tj2t

)
= 9Jn+tJn−t.

Similarly, by setting m = u+ t
2

and k = u− t
2

in Eqs. (2.1-2.2), when t is even, an according to
n = 2u− 1 and n = 2u, we obtain the following result:

j22u−1 + 22u−t−1j2t = 9J2u+t−1J2u−t−1,

j22u − 22u−tj2t = 9J2u+tJ2u−t.

It is valid H
(2)

j(n)

(
2n−tj2t

)
= 9Jn+tJn−t for a = 2n−tj2t in Eq. (2.4) .

We see that the altered Jacobsthal sequences G
(2)

J(n)

(
2n−tJ2

t

)
and H

(2)

J(n)

(
2n−tJ2

t

)
are defined

in (Koken et al., 2025), so that the relation with the altered Jacobsthal Lucas sequences is given by

G
(2)

j(n)

(
2n−tj2t

)
= 9G

(2)

J(n)

(
2n−tJ2

t

)
, if t is odd (2.7)

H
(2)

j(n)

(
2n−tj2t

)
= 9H

(2)

J(n)

(
2n−tJ2

t

)
, if t is odd (2.8)

Now, any Binet like formulas are achieved for the numbers G
(2)

j(n)

(
2n−tj2t

)
and H

(2)

j(n)

(
2n−tj2t

)
given in Eqs. (2.5-2.6).

Theorem 2. Let G(2)

j(n)

(
2n−tj2t

)
and H

(2)

j(n)

(
2n−tj2t

)
be the nth altered Jacobsthal Lucas numbers.

Then, they are expressed with Eqs. (2.9-2.10).

G
(2)

j(n)

(
2n−tj2t

)
=

(
22n + 1

)
+ (−1)n

(
22t + 1

)
, if t is odd (2.9)

H
(2)

j(n)

(
2n−tj2t

)
=

(
22n + 1

)
− (−1)n

(
22t + 1

)
, if t is even (2.10)

Proof. If the Binet formulas in Eq. (1.2) are substituted in Eqs. (2.5-2.6), respectively, and they are
adjusted, we have the desired results.

Using the Binet formulas given in Eq. (1.2), these numbers in Eqs. (2.9-2.10) are associated with
the Jacobsthal Lucas numbers as follows:

G
(2)

j(n)

(
2n−tj2t

)
= j2n + (−1)n j2t, if t is odd (2.11)

H
(2)

j(n)

(
2n−tj2t

)
= j2n − (−1)n j2t, if t is even. (2.12)

Also, the Binet like formulas in given Eqs. (2.9-2.10) can be used to prove many properties of these
numbers.

Furthermore, the expressions given in Eqs. (2.11–2.12) also resemble the altered Jacobsthal–Lucas-
like numbers introduced in (Koken, 2019).

Let us examine examples of the generalizations provided for the cases t = 1 and t = 2. The
sequences defined by G

(2)

j(n)

(
2n−1

)
and H

(2)

j(n)

(
2n−252

)
in Eqs. (2.3-2.4) exhibit an increasing pattern,

apart from the initial few terms. The general expressions for these sequences are given as follows.
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Theorem 3. Let G(2)

j(n)

(
2n−1

)
and H

(2)

j(n)

(
2n−252

)
denote the nth altered Jacobsthal Lucas numbers.

Then, the following statements hold Eqs. (2.13-2.14):

G
(2)

j(n)

(
2n−1) = 9Jn+1Jn−1 (2.13)

H
(2)

j(n)

(
2n−252

)
= 9Jn+2Jn−2 (2.14)

Proof. Letting m = u + 1 and k = u in Eqs. (2.1)–(2.2), and applying the identity in Eq. (2.3), we
obtain:

G
(2)

j(2u)(2
2u−1) = j22u + 22u−1 = 9J2u+1J2u−1,

G
(2)

j(2u+1)(2
2u) = j22u+1 − 22u = 9J2u+2J2u.

Similarly, taking m = u+ 2 and n = u in the same equations and using Eq. (2.4) for a = 2n−252,
we derive:

H
(2)

j(2u+1)(2
2u−152) = j22u+1 + 22u−152 = 9J2u+3J2u−1,

H
(2)

j(2u+2)(2
2u52) = j22u+2 − 22u52 = 9J2u+4J2u.

In the following, we explore certain sum and difference relations of the numbers G
(2)

j(n)(2
n−1) and

H
(2)

j(n)(2
n−252), derived from the multiplication identities given in Eqs. (2.13) and (2.14).

Theorem 4. Let Xn denote the altered Jacobsthal-Lucas numbers G
(2)

j(n)(2
n−1) and H

(2)

j(n)(2
n−252).

Then the following recurrence relations hold:

Xn+1 + 2Xn = 9J2n+1, (2.15)

Xn+1 − 4Xn−1 = 9J2n, (2.16)

Xn+2 = 3Xn+1 + 6Xn − 8Xn−1. (2.17)

Proof. Using the multiplication identities from Eqs. (2.13)–(2.14), and known Jacobsthal identities
such as

J2
n+1 + 2J2

n = J2n+1, 2Jn−1 + Jn+1 = jn, Jnjn = J2n,

we derive:

H
(2)

j(n+1)(2
n−252) + 2H

(2)

j(n)(2
n−252) = 9(Jn+2 + 2Jn+1)Jn−1 + 18Jn+2Jn−2

= 9[(Jn+1 + 2Jn)Jn + 2Jn+1Jn−1]

= 9J2n+1,

and

G
(2)

j(n+1)(2
n−1)− 4G

(2)

j(n−1)(2
n−1) = 9(Jn+2 − 4Jn−2)Jn

= 9(Jn+1 + 2Jn−1)Jn

= 9J2n.

The third relation (2.17) is obtained by combining the above two identities through appropriate linear
combinations. Full details are omitted for brevity.

Consequently, the recurrence relation in Eq. (2.17) directly follows from the identities in Eqs. (2.15)
and (2.16), confirming the structure of the sequences defined in Eqs. (2.13) and (2.14).
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2.1 Altered Jacobsthal Lucas Gcd Sequences G
(2)
j(n),r (a) and H

(2)
j(n),r (a)

This section examines the greatest common divisor (GCD) sequences arising from consecutive
altered Jacobsthal Lucas numbers, denoted by G

(2)

j(n),r(a) and H
(2)

j(n),r(a), where r indicates the
number of successive terms. These sequences exhibit periodic behavior and reveal structured
divisibility properties, reflecting the underlying modular and arithmetic characteristics of Jacobsthal
numbers as detailed in (Koken et al., 2025).

The study of sequences with modified components highlights the structured regularity of Jacobsthal
numbers in product formulations. In particular, the Hosoya triangle, similar to Pascal’s triangle,
organizes entries as products of Fibonacci numbers, leading to various generalizations (Flórez and
Junes, 2012; Hosoya, 1976; Koshy, 2019). Extending this framework, researchers have analyzed
the greatest common divisor (Gcd) and modularity properties of generalized Fibonacci sequences,
establishing the Star of David identity and related patterns (Flórez et al., 2014a,b). Additionally,
replacing numerical values with polynomials has yielded Hosoya like polynomial triangles, further
broadening the scope of identities based on recurrence (Flórez et al., 2018b; Koshy, 2019). These
findings reinforce the fundamental arithmetic properties that govern integer sequences and their
geometric interpretations.

The Jacobsthal sequence is known to satisfy the strong divisibility property, namely that for all
positive integers a and b, the relation

gcd(Ja, Jb) = Jgcd(a,b)

holds. Furthermore, it exhibits elliptic divisibility: if Jn | Jm, then n | m. These properties, together
with key divisibility results, form the basis for the propositions in Eqs. (2.18-2.20), adapted from (Flórez
et al., 2018a).

Let a, b, c, and d be positive integers. If gcd(Ja, Jb) = 1 and gcd(Jc, Jd) = 1, then the following
propositions hold:

gcd(JaJb, JcJd) = Jgcd(a,c)Jgcd(a,d)Jgcd(b,d)Jgcd(b,c) (2.18)

If |a− c| ≤ 2 and |b− d| ≤ 2, then the following propositions hold: gcd(Ja, Jc) = 1, gcd(Jb, Jd) = 1
and

gcd(JaJb, JcJd) = Jgcd(a,d)Jgcd(b,c). (2.19)

If gcd(Ja, Jc) = x and gcd(Jb, Jd) = y, then the following proposition hold:

gcd(JaJb, JcJd) =
gcd(yJa, xJd) gcd(xJb, yJc)

xy
. (2.20)

We investigate certain properties concerning properties of Gcd of two numbers from the altered
sequences

{
G

(2)

j(n) (a)
}

and
{
H

(2)

j(n) (a)
}

.

Definition 2. Let G(2)

j(n) (a) and H
(2)

j(n) (a) be the nth altered Jacobsthal Lucas numbers in Eqs. (2.3-
2.4). The expressions of Eqs. (2.21-2.22)

G
(2)

j(n),r (a) = gcd
(
G

(2)

j(n) (a) , G
(2)

j(n+r) (a)
)

(2.21)

H
(2)

j(n),r (a) = gcd
(
H

(2)

j(n) (a) , H
(2)

j(n+r) (a)
)

(2.22)

are called as the r-successive altered Jacobsthal Lucas gcd numbers.

Based on the identities in Eqs. (2.7–2.8), the analysis of the gcd sequences G
(2)

j(n),r(a) and

H
(2)

j(n),r(a) follows a similar approach to that applied for the altered Jacobsthal sequences. The results

6
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given in Theorems 5–8 of (Koken et al., 2025) show that the period length of these sequences is
determined by

m = lcm[r, r − 2t, r + 2t], t ∈ {1, 2}, 1 ≤ r ≤ 4, r − 2t ̸= 0,

where lcm(a, b, c) denotes the least common multiple of the integers a, b, and c.
Algorithm 1, utilized in this study, identifies the maximum entries in each column of a given data

matrix and detects any repetitions. The verification was performed through a computer program
based on this algorithm, which systematically examined multiple values with respect to the given
(t, s) parameters.

By substituting a = 2n−1 and a = 2n−252 with r = 1 in Eqs. (2.21–2.22), it is observed
that the sequences

{
G

(2)

j(n),1(2
n−1)

}
and

{
H

(2)

j(n),1(2
n−252)

}
do not exhibit strict monotonicity but

suggest potential periodicity. This prompts an investigation into whether these 1-successive altered
Jacobsthal–Lucas GCD sequences attain specific values within defined periods.

Theorem 5. Let G
(2)

j(n),1

(
2n−1

)
and H

(2)

j(n),1

(
2n−252

)
be the nth 1-successive altered Jacobsthal

Lucas gcd numbers. Then, the following statements hold:

G
(2)

j(n),1

(
2n−1) =

{
9J3, n ≡ 1 (mod 3)
9, otherwise

H
(2)

j(n),1

(
2n−252

)
=


9J5J3, n ≡ 7 (mod 15)
9J5, n ≡ 2, 12 (mod 15)
9J3, n ≡ 1, 4, 10, 13 (mod 15)
9, otherwise

Proof. We evaluate G
(2)

j(n),1(2
n−1) = gcd(9Jn+1Jn−1, 9JnJn+2) using Eq. (2.13) for r = 1 in Eq. (2.21).

Since gcd(Jn+1, Jn−1) = gcd(Jn, Jn+2) = 1, applying Eq. (2.18) yields

G
(2)

j(n),1(2
n−1) = 9 gcd(Jn−1, Jn+2) = 9Jgcd(n−1,n+2).

Using the strong divisibility property gcd(Ja, Jb) = Jgcd(a,b) and the Euclidean identity gcd(a, b) =
gcd(a, b− ax), we obtain

Jgcd(n−1,3) =

{
J3, if n ≡ 1 (mod 3),

J1, otherwise.

Similarly, consider H(2)

j(n),1(2
n−252) = gcd(9Jn+2Jn−2, 9Jn+3Jn−1) using Eq. (2.14) for r = 1 in

Eq. (2.22). Since gcd(Jn+2, Jn+3) = gcd(Jn−2, Jn−1) = 1, we apply Eq. (2.19) to write

H
(2)

j(n),1(2
n−252) = 9 gcd(Jn−2, Jn+3) · gcd(Jn+2, Jn−1).

Then, using the divisibility property, we find

gcd(Jn−2, Jn+3) = Jgcd(n−2,n+3) =

{
J5, if n ≡ 2 (mod 5),

1, otherwise,

gcd(Jn+2, Jn−1) = Jgcd(n+2,n−1) =

{
J3, if n ≡ 1 (mod 3),

1, otherwise.

In all cases, the desired results follow by applying the Chinese Remainder Theorem.

By generating the 2-successive altered Gcd sequences with a = 2n−1 and a = 2n−252 for r = 2 in
Eqs. (2.21-2.22), it is observed that the sequence

{
G

(2)

j(n),2(2
n−1)

}
(n ≥ 1) increases monotonically,

whereas
{
H

(2)

j(n),2(2
n−252)

}
(n ≥ 2) displays a periodic structure.

7
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Algorithm 1 Sequence Generation, GCD Calculation, and Repeated Value
Detection

1: Start
2: Generate Sequences:
3: Create a list n containing numbers from 0 to 1000
4: Initialize sequence j: j[0] = 2, j[1] = 1
5: Compute sequences G and H using predefined formulas
6: Define a Function to Compute GCD:
7: function CALCULATE GCD(a, b)
8: return gcd(a, b)
9: end function

10: Compute GCD for Different r Values:
11: for r = 1 to 50 do
12: for i = (1000− r) to 1 do
13: Compute gcd(G[i], G[i+ r]) and store it in gcdG[r]
14: Compute gcd(H[i], H[i+ r]) and store it in gcdH[r]
15: end for
16: end for
17: Identify Repeated Values and Their Frequencies:
18: Create a matrix repeated of size 1000× 80 (initialized to zeros)
19: for i = 1 to 25 do
20: for r = 1 to 40 do
21: Select the i-th column from the data matrix
22: Find the maximum value m in the column
23: Identify positions where m appears
24: if at least two occurrences exist then
25: Compute distance between the first two occurrences
26: Compare corresponding sequences x1 and x2
27: if x1 == x2 then
28: Store repeated values in the repeated matrix
29: else if x1 == x3 then
30: Store x1 and its frequency
31: end if
32: end if
33: end for
34: end for
35: Save All Data to a CSV File
36: End

8
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Theorem 6. Let G
(2)

j(n),2

(
2n−1

)
and H

(2)

j(n),2

(
2n−252

)
be the nth 2-successive altered Jacobsthal

Lucas gcd numbers. Then, the following statements hold:

G
(2)

j(n),2

(
2n−1) =

{
9J4Jn+1, n ≡ 1 (mod 4)
9Jn+1, otherwise

H
(2)

j(n),2

(
2n−252

)
=


9J6, n ≡ 2 (mod 6)
9J3, n ≡ 5 (mod 6)
9, otherwise

Proof. From Eq. (2.13), we write

G
(2)

j(n),2(2
n−1) = 9Jn+1 gcd(Jn−1, Jn+3) = 9Jn+1Jgcd(n−1,n+3).

Since gcd(n− 1, n+ 3) = gcd(n− 1, 4), we have

Jgcd(n−1,4) =


J4, if n ≡ 1 (mod 4),

J2, if n ≡ 3 (mod 4),

J1, if n ≡ 0, 2 (mod 4).

Thus, G(2)

j(n),2(2
n−1) = 9J4Jn+1 for n ≡ 1 (mod 4), and 9Jn+1 otherwise.

For the second sequence, from Eq. (2.14) we obtain

H
(2)

j(n),2(2
n−252) = 9 gcd(Jn+2Jn−2, Jn+4Jn).

Using the coprimality gcd(Jn+2, Jn+4) = gcd(Jn−2, Jn) = 1 and Eq. (2.19), we simplify to

H
(2)

j(n),2(2
n−252) = 9Jgcd(n−2,n+4) = 9Jgcd(n−2,6).

Thus,

Jgcd(n−2,6) =


J6, if n ≡ 2 (mod 6),

J3, if n ≡ 5 (mod 6),

J2, if n ≡ 0, 4 (mod 6),

J1, if n ≡ 1, 3 (mod 6).

It is known that

gcd(Jn, Jn+3) =

{
3, if n ≡ 0 (mod 3),

1, otherwise.

Using this property, we now construct the sequences
{
G

(2)

j(n),3(2
n−1)

}
and

{
H

(2)

j(n),3(2
n−252)

}
.

Theorem 7. Let G(2)

j(n),3

(
2n−1

)
and H

(2)

j(n),3

(
2n−252

)
be the nth 3-successive altered Jacobsthal gcd

numbers. They are valid:

G
(2)

j(n),3

(
2n−1) =


9J5J3, n ≡ 1, 11 (mod 15)
9J5, n ≡ 6 (mod 15)
9, n ≡ 0, 3, 9, 12 (mod 15)

9J3, otherwise

H
(2)

j(n),3

(
2n−252

)
=


9J7J3, n ≡ 2, 16 (mod 21)
9J7, n ≡ 9 (mod 21)
9, n ≡ 0, 3, 6, 12, 15, 18 (mod 21)

9J3, otherwise

9
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Proof. Using Eq. (2.13), we express

G
(2)

j(n),3(2
n−1) = 9 gcd (Jn+1Jn−1, Jn+4Jn+2) .

Since gcd(Jn+1, Jn−1) = gcd(Jn+4, Jn+2) = 1, by Eq.n (2.18), we obtain

G
(2)

j(n),3(2
n−1) = 9 · gcd(Jn−1, Jn+2) · gcd(Jn−1, Jn+4) · gcd(Jn+1, Jn+4).

Now, we evaluate each term:

• gcd(Jn−1, Jn+2) = J3 if n ≡ 1 (mod 3), otherwise J1.

• gcd(Jn−1, Jn+4) = J5 if n ≡ 1 (mod 5), otherwise J1.

• gcd(Jn+1, Jn+4) = J3 if n ≡ 2 (mod 3), otherwise J1.

Hence, G(2)

j(n),3(2
n−1) = 9J3J5 when n ≡ 1 (mod 5) and n ≡ 1 or 2 (mod 3), and the result

follows by the Chinese Remainder Theorem.
Now consider H(2)

j(n),3(2
n−252) via Eq. (2.14):

H
(2)

j(n),3(2
n−252) = 9 gcd (Jn+2Jn−2, Jn+1Jn+5) .

Using gcd(Jn+2, Jn+1) = 1 for all n and

gcd(Jn−2, Jn+5) =

{
J7, n ≡ 2 (mod 7),

1, otherwise,

we apply Eq. (2.20) to get

H
(2)

j(n),3(2
n−252) =

{
9J7 · gcd(Jn+2, Jn+5) · gcd(Jn−2, Jn+1), n ≡ 2 (mod 7),

9 · gcd(Jn+2, Jn+5) · gcd(Jn−2, Jn+1), otherwise.

Using known identities:

• gcd(Jn+2, Jn+5) = J3 if n ≡ 1 (mod 3), otherwise J1.

• gcd(Jn−2, Jn+1) = J3 if n ≡ 2 (mod 3), otherwise J1.

Thus, all values of the sequence H
(2)

j(n),3(2
n−252) can be computed using the Chinese Remainder

Theorem.

As stated in Eq. (2.23),

gcd(Jn, Jn+4) =

{
5, if n ≡ 0 (mod 4),

1, otherwise.
(2.23)

It is observed that the sequence
{
G

(2)

j(n),4(2
n−1)

}
, for n > 2, exhibits periodic behavior. In

contrast, the sequence
{
H

(2)

j(n),4(2
n−252)

}
, for n ≥ 2, takes values that follow a Jacobsthal pattern.

Theorem 8. Let G(2)

j(n),4

(
2n−1

)
and H

(2)

j(n),4

(
2n−252

)
be nth 4-successive altered Jacobsthal Lucas

gcd numbers, they are valid:

G
(2)

j(n),4

(
2n−1) =


9J6J4, n ≡ 1, 7 (mod 12)
9J4, n ≡ 3, 5, 6, 10 (mod 12)
9J3, n ≡ 4, 8 (mod 12)
9, otherwise

,

H
(2)

j(n),4

(
2n−252

)
=


9J8Jn+2, n ≡ 2 (mod 8)
9J4Jn+2, n ≡ 6 (mod 8)
9Jn+2, otherwise

10
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Proof. By rewriting G
(2)

j(n),4(2
n−1) = 9 gcd(Jn+1Jn−1, Jn+5Jn+3) using Eq. (2.13), and noting that

gcd(Jn+1, Jn−1) = gcd(Jn+5, Jn+3) = 1, we apply Eq. (2.18) with the assumption J(n+1,n+3) = 1, to
obtain:

G
(2)

j(n),4(2
n−1) = 9Jgcd(n+1,n+5)Jgcd(n−1,n+5)Jgcd(n−1,n+3).

We now analyze each factor individually:

• Jgcd(n+1,n+5) = Jgcd(n+1,4) = J4, if n ≡ 3 (mod 4); otherwise, Jgcd(n+1,4) = 1.

• Jgcd(n−1,n+3) = Jgcd(n−1,4) = J4, if n ≡ 1 (mod 4); otherwise, gcd(Jn−1, Jn+3) = 1.

• Jgcd(n−1,n+5) = Jgcd(n−1,6), where:

– Jgcd(n−1,6) = J6, if n ≡ 1 (mod 6),

– Jgcd(n−1,6) = J3, if n ≡ 4 (mod 6),

– Jgcd(n−1,6) = 1, otherwise.

If n ≡ 1 (mod 6) and either n ≡ 1 (mod 4) or n ≡ 3 (mod 4), then by the Chinese Remainder
Theorem we have n ≡ 1, 7 (mod 12). In this case, the expression simplifies to:

G
(2)

j(n),4(2
n−1) = 9J6J4.

The desired results follow similarly for other congruence classes.
On the other hand, by applying Eq. (2.14), we obtain:

H
(2)

j(n),4(2
n−252) = 9Jn+2Jgcd(n−2,n+6).

Here, depending on the value of n:

• Jgcd(n−2,8) = J8, if n ≡ 2 (mod 8),

• Jgcd(n−2,8) = J4, if n ≡ 6 (mod 8),

• Jgcd(n−2,8) = 1, otherwise.

By considering the expressions derived for a = 2n−tj2t with t ∈ {3, 4}, as given in Equations (2.5)
and (2.6), we obtain the following results:

G
(2)

j(n)(2
n−3 · 72) = 9Jn+3Jn−3, n ≥ 3, (2.24)

H
(2)

j(n)(2
n−4 · 172) = 9Jn+4Jn−4, n ≥ 4. (2.25)

The Jacobsthal numbers appearing in the r-successive altered Jacobsthal–Lucas GCD sequences,
as described by Equations (2.24) and (2.25), can be characterized as follows:

G
(2)

j(n),6(2
n−3 · 72) =



9J12Jn+3, if n ≡ 3 (mod 12),

9J6Jn+3, if n ≡ 9 (mod 12),

9J4Jn+3, if n ≡ 7, 11 (mod 12),

9J3Jn+3, if n ≡ 0, 6 (mod 12),

9Jn+3, otherwise.

H
(2)

j(n),8(2
n−4 · 172) =


9J16Jn+4, if n ≡ 4 (mod 16),

9J8Jn+4, if n ≡ 12 (mod 16),

9J4Jn+4, if n ≡ 0, 8 (mod 16),

9Jn+4, otherwise.

11
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The detailed proofs of these identities are omitted here for conciseness, as they follow analogous
reasoning and structural patterns to those established in the preceding cases.

Moreover, the sequences
{
G

(2)

j(n),2(2
n−1)

}
and

{
H

(2)

j(n),4(2
n−252)

}
exhibit periodic behavior similar

to the Jacobsthal sequence for r = 2t and t ∈ {1, 2}. To assess whether the sequences
{
G

(2)

j(n),r(2
n−1)

}
for r ̸= 2 and

{
H

(2)

j(n),r(2
n−252)

}
for r ̸= 4 are bounded by products of Jacobsthal numbers, a

computational evaluation was performed. The results indicate that these sequences attain values at
indices that are divisors of m, and exhibit periodicity. In particular, for 5 ≤ r ≤ 50, both sequences
are shown to be periodic and bounded modulo different m values.

Theorem 9. Let 2t = r. It is observed that the r-successive altered Jacobsthal Lucas Gcd sequences
G

(2)

j(n),r(2
n−tj2t ) and H

(2)

j(n),r(2
n−tj2t ) exhibit structural similarities to Jacobsthal sequences. In particular,

the following identity holds:

9JxJn+t (mod 4t) =

{
G

(2)

j(n),r(2
n−tj2t ), if t is odd,

H
(2)

j(n),r(2
n−tj2t ), if t is even,

where n, r, t, x ∈ Z+ and Jx is chosen from the set {1, 2, 4, t, 2t, 4t, di}, with each di | t and di /∈
{1, 2, 4, t, 2t, 4t} for i = 1, 2, . . . , h. The selection of Jx depends on the residue class of n modulo 4t,
and is given as:

Jx =



J4t, if n ≡ t (mod 4t),

J2t, if n ≡ 3t (mod 4t),

Jt, if n ≡ 0, 2t (mod 4t),

Jdi , if n ≡ t+ fidi (mod 4t),

J4, if n ≡ t+ 4tj (mod 4t),

1, otherwise,

where fi = 1, 2, . . . , t
di

− 1 and tj = 1, 2, . . . , t− 1 when gcd(2, t) = 1, or tj = 1, 3, 5, . . . , t− 1 when
gcd(2, t) ̸= 1, under the condition t /∈ {1, 2, 4}.

Proof. We begin with the multiplicative expressions for the numbers G
(2)

j(n)(2
n−tj2t ) and H

(2)

j(n)(2
n−tj2t )

given in Eqs. (2.5- 2.6). Accordingly, the r-successive altered Jacobsthal Lucas gcd sequences can
be expressed as follows:

9 gcd (Jn+tJn−t, Jn+t+rJn−t+r) =

{
G

(2)

j(n),r(2
n−tj2t ), if t is odd,

H
(2)

j(n),r(2
n−tj2t ), otherwise.

Considering all scenarios in Eqs. (2.18- 2.20), we carry out a comprehensive evaluation. Since
the operations are structurally similar, we omit redundant steps for brevity.

First, assume the condition Jgcd(n−t,2t) = Jgcd(n−t+r,2t) = 1 holds as given in Eq. (2.18). We
obtain:

9Jgcd(n+t,n+t+r)Jgcd(n+t,n−t+r)Jgcd(n−t,n+t+r)Jgcd(n−t,n−t+r) =

{
G

(2)

j(n),r(2
n−tj2t ), if t is odd,

H
(2)

j(n),r(2
n−tj2t ), otherwise.

When Jgcd(n+t,r) = Jgcd(n−t,r) = 1 and 2t = r, we deduce:

Jgcd(n+t,r)Jgcd(n+t,−2t+r)Jgcd(n−t,2t+r)Jgcd(n−t,r) = JxJn+t,

where Jx = Jgcd(n−t,4t) and Jgcd(n+t,0) = Jn+t. Thus, we analyze Jx under different congruences
modulo 4t:

• If n− t = 4tk1, then n ≡ t (mod 4t) and Jx = J4t.

12
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• If n− t = 2tk2 with gcd(k2, 4) = 1, then n ≡ 3t (mod 4t) and Jx = J2t.

• If n− t = tk3 with gcd(k3, 4) = 1, then n ≡ 0, 2t (mod 4t) and Jx = Jt.

• If t is not prime and has h positive divisors di | t (i = 1, 2, . . . , h), then for n− t = diki,

n ≡ t+ fidi (mod 4t), gcd(fi, t) = 1, fi = 1, 2, . . . , t
di

− 1,

we have Jx = Jdi .

• For n − t = 4 and gcd(t, 2) = 1, then n ≡ t + 4tj (mod 4t) with tj = 1, 2, . . . , t − 1 implies
Jx = J4.

• For n− t = 4 and gcd(t, 2) ̸= 1, then tj = 1, 3, . . . , t− 1, still yielding Jx = J4.

• Otherwise, we take Jx = J2 = J1.

Second, consider the case where Jgcd(n+t,n+t+r) = Jgcd(n−t,n−t+r) = 1, as in Eq. (2.19). Then,
we also find Jgcd(n+t,r) = Jgcd(n−t,r) = 1, yielding:

Jgcd(n+t,0)Jgcd(n−t,4t) = JxJn+t.

Third, suppose Eq. (2.20) holds with Jgcd(n+t,r) = x, Jgcd(n−t,r) = y, and r = 2t. Then
Jgcd(n−t,2t) = x and Jgcd(n+t,2t) = y. We rewrite:

gcd(x, y) · gcd(xJn−t, yJn+3t)

xy
· 9Jn+t =

{
G

(2)

j(n),r(2
n−tj2t ), if t is odd,

H
(2)

j(n),r(2
n−tj2t ), otherwise.

To verify these identities, a computational program was implemented, testing values up to t = 25
and r = 50, with various x and y values. The hypothesis was confirmed to hold in all examined
cases.

The lengths of the periods and the corresponding period values modulo m for both the Jacobsthal
sequences and the Jacobsthal product-valued sequences are of particular interest. It is worth noting
that a formula, m = lcm [r, 2t− r, 2t+ r], (2t ̸= r), can be employed to determine the lengths of the
periods modulo m. For the sequences G

(2)

j(n),r

(
2n−3 · 72

)
with r ̸= 6 and H

(2)

j(n),r

(
2n−4 · 172

)
with

r ̸= 8, it is observed that the r-successive altered Jacobsthal–Lucas gcd sequences are periodic
modulo m. The period lengths are governed by the formula m = lcm [r, 2t− r, 2t+ r] , for r ̸= 2t.

These results were confirmed computationally for r = 1 to 50, and it was found that all sequences
are both bounded and periodic. This formula effectively predicts the period length for both Jacobsthal
and Jacobsthal product-valued sequences modulo m.

3 Conclusion
This study investigated the structural properties of squared altered Jacobsthal–Lucas numbers and
their associated greatest common divisor (GCD) sequences. By introducing the sequences G

(2)

j(n)(a)

and H
(2)

j(n)(a), we established their connection to Jacobsthal multiplication patterns. It was shown that
these generalized forms conform to a specific multiplicative structure:

9Jn+tJn−t =

{
G

(2)

j(n)

(
2n−tj2t

)
, if t is odd,

H
(2)

j(n)

(
2n−tj2t

)
, if t is even.

This relation illustrates how the new sequences generalize well-known identities by embedding them
into a structured multiplicative framework. The results demonstrate that these sequences exhibit
bounded and periodic behavior modulo m, governed by a unifying expression m = lcm[r, 2t− r, 2t+

13
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r], for r ̸= 2t. This reveals intrinsic number-theoretic structures underlying their behavior. Such
periodicity has implications for modular arithmetic applications, particularly in computational number
theory.

Computational analyses for a wide range of parameters confirmed these patterns and support
the formulation of explicit expressions, including Binet-like forms, that provide further insight into their
algebraic nature. The sequences G

(2)

j(n),r(a) and H
(2)

j(n),r(a) also appear to extend classical Jacobsthal
properties to more complex constructs.

These findings lay the groundwork for future research into generalized GCD sequences. In
particular, exploring larger values of r and t, and extending algorithmic evaluations may uncover new
patterns or unexpected behaviors. Moreover, investigating their connections with classical sequences
such as Fibonacci and Lucas numbers could reveal deeper theoretical insights (Koshy, 2019).

Finally, potential applications in areas such as cryptography and coding theory warrant further
exploration, as the structural properties observed here may offer practical utility in these domains.
For instance, the predictable yet nontrivial periodicity of the sequences may serve as a basis for key
generation algorithms or for designing efficient error-detection schemes. By framing these results
within applied contexts, the findings may resonate with researchers working not only in number theory
but also in algorithm design and information security.
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Flórez, R., Higuita, R. A., and Mukherjee, A. (2018a). Characterization of the Strong Divisibility
Property for Generalized Fibonacci Polynomials.
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