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the Formulation of Optimal Control Strategies

Abstract

In this research, a robust mathematical model is formulated to capture both type-1 and type-2 diabetes
progression among children and adults, accounting for cases with and without control measures. The
effects of these control interventions on diabetic dynamics are explored, and the efficacy of the outlined
strategies is assessed. In the optimal control formulation, Pontryagin’s maximum (or minimum) prin-
ciple is employed to derive optimal control characterizations, while the Runge-Kutta forward-backward
sweep algorithm is applied for numerical simulations of state and adjoint variables. This study demon-
strates that the number of advanced-stage diabetic patients and the inherent costs of managing diabetic
progression can be minimized. The findings of this research offer valuable insights for policymakers and
healthcare professionals in improving diabetes management.
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1 Introduction

In diabetes research, mathematical modeling has emerged as an invaluable tool for understanding the
complex mechanisms involved in blood glucose regulation. Diabetes, as defined by the World Health
Organization [15], is a disorder resulting from insulin-related issues in the pancreas, leading to elevated
blood sugar levels or hyperglycemia. This condition disrupts the normal metabolism of carbohydrates,
fats, and proteins, causing various complications.

Globally, diabetes is a widespread condition affecting millions and poses significant challenges to
health and well-being. The sustained high blood sugar levels characteristic of diabetes lead to a range of
symptoms and complications, including cardiovascular disease, neuropathy, retinopathy, and nephropa-
thy. These complications underscore the critical need for effective management and prevention strategies.

The disease is categorized mainly into two types: Type 1 diabetes, an autoimmune condition often
diagnosed in childhood or adolescence [16], and Type 2 diabetes, which typically affects adults and is
associated with insulin resistance or inadequate insulin production [3]. The causes of diabetes are diverse,
ranging from genetic and environmental factors to lifestyle influences such as diet and physical activity
[16].

In Nigeria, diabetes prevalence was historically low, but recent trends show an increase, particularly
in urban areas. Misconceptions about the disease, such as the belief that it is caused by carbohydrate
consumption, have led to inadequate dietary practices and poor glycemic control among patients[1][9].
National bodies like the Diabetes Association of Nigeria and the Endocrine and Metabolic Society of
Nigeria are actively working to address these issues by promoting guidelines and public awareness.

Mathematical modeling, with its ability to capture complex systems through equations, provides a
powerful framework for understanding diabetes. It allows for the simulation of disease progression,
evaluation of treatment strategies, and exploration of various scenarios, thus aiding in the development
of effective interventions.
In more than a decade, significant mathematical models for diabetes have been developed to simulate,
analyze, and gain insights into the dynamics within diabetic populations. In related research, Boutayeb et
al. (2014) [4] presented a strategy to control and model the progression of diabetes from the pre-diabetes
stage to more advanced stages, including those with and without complications. They demonstrated that
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an optimal control strategy exists to manage this progression. To do this, they used a numerical method
called the implicit finite-difference method to track the number of people in each stage of diabetes over time.
The drawback of this [4] research is that it does not consider the early stages and disabilities due to diabetes
compartments in their model. Boutayeb et al. (2015) [5] built upon the mathematical model created by
Boutayeb A, et al (2014), expanding it to encompass the dynamics of healthy individuals alongside those
with pre-diabetes and diabetes. They introduce an optimal control approach aimed at reducing the overall
burden of pre-diabetes and diabetes, including its associated complications. The model demonstrates that
by implementing effective control measures, it is possible to significantly limit the numbers of individuals
who develop pre-diabetes and diabetes, both with and without complications. Through this extended
framework, the authors analyze the interactions within a population comprising healthy individuals,
pre-diabetics, and diabetics over a 10-year period. They evaluate the outcomes of these populations
under two scenarios: one without any control measures and another where optimal control strategies
are actively applied. The results underscore the potential of targeted interventions to improve health
outcomes, highlighting the importance of managing the progression of diabetes effectively to alleviate
its impact on individuals and the healthcare system. This research not only adds depth to the existing
model but also provides valuable insights for public health initiatives aimed at diabetes prevention and
management. The drawback of this [5] research is that it does not consider the early stages and disabilities
due to diabetes compartments in the model. Permatasari et al. (2018) [10] developed an optimal control
mathematical model to manage the progression of diabetes. Their model includes the dynamics of
individuals who become disabled due to diabetes. They proposed an optimal control approach to reduce
the burden of pre-diabetes by preventing its progression to diabetes with or without complications.
They discussed the existence and characterization of this optimal control using the Pontryagin minimum
principle. The results show that an optimal control strategy exists within this mathematical model of the
diabetic population. The findings indicate that the effectiveness of the control variable (prevention) is
significantly influenced by the number of healthy people. By implementing this strategy, they aimed to
lessen the impact of diabetes on individuals and society. The drawback of this [10] research is that it does
not consider type-1 diabetes in the model. Kouidere et al. (2020) [7] reported that the rise in diabetes
cases is closely linked to the increase in endocrine-disrupting chemicals (EDCs), which they identified as
major contributors to insulin resistance and beta cell dysfunction, ultimately leading to the development
of diabetes. They introduced a model to explain the impact of EDC exposure on the diabetic population
and suggested optimal control strategies to reduce the harmful effects of EDC-induced diabetes. Utilizing
Pontryagin’s maximum principle, they explained how these optimal control methods operate within their
model. Their findings indicated that high levels of EDCs significantly worsen the prevalence of diabetes.
They substantiated their model with parameter estimation techniques using a diabetes dataset from India.
The researchers emphasized the urgent need for proactive measures to control and reduce exposure to
EDCs to help mitigate the growing diabetes epidemic. The drawback of the [7] research is that it does not
consider diabetes with disabilities in the model.
Following previous mathematical models on diabetes, in this paper we present an optimal control model
of diabetic population by considering the Type-1 class, Pancretic Problem class and the Insulin Resistance
class. This paper focuses on developing a detailed mathematical model to study the progression of
diabetes. The model aims to provide insights into optimizing treatment timing and improving public
health strategies for diabetes management.

2 Methodology

2.1 Model formulation

The Model divides the total Population at any time t, denoted as 𝑁(𝑡), into eight mutually exclusive
compartments, namely; Population of Suceptible Healthy Humans 𝐻𝑠(𝑡),Population of Humans with
Type 1 Diabetes 𝑇1(𝑡), Population of Humans with Pancreatic Problem 𝑃𝑝(𝑡), Population of Humans with
Diabetes with insulin resistance 𝐼𝑟(𝑡), Population of Prediabetic Humans𝑃𝑑(𝑡), Population of Humans with
diabetes without complications 𝐷𝑤(𝑡), Population of Human with complication 𝐷𝑐(𝑡) and the Population
of Humans with disabilities due to Diabetes 𝐷𝑑. Thus,

𝑁(𝑡) = 𝐻𝑠(𝑡) + 𝑇1(𝑡) + 𝑃𝑝(𝑡) + 𝐼𝑟(𝑡) + 𝑃𝑑(𝑡) + 𝐷𝑤(𝑡) + 𝐷𝑐(𝑡) + 𝐷𝑑(𝑡) (1)
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Table 1: The Model variables

Variables Description
𝐻𝑠(𝑡) Susceptible Healthy Humans Population
𝑇1(𝑡) Humans with Type 1 Diabetes Population
𝑃𝑝(𝑡) Humans with Pancreatic Problem Population
𝐼𝑟(𝑡) Human with Insulin resistance Population
𝑃𝑑(𝑡) Prediabetic Human Population
𝐷𝑤(𝑡) Human with Diabetes Without complications Population
𝐷𝑐(𝑡) Human with Diabetes with Complications Population
𝐷𝑑(𝑡) Humans with Disabilities due to Diabetes Population

Description of the models variables and parameters

Table 2: The Model Parameters

Parameters Description
𝜌 Recruitment rate into Susceptible Human Population
𝜃1 Proportion of Healthy Humans that became Prediabetic
𝜃2 Proportion of Prediabetic Humans that became Diabetic with complications
𝜃3 Prop. of Insulin Resistance pop. that became Diabetic without Compli.
𝜃4 Proportion of Humans without Complicated Diabetes that became Disabled
𝜎1 Rate of Progression into the Type 1 Diabetes Population
𝜎2 Rate of Progression into Pancreatic Problem Population
𝜎3 Rate of Progression into Insulin resistance Population
𝜎4 Rate of Progression from Type 1 Diabetes to Prediabetic Human Population
𝜎5 Rate of Progression from Pancreatic Problem Population to Prediabetic Human Population
𝜎6 Rate of Progression from Insulin resistance population to Prediabetic Human Population
𝜎7 Rate of Progression from the Prediabetic Population to Diabetes without Complications

Human Population
𝜎8 Rate of Progression from the Diabetes without Complications Population to Complicated

Diabetes Human Population
𝜎9 Rate of Progression from the Complicated Diabetes to Disabled Human Population
𝛿1 Recovery rate of Type 1 diabetic Population to Susceptible human Population
𝛿2 Recovery rate of Prediabetic Population to Susceptible Humans Population
𝛿3 Recovery rate of Diabetes without Complications to Prediabetic Population
𝛿4 Recovery rate of popopulation with complications to population without complications
𝜇 Natural Death rate
𝛼 Mortality rate due to Diabetic Complications
𝜁 Mortality Rate due to Diabetic Disabilities

2.2 Assumptions for the model

The proposed model assumes the following:

i Each compartment represents a stage in the diabetic progression.

ii A diabetic patient can move from a stage to another except for the 𝐼𝑟 and the 𝐷𝑑 stages.

iii There is a natural death rate in each compartment.

iv A patient can detriorate to a higher stage.

v The recovery for diabetes is progressive in nature.

vi Mortality can also occur as a result of diabetes in the stages (compartments).
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Figure 1: Schematic diagram of Model of Diabetes with control

where 𝜃1 = 𝜃1(1 − 𝑢1), 𝜃2 = 𝜃2(1 − 𝑢1), 𝜎8 = 𝜎8(1 − 𝑢2) and 𝜎9 = 𝜎9(1 − 𝑢2).
In the graphical representation of the proposed model shown in Figure 1 above, the compartment 𝐻𝑠(𝑡)
of the healthy people is increased by 𝜌 (which is the recruitment rate of healthy people), increased by 𝛿1𝑇1
(which is the recovery rate of Type-1 diabetes patients), decreased by 𝜃1𝐻𝑠 (the number of prediabetic
population), decreased by 𝜎1𝐻𝑠 (the number of Type-1 population), decreased by 𝜎2𝐻𝑠 (the number of
Humans with Pancreatic problem population), decreased by 𝜎3𝐻𝑠 (the number of Insulin resistance pop-
ulation) and also decreased by 𝜇𝐻𝑠 (population due to natural mortality) as indicated in eqn. (2) below.
The compartment 𝑇1(𝑡) comprises of population who are Type-1 diabetic. The compartment is increased
by 𝜎1𝐻𝑠 (the population of healthy people), decreased by 𝜎4𝑇1 (which is the proportion of population
that becomes prediabetic), decreased by 𝜇𝑇1 (which is the proportion of Type-1 diabetic population due
to natural mortality) and decreased by 𝛿1𝑇1 (which is the proportion of Type-1 diabetic population that
recovered to the susceptible human population) as expressed in eqn. (3) below.
The compartment 𝑃𝑝(𝑡) comprises of population who have Pancreatic problem. The compartment is
increased by 𝜎2𝐻𝑠 (the population of healthy people), deceased by 𝜎5𝑃𝑝 (which is the proportion of
population that becomes prediabetic), decreased by 𝜇𝑃𝑝 (which is the proportion of Pancreatic problem
population due to natural mortality) as expressed in eqn. (4) below.
The compartment 𝐼𝑟(𝑡) comprises of population who are resistant to insulin. The compartment is in-
creased by 𝜎3𝐻𝑠 (the population of healthy people), decreased by 𝜎6𝐼𝑟 (which is the proportion of insulin
resistant population that becomes prediabetic), decreased by 𝜇𝐼𝑟 (which is the proportion of insulin
resistant population due to natural mortality), decreased by 𝜃3𝐼𝑟 (which is the proportion of insulin re-
sistant population that becomes diabetic without complications) and increased by 𝛿2𝐷𝑤 (which is the
proportion of prediabetic population that recovered to the insulin resistant population) as expressed in
eqn. (5) below. The compartment 𝑃𝑑(𝑡) comprises of population who are prediabetic. The compartment
is increased by 𝜎6𝐼𝑟 (which is the proportion of insulin resistant population that becomes prediabetic),
increased by 𝜎4𝑇1 (which is the proportion of population that becomes prediabetic), increased by 𝜎5𝑃𝑝
(which is the proportion of population that becomes prediabetic), increased by 𝜃1𝐻𝑠 (which is the pro-
portion of healthy population that becomes prediabetic), increased by 𝛿3𝐷𝑤 (which is the proportion of
diabetic without complications that recovers to prediabetic population), decreased by 𝜇𝑃𝑑 (which is the
proportion of prediabetic population subject to natural mortality) and decreased by 𝜎7𝑃𝑑 (which is the
proportion of prediabetic population that becomes diabetic without complications) as indicated in eqn.
(6). The compartment 𝐷𝑤(𝑡) comprises of population who are diabetic without complications. The com-
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partment is increased by 𝜎7𝑃𝑑 (which is the proportion of prediabetic population that becomes diabetic
without complications), increased by 𝜃3𝐼𝑟 (which is the proportion of insulin-resistance population that
becomes diabetic without complications), increased by 𝛿4𝐷𝑐(𝑡) (which is the proportion of diabetic with
complications that recovers to population of diabetic without complications), deceased by 𝜇𝐷𝑤 (which is
the proportion of diabetic without complications subject to natural mortality), decreased by 𝜎8𝐷𝑤 (which
is the proportion of population of diabetic without complications that becomes diabetic with complica-
tions), decreased by 𝜃4𝐷𝑤 (which is the proportion of population of diabetic without complications that
becomes diabetic with disabilities population) and decreased by 𝛿3𝐷𝑤 (which is the proportion of pop-
ulation of diabetic without complications that becomes prediabetic population) as indicated in eqn. (7).
The compartment 𝐷𝑐(𝑡) comprises of population who are diabetic with complications. The compartment
is increased by 𝜎8𝐷𝑤 (which is the proportion of diabetic without complications population that becomes
diabetic with complications), increased by 𝜃2𝑃𝑑 (which is the proportion of prediabetic population that
becomes diabetic with complications), decreased by 𝛿4𝐷𝑐(𝑡) (which is the proportion of diabetic with
complications that recovers to population of diabetic without complications), decreased by 𝜇𝐷𝑐 (which is
the proportion of diabetic with complications subject to natural mortality), decreased by 𝜎9𝐷𝑐 (which is
the proportion of population of diabetic with complications that becomes diabetic with disabilities)and
deceased by 𝛼𝐷𝑐 (which is the proportion of diabetic with complications subject to death due to diabetic
complications) as indicated in eqn. (8).
Finally, the compartment with disabilities 𝐷𝑑(𝑡) is increased by 𝜎9𝐷𝑐 (which is the proportion of dia-
betic with complications population that becomes diabetic with disabilities), increased by 𝜃4𝐷𝑤 (which
is the proportion of diabetic without complications population that becomes diabetic with disabilities),
decreased by 𝜇𝐷𝑑(𝑡) (which is the proportion of population of diabetic with disabilities that die natural
death) and decreased by 𝜁𝐷𝑑(𝑡) (which is the proportion of population of diabetic with disabilities that
died as a result of the condition) as indicated in eqn. (9).

However the model reduces to the case of non control strategy if the control variables in the model is
equated to zero (i.e 𝑢1(𝑡), 𝑢2(𝑡) = 0), and they are defined as: The initial control, 0 ≤ 𝑢1 ≤ 1, denotes the
prevention of diabetes from the Type 1 diabetic stage (𝐻𝑠) and Prediabetic stage (𝑃𝑑) to the Prediabetic
stage (𝑃𝑑) and Diabetes with complications (𝐷𝑐) respectively. The second control, 0 ≤ 𝑢2 ≤ 1, denotes the
treatment of diabetes from the diabetes without complications(𝐷𝑤) and Diabetes with complications (𝐷𝑐)
to Diabetes with complications (𝐷𝑐) and Diaebetes with disabilities (𝐷𝑑) respectively.

The dynamical equations representing the figure above, the description and the optimal control model
for the diabetics progression are represented below.

𝑑𝐻𝑠

𝑑𝑡
= 𝜌 − (𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇)𝐻𝑠 + 𝛿1𝑇1 + 𝛿2𝑃𝑑 (2)

𝑑𝑇1
𝑑𝑡

= 𝜎1𝐻𝑠 − (𝛿1 + 𝜎4 + 𝜇)𝑇1 (3)

𝑑𝑃𝑝

𝑑𝑡
= 𝜎2𝐻𝑠 − (𝜎5 + 𝜇)𝑃𝑝 (4)

𝑑𝐼𝑟

𝑑𝑡
= 𝜎3𝐻𝑠 − (𝜎6 + 𝜃3 + 𝜇)𝐼𝑟 (5)

𝑑𝑃𝑑
𝑑𝑡

= 𝜃1(1 − 𝑢1)𝐻𝑠 + 𝜎6𝐼𝑟 + 𝜎4𝑇1 + 𝜎5𝑃𝑝 − (𝜃2(1 − 𝑢1) + 𝛿2 + 𝜎7 + 𝜇)𝑃𝑑 + 𝛿3𝐷𝑤 (6)

𝑑𝐷𝑤

𝑑𝑡
= 𝜃3𝐼𝑟 + 𝜎7𝑃𝑑 − (𝜇 + 𝛿3 + 𝜎8(1 − 𝑢2) + 𝜃4)𝐷𝑤 + 𝛿4𝐷𝑐 (7)

𝑑𝐷𝑐

𝑑𝑡
= 𝜃2(1 − 𝑢1)𝑃𝑑 + 𝜎8(1 − 𝑢2)𝐷𝑤 − (𝜎9(1 − 𝑢2) + 𝜇 + 𝛿4 + 𝛼)𝐷𝑐 (8)

𝑑𝐷𝑑

𝑑𝑡
= 𝜃4𝐷𝑤 + 𝜎9(1 − 𝑢2)𝐷𝑐 − (𝜇 + 𝜁)𝐷𝑑 (9)

with initial conditions; 𝐻𝑠(0) > 0, 𝑇1(0) ≥ 0, 𝑃𝑝(0) ≥ 0, 𝐼𝑟(0) ≥ 0, 𝑃𝑑(0) ≥ 0, 𝐷𝑤(0) ≥ 0, 𝐷𝑐(0) ≥ 0 and
𝐷𝑑(0) ≥ 0.
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2.3 Analysis of the Model

2.3.1 Invariant Region
Let the feasible region 𝜙, of model (1), be defined by

𝜙 =

{
(𝐻𝑠(𝑡), 𝑇1(𝑡), 𝑃𝑝(𝑡), 𝐼𝑟(𝑡), 𝑃𝑑(𝑡), 𝐷𝑤(𝑡), 𝐷𝑐(𝑡), 𝐷𝑑(𝑡)) ∈ R8 : 𝑁(𝑡) ≤ 𝜌

𝜇

}
Then, the following theorem can be established.

Theorem 2.1. The feasible region 𝜙 of the Diabetic Model as defined above is positively Invariant.

Proof. Showing that 𝜙 is positively invariant, the total Population gotten by adding the corresponding
components of the Model equations (2 - 9) per unit time is

𝑁(𝑡) = 𝐻𝑠(𝑡) + 𝑇1(𝑡) + 𝑃𝑝(𝑡) + 𝐼𝑟(𝑡) + 𝑃𝑑(𝑡) + 𝐷𝑤(𝑡) + 𝐷𝑐(𝑡) + 𝐷𝑑(𝑡) (10)

Hence, we have,

𝑑𝑁(𝑡)
𝑑𝑡

=
𝑑𝐻𝑠(𝑡)
𝑑𝑡

+ 𝑑𝑇1(𝑡)
𝑑𝑡

+
𝑑𝑃𝑝(𝑡)
𝑑𝑡

+ 𝑑𝐼𝑟(𝑡)
𝑑𝑡

+ 𝑑𝑃𝑑(𝑡)
𝑑𝑡

+ 𝑑𝐷𝑤(𝑡)
𝑑𝑡

+ 𝑑𝐷𝑐

𝑑𝑡
+ 𝑑𝐷𝑑

𝑑𝑡

From Equation (2 - 9), we have,

𝑑𝑁(𝑡)
𝑑𝑡

= 𝜌 − 𝜇𝑁(𝑡) − 𝛼𝐷𝑐(𝑡) − 𝜁𝐷𝑑(𝑡), (11)

Since 𝛼𝐷𝑐(𝑡) + 𝜁𝐷𝑑(𝑡) ≥ 0, it then implies that

𝑑𝑁(𝑡)
𝑑𝑡

≤ 𝜌 − 𝜇𝑁(𝑡). (12)

integrating both sides, ∫
𝑑𝑁(𝑡)

𝜌 − 𝜇𝑁(𝑡) ≤
∫

𝑑𝑡

−1
𝜇

ln(𝜌 − 𝜇𝑁(𝑡)) ≤ 𝑡 + 𝑐

where 𝑐 is the constant of integration. Hence,

ln(𝜌 − 𝜇𝑁(𝑡)) ≥ −𝜇𝑡 − 𝑐

, where 𝑐 = 𝑐𝜇. And multiplying both sides by exponential yields,

𝜌 − 𝜇𝑁(𝑡) ≥ 𝐴 exp−𝜇𝑡

where 𝐴 = 𝑒𝑥𝑝−𝑐 is a constant of integration. Let 𝑁(0) = 𝑁0, then

𝜌 − 𝜇𝑁0 ≥ 𝐴

. Therefore,
𝜌 − 𝜇𝑁(𝑡) ≥ (𝜌 − 𝜇𝑁0) exp−𝜇𝑡

𝑁(𝑡) ≤ 𝜌

𝜇
− (𝜌 − 𝜇𝑁0)

𝜇
exp−𝜇𝑡

lim
𝑡→0

𝑁(𝑡) ≤ lim
𝑡→0

[
𝜌

𝜇
− (𝜌 − 𝜇𝑁0)

𝜇
exp−𝜇𝑡

]
𝑁(𝑡) ≤ 𝜌

𝜇
𝑎𝑠 𝑡 → ∞

where 𝑁(𝑡) exists within the feasible region 𝜙 =

[
0, 𝜌𝜇

]
of the diabetic model for 𝐻𝑠(𝑡) ≥ 0, 𝑇1(𝑡) ≥

0, 𝑃𝑝(𝑡) ≥ 0, 𝐼𝑟(𝑡) ≥ 0, 𝑃𝑑(𝑡) ≥ 0, 𝐷𝑤(𝑡) ≥ 0, 𝐷𝑐(𝑡) ≥ 0, 𝐷𝑑(𝑡) ≥ 0 and hence, it’s positively Invariant.
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2.3.2 The Positivity Theorem
Theorem 2.2. Let𝐻𝑠(0) ≥ 0, 𝑇1(0) ≥ 0, 𝑃𝑝(0) ≥ 0, 𝐼𝑟(0) ≥ 0, 𝑃𝑑(0) ≥ 0, 𝐷𝑤(0) ≥ 0, 𝐷𝑐(0) ≥ 0 and𝐷𝑑(0) ≥ 0
be the initial conditions of the system ((2) - (9)) then the solutions 𝐻𝑠 , 𝑇1 , 𝑃𝑝 , 𝐼𝑟 , 𝑃𝑑 , 𝐷𝑤 , 𝐷𝑐 , 𝐷𝑑 remain positive
for all time 𝑡 > 0

Proof. Considering the first model equation (2) given by

𝑑𝐻𝑠

𝑑𝑡
= 𝜌 − (𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇)𝐻𝑠 + 𝛿1𝑇1

≥ −(𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇)𝐻𝑠

So, integrating both sides over the time interval 0 ≤ 𝑡 ≤ ∞ yields
𝑡∫
0

𝑑𝐻𝑠(𝑡)
𝐻𝑠(𝑡)

≥ −
𝑡∫
0

(𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇)𝑑𝑡 ∀ 𝑡 ∈ [0,∞)

It then follows that
𝐻𝑠(𝑡) = 𝐻𝑠(0) exp−(𝜎1+𝜎2+𝜎3+𝜃1(1−𝑢1)+𝜇)𝑡 ≥ 0 ∀ 𝑡 > 0 (13)

Considering the second model equation (3) given by

𝑑𝑇1
𝑑𝑡

= 𝜎1𝐻𝑠 − (𝛿1 + 𝜎4 + 𝜇)𝑇1(𝑡)
≥ −(𝛿1 + 𝜎4 + 𝜇)𝑇1(𝑡)

So, integrating both sides over the time interval 0 ≤ 𝑡 ≤ ∞, we have
𝑡∫
0

𝑑𝑇1(𝑡)
𝑇1(𝑡)

≥ −
𝑡∫
0

(𝛿1 + 𝜎4 + 𝜇)𝑑𝑡

It then follows that

𝑇1(𝑡) ≥ 𝑇1(0) exp−(𝛿1+𝜎4+𝜇)𝑡 ≥ 0 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 (14)

The derived positivity equations for the model equations are stated below for all 𝑡 > 0:

𝑃𝑝(𝑡) ≥ 𝑃𝑝(0) exp−(𝜎5+𝜇)𝑡 ≥ 0; 𝑃𝑝(0) > 0,
𝐼𝑟(𝑡) ≥ 𝐼𝑟(0) exp−(𝜎6+𝜃3+𝜇)𝑡 ≥ 0 𝐼𝑟(0) > 0,
𝑃𝑑(𝑡) ≥ 𝑃𝑑(0) exp−(𝜃2(1−𝑢1)+𝛿2+𝜎7+𝜇)𝑡 ≥ 0 𝑃𝑑(0) > 0,
𝐷𝑤(𝑡) ≥ 𝐷𝑤(0) exp−(𝜇+𝛿3+𝜎8(1−𝑢2)+𝜃4)𝑡 ≥ 0 𝐷𝑤(0) > 0,
𝐷𝑐(𝑡) ≥ 𝐷𝑐(0) exp−(𝜎9(1−𝑢2)+𝜇+𝛿4+𝛼)𝑡 ≥ 0 𝐷𝑐(0) > 0,
𝐷𝑑(𝑡) ≥ 𝐷𝑑(0) exp−(𝜇+𝜁)𝑡 ≥ 0 𝐷𝑑(0) > 0.

This completes the proof.
Therefore, the solution 𝐻𝑠(0) > 0, 𝑇1 > 0, 𝑃𝑝 > 0, 𝐼𝑟 > 0, 𝑃𝑑 > 0, 𝐷𝑤 > 0, 𝐷𝑐 > 0, 𝐷𝑑 > 0 is non-negative
for all time 𝑡 > 0.

The optimal control problem is formulated to obtain the minimum number of diabetic populations 𝐷𝑐

and 𝐷𝑑 under minimum cost. The terms 𝐴1𝑢1
2 represents the cost of preventive measures taken, 𝐴2𝑢2

2

represents the cost of the curative measures with 𝐴1 and 𝐴2 being the positive balancing coefficients
(weights) that regularize the optimal control. The coefficients, 𝜔1, 𝜔2 represents the cost measures on
the Diabetes with complications and Diabetes with disabilities respectively. Quadratic expressions of the
controls are included to indicate nonlinear costs potentially arising at high intervention levels. Therefore
the objective function in (16) is minimized subject to the model equations. We seek the optimal controls
𝑢∗1 and 𝑢∗2 such that.

𝐽(𝑢∗1 , 𝑢∗2) = 𝑚𝑖𝑛 𝐽{(𝑢1 , 𝑢2)|𝑢𝑖 ∈ 𝑈 𝑓 𝑜𝑟 𝑖 = 1, 2} (15)
The problem is then to minimize the objective functional defined as:

min
𝑢∈𝑈

𝐽(𝑢) = min
𝑢∈𝑈

∫ 𝑇

0

{
𝜔1𝐷𝑐(𝑡) + 𝜔2𝐷𝑑(𝑡) +

1
2 [𝐴1𝑢

2
1(𝑡) + 𝐴2𝑢

2
2(𝑡)]

}
𝑑𝑡 (16)

subject to the system of equations.
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2.3.3 Existence Of Solutions
Theorem 2.3. A controlled system that satisfies a given initial condition𝐻𝑠(0) ≥ 0, 𝑇1(0) ≥ 0, 𝑃𝑝(0) ≥ 0, 𝐼𝑟(0) ≥
0, 𝑃𝑑(0) ≥ 0, 𝐷𝑤(0) ≥ 0 , 𝐷𝑐(0) ≥ 0, 𝐷𝑑(0) ≥ 0 has a unique solution.

Proof. The dynamical equations can be expressed as follows:

𝐻∗
𝑠(𝑡)

𝑇∗
1 (𝑡)
𝑃∗
𝑝(𝑡)
𝐼∗𝑟(𝑡)
𝑃∗
𝑑
(𝑡)

𝐷∗
𝑤(𝑡)

𝐷∗
𝑐(𝑡)

𝐷∗
𝑑
(𝑡)


=



𝐴11 𝛿1 0 0 0 0 0 0
𝜎1 𝐴22 0 0 0 0 0 0
𝜎2 0 𝐴33 0 0 0 0 0
𝜎3 0 0 𝐴44 𝛿2 0 0 0

𝜃1(1 − 𝑢1) 𝜎4 𝜎5 𝜎6 𝐴55 𝛿3(𝑢3) 0 0
0 0 0 𝜃3 𝜎7 𝐴66 𝛿4 0
0 0 0 0 𝜃2(1 − 𝑢1) 𝜎8(1 − 𝑢2) 𝐴77 0
0 0 0 0 0 𝜃4 𝜎9(1 − 𝑢2) 𝐴88





𝐻𝑠(𝑡)
𝑇1(𝑡)
𝑃𝑝(𝑡)
𝐼𝑟(𝑡)
𝑃𝑑(𝑡)
𝐷𝑤(𝑡)
𝐷𝑐(𝑡)
𝐷𝑑(𝑡)


,+



𝜌
0
0
0
0
0
0
0


where 𝐴11 = −(𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇), 𝐴22 = −(𝛿1 + 𝜎4 + 𝜇), 𝐴33 = −(𝜎5 + 𝜇),
𝐴44 = −(𝜎6 + 𝜃3 + 𝜇), 𝐴55 = −(𝜃2(1 − 𝑢1) + 𝛿2 + 𝜎7 + 𝜇), 𝐴66 = −(𝜇 + 𝛿3 + 𝜎8(1 − 𝑢2) + 𝜃4), 𝐴77 =

−(𝜎9(1 − 𝑢2) + 𝜇 + 𝛿4 + 𝛼) and 𝐴88 = −(𝜇 + 𝜁); and can be compactly written as a linear system below;

𝜑(𝑋) = 𝐴𝑋 + 𝐵, (17)

𝜑(𝑋1) = 𝐴𝑋1 + 𝐵
𝜑(𝑋2) = 𝐴𝑋2 + 𝐵

||𝜑(𝑋1) − 𝜑(𝑋2)|| = |𝐴|.||𝑋1 − 𝑋2||
≤ 𝐾.||𝑋1 − 𝑋2||

where 𝐾 = |𝐴| < ∞ and its positive definite.
Hence

∥𝜑(𝑋1) − 𝜑(𝑋2)∥ ≤ 𝐾.∥𝑋1 − 𝑋2∥ (18)

It then follows that the control function 𝜑 is Lipschitz continuous function. It can be concluded that a
solution for the system of equation (2) to (9) exists and its unique.

2.3.4 Existence of an Optimal Control
Theorem 2.4. There exists an optimal control 𝑢∗ ∈ 𝑈 such that

𝐽(𝑢∗) = min
𝑢∈𝑈

𝐽(𝑢)

Proof. To prove the existence of the optimal control, we applied the result from Fleming and Rishel (1975)
[6] by verifying the following conditions:

1. Convexity and Closure of the Control Set: The control set 𝑈 = {𝑢 : 0 ≤ 𝑢 ≤ 1, 𝑡 ∈ [0, 𝑇]} is convex
and closed by definition. Convexity ensures that any weighted combination of controls is still a
valid control, and closure implies that the limit of any sequence of controls remains within the set.

2. Boundedness and Continuity of the System: The right-hand side of equation (16) is bounded
and continuous, as it is a sum of bounded controls and state variables. This can be written as a
linear function of 𝑢 with coefficients depending on time and state, ensuring that the system remains
well-defined.

3. Convexity of the Objective Functional: The integrand of the objective functional,

𝜔1𝐷𝑐(𝑡) + 𝜔2𝐷𝑑(𝑡) +
1
2
[
𝐴1𝑢

2
1(𝑡) + 𝐴2𝑢

2
2(𝑡)

]
is convex in𝑈 . Convexity ensures that any local minimum is also a global minimum.
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4. Coercivity of the Objective Functional: There exist constants 𝛾1 , 𝛾2 > 0 and 𝛾 > 1 such that:

𝜔1𝐷𝑐(𝑡) + 𝜔2𝐷𝑑(𝑡) +
1
2
[
𝐴1𝑢

2
1(𝑡) + 𝐴2𝑢

2
2(𝑡)

]
> 𝛾1 + 𝛾2|𝑢|𝛾 .

This inequality shows that the objective functional grows at least quadratically with respect to the
control variables, ensuring coercivity.

5. Boundedness of State Variables: The state variables are assumed to be bounded, which guarantees
the stability and well-posedness of the optimal control problem.

Hence, we conclude that there exists an optimal control 𝑢∗ that minimizes the objective functional 𝐽(𝑢)
within the closed and convex control set𝑈 . Therefore, the existence of an optimal control is established.

2.3.5 Characteristics of the Optimal Control
In order to derive the necessary conditions for the optimal control, we apply Pontryagin’s [11] maximum
(minimum) principle to the Hamiltonian H.

Theorem 2.5. Given an optimal control 𝑢∗ and solutions𝐻∗
𝑠 , 𝑇

∗
1 , 𝑃

∗
𝑝 , 𝐼

∗
𝑟 , 𝑃

∗
𝑑
, 𝐷∗

𝑤 , 𝐷
∗
𝑐 and𝐷∗

𝑑
of the corresponding

equations (2 - 9), there exist adjoint variables 𝜆𝑖 for 𝑖 = 1, 2, · · · 8 satisfying

¤𝜆1 = (𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇)𝜆1 − 𝜎1𝜆2 − 𝜎2𝜆3 − 𝜎3𝜆4 − 𝜃1(1 − 𝑢1)𝜆5
¤𝜆2 = −𝛿1𝜆1 + (𝛿1 + 𝜎4 + 𝜇)𝜆2 − 𝜎4𝜆5
¤𝜆3 = (𝜎5 + 𝜇)𝜆3 − 𝜎5𝜆5
¤𝜆4 = (𝜎6 + 𝜃3 + 𝜇)𝜆4 − 𝜎6𝜆5 − 𝜃3𝜆6
¤𝜆5 = −𝛿2𝜆4 + (𝜃2(1 − 𝑢1) + 𝜇 + 𝛿2 + 𝜎7)𝜆5 − 𝜎7𝜆6 − 𝜃2(1 − 𝑢1)𝜆7
¤𝜆6 = −𝛿3𝜆5 + (𝛿3 + 𝜎8(1 − 𝑢2) + 𝜃4 + 𝜇)𝜆6 − 𝜎8(1 − 𝑢2)𝜆7 − 𝜃4𝜆8
¤𝜆7 = −𝜔1 − 𝛿4𝜆6 + (𝜎9(1 − 𝑢2) + 𝛿4 + 𝜇 + 𝛼)𝜆7 − 𝜎9(1 − 𝑢2)𝜆8
¤𝜆8 = −𝜔2 + (𝜇 + 𝜁)𝜆8

with transversality conditions 𝜆𝑖(𝑇) = 0 for 𝑖 = 1, 2 · · · , 8 and the control variables (𝑢∗1 , 𝑢
∗
2 , 𝑢

∗
3) satisfy the following

optimality conditions:

𝑢∗1 = min
{

max
{
0, (𝜆5 − 𝜆1)𝜃1𝐻𝑠 + (𝜆7 − 𝜆5)𝜃2𝑃𝑑

𝐴1

}
, 1
}

𝑢∗2 = min
{

max
{
0, (𝜆7 − 𝜆6)𝜎8𝐷𝑤 + (𝜆8 − 𝜆7)𝜎9𝐷𝑐

𝐴2

}
, 1
}

Proof. The Hamiltonian is defined as

𝐻 = 𝜔1𝐷𝑐 + 𝜔2𝐷𝑑 +
1
2 (𝐴1𝑢

2
1 + 𝐴2𝑢

2
2)

+𝜆1
(
𝜌 − (𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇)𝐻𝑠 + 𝛿1𝑇1 + 𝛿2𝑃𝑑

)
+𝜆2

(
𝜎1𝐻𝑠 − (𝛿1 + 𝜎4 + 𝜇)𝑇1

)
+𝜆3

(
𝜎2𝐻𝑠 − (𝜎5 + 𝜇)𝑃𝑝

)
+𝜆4

(
𝜎3𝐻𝑠 − (𝜎6 + 𝜃3 + 𝜇)𝐼𝑟

)
+𝜆5

(
𝜃1(1 − 𝑢1)𝐻𝑠 + 𝜎6𝐼𝑟 + 𝜎4𝑇1 + 𝜎5𝑃𝑝 − (𝜃2(1 − 𝑢1) + 𝛿2 + 𝜎7 + 𝜇)𝑃𝑑 + 𝛿3𝐷𝑤

)
+𝜆6

(
𝜃3𝐼𝑟 + 𝜎7𝑃𝑑 − (𝜇 + 𝛿3 + 𝜎8(1 − 𝑢2) + 𝜃4)𝐷𝑤 + 𝛿4𝐷𝑐

)
+𝜆7

(
𝜃2(1 − 𝑢1)𝑃𝑑 + 𝜎8(1 − 𝑢2)𝐷𝑤 − (𝜎9(1 − 𝑢2) + 𝜇 + 𝛿4 + 𝛼)𝐷𝑐

)
+𝜆8

(
𝜃4𝐷𝑤 + 𝜎9(1 − 𝑢2)𝐷𝑐 − (𝜇 + 𝜁)𝐷𝑑

)
(19)

The adjoint equations can be easily computed by{
𝑑𝜆1
𝑑𝑡 = − 𝜕𝐻

𝜕𝐻𝑠
, 𝑑𝜆2

𝑑𝑡 = − 𝜕𝐻
𝜕𝑇1
, 𝑑𝜆3

𝑑𝑡 = − 𝜕𝐻
𝜕𝑃𝑝

, 𝑑𝜆4
𝑑𝑡 = − 𝜕𝐻

𝜕𝐼𝑟
,

𝑑𝜆5
𝑑𝑡 = − 𝜕𝐻

𝜕𝑃𝑑
, 𝑑𝜆6

𝑑𝑡 = − 𝜕𝐻
𝜕𝐷𝑤

, 𝑑𝜆7
𝑑𝑡 = − 𝜕𝐻

𝜕𝐷𝑐
, 𝑑𝜆8

𝑑𝑡 = − 𝜕𝐻
𝜕𝐷𝑑

(20)

The adjoint system eveluated at optimal controls 𝑢∗1 and 𝑢∗2 and the corresponding model state variables
𝐻𝑠 , 𝑇1 , 𝑃𝑝 , 𝐼𝑟 , 𝑃𝑑 , 𝐷𝑤 , 𝐷𝑐 , 𝐷𝑑 is given by

9



• 𝑑𝜆1
𝑑𝑡 = − 𝜕𝐻

𝜕𝐻𝑠
= (𝜎1 + 𝜎2 + 𝜎3 + 𝜃1(1 − 𝑢1) + 𝜇)𝜆1 − 𝜎1𝜆2 − 𝜎2𝜆3 − 𝜎3𝜆4 − 𝜃1(1 − 𝑢1)𝜆5

• 𝑑𝜆2
𝑑𝑡 = − 𝜕𝐻

𝜕𝑇1
= −𝛿1𝜆1 + (𝛿1 + 𝜎4 + 𝜇)𝜆2 − 𝜎4𝜆5

• 𝑑𝜆3
𝑑𝑡 = − 𝜕𝐻

𝜕𝑃𝑝
= (𝜎5 + 𝜇)𝜆3 − 𝜎5𝜆5

• 𝑑𝜆4
𝑑𝑡 = − 𝜕𝐻

𝜕𝐼𝑟
= (𝜎6 + 𝜃3 + 𝜇)𝜆4 − 𝜎6𝜆5 − 𝜃3𝜆6

• 𝑑𝜆5
𝑑𝑡 = − 𝜕𝐻

𝜕𝑃𝑑
= −𝛿2𝜆4 + (𝜃2(1 − 𝑢1) + 𝜇 + 𝛿2 + 𝜎7)𝜆5 − 𝜎7𝜆6 − 𝜃2(1 − 𝑢1)𝜆7

• 𝑑𝜆6
𝑑𝑡 = − 𝜕𝐻

𝜕𝐷𝑤
= −𝛿3𝜆5 + (𝛿3 + 𝜎8(1 − 𝑢2) + 𝜃4 + 𝜇)𝜆6 − 𝜎8(1 − 𝑢2)𝜆7 − 𝜃4𝜆8

• 𝑑𝜆7
𝑑𝑡 = − 𝜕𝐻

𝜕𝐷𝑐
= −𝜔1 − 𝛿4𝜆6 + (𝜎9(1 − 𝑢2) + 𝛿4 + 𝜇 + 𝛼)𝜆7 − 𝜎9(1 − 𝑢2)𝜆8

• 𝑑𝜆6
𝑑𝑡 = − 𝜕𝐻

𝜕𝐷𝑑
= −𝜔2 + (𝜇 + 𝜁)𝜆8

with transversality conditions (or final time conditions): 𝜆𝑖(𝑇) = 0 for 𝑖 = 1, 2, · · · , 8. The characterizations
of the optimal controls, 𝑢∗1(𝑡) and 𝑢∗2(𝑡) are based on the conditions

𝜕𝐻

𝜕𝑢1
= 0, 𝜕𝐻

𝜕𝑢2
= 0 (21)

respectively, subject to the conditions given the lebesque measurable control set 𝜉 =

{
𝑢1 , 𝑢2 0 ≤ 𝑢𝑖 ≤ 1, for

𝑖 = 1, 2 and ∀ 𝑡 ∈ [0, 𝑇]
}
, and the computations of the control variables 𝑢1 and 𝑢2 are measurable functions

are summarily given below by

𝑢1 =
(𝜆5 − 𝜆1)𝜃1𝐻𝑠 + (𝜆7 − 𝜆5)𝜃2𝑃𝑑

𝐴1
, 𝑢2 =

(𝜆7 − 𝜆6)𝜎8𝐷𝑤 + (𝜆8 − 𝜆7)𝜎9𝐷𝑐

𝐴2

Subjecting the control variables to the bounds yield

𝑢∗1 = min
{

max
{
0, (𝜆5 − 𝜆1)𝜃1𝐻𝑠 + (𝜆7 − 𝜆5)𝜃2𝑃𝑑

𝐴1

}
, 1
}
,

𝑢∗2 = min
{

max
{
0, (𝜆7 − 𝜆6)𝜎8𝐷𝑤 + (𝜆8 − 𝜆7)𝜎9𝐷𝑐

𝐴2

}
, 1
}

and this completes the proof.

3 Simulation of Results and Discussion

Numerical simulations to study how different control strategies affect the dynamics of diabetes was con-
ducted. These simulations are performed using MATLAB, and the time is set in years. The initial values
for the model state variables are set as follows: 𝐻𝑠(0) = 1000, 𝑇1(0) = 30, 𝑃𝑝(0) = 10, 𝐼𝑟(0) = 70, 𝑃𝑑(0) =
15, 𝐷𝑤(0) = 5, 𝐷𝑐(0) = 5, 𝐷𝑑(0) = 2.
For the adjoint system, the terminal conditions are set to zero for all variables, with 𝑡 = 5 years. The
cost coefficients for the state variables are: 𝜔1 = 0.01 and 𝜔2 = 0.1. The quadratic cost coefficients for
the control measures are: 𝐴1 = 1 and 𝐴2 = 2. Parameter values from literature and our own estimates
were used, as shown in Table 3 below. Graphs illustrating the effects of the control measures under
different combinations was the plotted. There are three control strategies with different combinations of
measures. The outcomes of having different control measures with scenarios where no interventions are
applied was compared. This helps to show how effective these strategies can be in reducing the spread
of diabetes. The findings provide valuable insights into the best ways to control the disease and help un-
derstand how to manage and reduce its impact. The collated and assumed parameters are tabulated below;
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Table 3: Parameter and values used for numerical simulation

Parameter Values Source
𝜌 100 Estimated
𝜎1 0.05 [13]
𝜎2 0.03 Estimated
𝜎3 0.04 [13]
𝜎4 0.02 Estimated
𝜎5 0.02 Estimated
𝜎6 0.03 [13]
𝜎7 0.1 Estimated
𝜎8 0.07 [2]
𝜎9 0.05 Estimated
𝛿1 0.05 [8]
𝛿2 0.1 [12]
𝛿3 0.07 Estimated
𝛿4 0.06 [2]
𝜃1 0.2 [8]
𝜃2 0.1 [8]
𝜃3 0.15 Estimated
𝜃4 0.05 [12]
𝜇 0.005 [14]
𝛼 0.05 [14]
𝜁 0.03 [14]

To investigate the optimal control strategies in reducing the spread of diabetes among the given control
strategies, the non-delay model will be simulated for each of the strategies as stated below.

i. Strategy 1
(S1): Control with prevention of diabetes (𝑢1 ≠ 0, 𝑢2 = 0)

ii. Strategy 2
(S2): Control with Treatment of diabetes (𝑢1 = 0, 𝑢2 ≠ 0)

iii. Strategy 3
(S3): Control with prevention and treatment of diabetes (𝑢1 ≠ 0, 𝑢2 ≠ 0)
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3.1 Strategy 1
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Figure 2: Susceptible Humans Population
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Figure 4: Humans with Pancreatic Problems
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Figure 5: Humans with Insulin Resistance
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Figure 6: Humans with Prediabetes Population
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Figure 8: Humans with Diabetes with complications Pop-
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Figure 9: Humans with Diabetes with Disabilities Popu-
lation

Table 4: Evolution of number of diabetics with strategy 1 after 5 years.

Initial Without Control With Strategy 1 % Difference
𝐻𝑠 1000 457.4 589.1 28.8
𝑇1 30 132 165.3 25.2
𝑃𝑝 10 86.08 108.4 25.8
𝐼𝑟 70 92.71 114 23.0
𝑃𝑑 15 301.5 219.1 -27.3
𝐷𝑤 5 123.7 81.34 -34.2
𝐷𝑐 5 95.48 34.58 -63.8
𝐷𝑑 2 25.25 12.2 -51.8
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In this strategy, the optimal control 𝑢1 is being activated. In Figure 2 to 9 using Table 4, the number of
susceptible population is critical in identifying potential diabetes cases was observed. Initially, there are
1000 healthy individuals, and the figures indicate various diabetic states emerging from this group. A
positive increase of 28.8% in maintaining a larger healthy population, highlighting its success in preventive
measures. The population with Pancreatic problems and Type 1 diabetes increases from 10 and 30
respectively. Strategy 1 shows a 25.2% and 25.8% increase in both class, showing limited impact on
Type-1 diabetes and pancreatic complications, as these are not directly influenced by preventive controls,
which is expected since Pancreatic issues and Type 1 diabetes are not typically influenced by lifestyle
factors targeted in this strategy. The population with insulin resistance shows a 23.0% increase, Strategy
1 shows moderate effectiveness in reducing insulin resistance with Strategy, indicating that the control
measures help to some extent in managing insulin resistance, which is crucial for preventing Type 2
diabetes. Decrease in prediabetic (-27.3%) and uncomplicated diabetes populations (-34.2%) illustrates
some success in managing these stages, slowing progression. in the advanced Stages (Diabetes with
Complications and Disabilities), with reductions of -63.8% and -51.8%, Strategy 1 significantly lowers
the populations experiencing severe complications and disabilities due to diabetes. This confirms the
strategy’s strength in delaying or even preventing later-stage complications in individuals at risk. In
conclusion, strategy 1 is highly effective in maintaining a healthier population, particularly in slowing
progression from early diabetes stages to more severe complications. However, its impact on Type-1
diabetes and pancreatic complications remains limited.

3.2 Strategy 2
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Figure 10: Susceptible Humans Population
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Figure 11: Human with Type-1 Diabetes Population
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Figure 12: Humans with Pancreatic Problems

0 1 2 3 4 5
70

75

80

85

90

95

100

Figure 13: Humans with Insulin Resistance
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Figure 14: Humans with Prediabetes Population
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Figure 15: Humans with Diabetes without complications
Population
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Figure 16: Humans with Diabetes with complications
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Figure 17: Humans with Diabetes with Disabilities Pop-
ulation

Table 5: Evolution of number of diabetics with strategy 2 after 5 years.

Initial Without Control With Strategy 2 % Difference
𝐻𝑠 1000 457.4 457.4 0.00
𝑇1 30 132 132 0.00
𝑃𝑝 10 86.08 86.08 0.00
𝐼𝑟 70 92.71 92.71 0.00
𝑃𝑑 15 301.5 301.5 0.00
𝐷𝑤 5 123.7 126.1 1.9
𝐷𝑐 5 95.48 94.47 -1.1
𝐷𝑑 2 25.25 23.8 -5.8

In this strategy, the optimal controls 𝑢2 was activated. Figure 10 shows population remains constant
at 457.4 with or without Strategy 2. With no change observed, Strategy 2 lacks a preventive effect on
the healthy population. Its focus is on controlling progression within the diabetic population, thus it
doesn’t reduce the number of new cases. In figure 11, the population with Type 1 diabetes also remains
unchanged at 132, reflecting that this strategy does not influence Type 1 diabetes cases, with no change in
the population over five years. In figure 12, the number of individuals with pancreatic problems shows no
change (86.08), suggesting Strategy 2 has no effect on this risk factor. In figure 13, Insulin resistance is a key
factor in the development of Type 2 diabetes. numbers remain constant (92.71). This shows that Strategy
2 does not impact the population at risk of developing insulin resistance, a precursor for Type 2 diabetes.
From figure 14, The prediabetes population stays the same (301.5) with or without the strategy, indicating
no effect in preventing progression to diabetes. Figure 15, the population with diabetes but without
complications shows a slight increase in diabetes without complications (1.9%). This suggests that the
strategy isn’t as effective in managing early-stage diabetes, showing mixed results in preventing further
progression. In advanced Stages (Diabetes with Complications and Disabilities) figure 16 and figure 17
shows that the strategy’s impact is minor, with only slight reductions in diabetes with complications (-
1.1%) and disabilities (-5.8%). This indicates a limited ability to reduce the most severe diabetes outcomes.
In conclusion, Strategy 2 appears to have no significant effect on the diabetic populations.
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3.3 Strategy 3
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Figure 18: Susceptible Humans Population
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Figure 19: Human with Type-1 Diabetes Population
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Figure 20: Humans with Pancreatic Problems
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Figure 21: Humans with Insulin Resistance
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Figure 22: Humans with Prediabetes Population
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Figure 24: Humans with Diabetes with complications
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Figure 25: Humans with Diabetes with Disabilities Pop-
ulation

Table 6: Evolution of number of diabetics with strategy 3 after 5 years.

Initial Without Control With Strategy 3 % Difference
𝐻𝑠 1000 457.4 586.4 28.2
𝑇1 30 132 164.8 24.84
𝑃𝑝 10 86.08 108.1 25.58
𝐼𝑟 70 92.71 113.7 22.6
𝑃𝑑 15 301.5 221.5 -26.5
𝐷𝑤 5 123.7 83.47 -32.5
𝐷𝑐 5 95.48 44.15 -53.8
𝐷𝑑 2 25.25 13.27 -47.6
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Strategy 3 incorporates both prevention and treatment controls (𝑢1 and 𝑢2) providing a comprehensive
approach aimed at both halting disease onset and controlling progression. The figures illustrate the
changes in various diabetes-related populations, while the table provides data on how these populations
evolve over five years with and without the implementation of Strategy 3. Figures (18 to 25) and the table
6 are interpreted to evaluate the effectiveness of Strategy 3 in combating the diabetes epidemic. Figure 18
shows the susceptible population with a 28.2% increase, this approach effectively prevents new diabetes
cases. The strong increase indicates that Strategy 3’s combined controls help sustain a larger non-diabetic
population over time. Figure 19 and figure 20 indicates that Type-1 diabetes cases increased by 24.84%, and
pancreatic problems by 25.58%. These increases show that even with a combined approach, Strategy 3 has
limited impact on managing Type-1 diabetes (which is largely genetic) and pancreatic problems. These
categories remain challenging to address solely through preventive and treatment-focused strategies.
In figure 21, with a 22.6% increase, indicates that despite the combined strategy, managing insulin
resistance remains challenging. This increase suggests a need for more targeted interventions to address
this precursor to Type-2 diabetes. In figure 22 and figure 23, strategy 3 shows success in reducing
the prediabetes population by -26.5% and those with diabetes without complications by -32.5%. This
reduction reflects the strategy’s effectiveness in managing early-stage diabetes and preventing progression.
In dvanced Stages (Diabetes with Complications figure 24 and Disabilities figure 25), there are significant
reductions of -53.8% in diabetes with complications and -47.6% in disabilities, showing that Strategy 3 is
highly effective in managing later stages of diabetes and reducing severe health impacts. In conclusion,
strategy 3 is the most comprehensive and effective among the three strategies. It reduces the overall
diabetic population, minimizes complications, and provides an optimal approach for managing diabetes
progression.

3.4 Control profiles
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Figure 26: Prevention control profile (𝑢1)
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Figure 27: Treatment control profile (𝑢2)

The Prevention control (𝑢1) function as shown in figure 26 shows a steady decline from its maximum
value of 1 at the start to 0 over a 5-year period. The high initial value indicates that the model emphasizes
prevention strongly at the beginning. This corresponds to an aggressive campaign focused on lifestyle
changes, public health awareness, or early screening for diabetes. This aligns with the strategies used
to reduce risk factors in a population, such as dietary interventions, exercise programs, or public health
messaging to prevent the onset of diabetes, particularly Type 2. Also, the steady decrease suggests a
reduction in the emphasis on prevention over time. As prevention efforts take effect, there might be fewer
new cases due to lifestyle changes and early intervention, reducing the need for intensive preventive action.
This decrease also represent resource reallocation, where efforts shift away from prevention as initial high-
risk groups stabilize and fewer individuals are at immediate risk. By the end of the period, prevention
efforts may not be as necessary or are expected to be maintained by the population independently, hence
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reaching zero in the model.
Treatment Control (𝑢2) function as shown in figure 27 follows a different pattern, starting low, rising to
a peak at around 2.5 years, and then decreasing to zero by the end of the period. This trend suggests a
targeted approach to treatment based on anticipated disease progression within the population. The initial
low level of 𝑢2 suggests that treatment efforts are minimal initially, likely because prevention is prioritized
and fewer individuals require medical intervention at the beginning. As time progresses, treatment
control gradually ramps up, in response to individuals who have developed diabetes or prediabetes
despite preventive measures. By the midpoint (2.5 years), the treatment control reaches its peak, which
could indicate the point at which the prevalence of diabetes is highest in the modeled population. After the
peak, the treatment control gradually declines. This decrease implies that effective treatment is reducing
the number of active cases needing intensive medical intervention. Alternatively, it also indicates that
those initially diagnosed have stabilized through ongoing treatment, and new cases are fewer due to the
earlier prevention efforts. The declining need for treatment also reflect a successful transition to disease
management, where patients no longer require intensive control as they manage their condition through
lifestyle adjustments and lower-level care. By the end of the 5-year period, treatment control reaches zero,
potentially suggesting a stabilized population where diabetes management no longer requires significant
active treatment input, or the intervention period is complete.

The combination of these control profiles reflect a dynamic approach to diabetes intervention, where
prevention is front-loaded and treatment peaks as the effects of prevention stabilize the population. The
interplay between 𝑢1 and 𝑢2 is used to assess the effectiveness of early prevention on reducing the need
for later treatment, a critical factor in long-term diabetes management strategies.
By modeling these controls, this work illustrates optimal allocation of healthcare resources over time
maximizing prevention initially to reduce the long-term treatment burden. This approach could serve as
a guide for public health policymakers looking to minimize the economic and societal impact of diabetes
through phased intervention strategies.

4 Conclusion

This study analyzed the effectiveness of three different strategies for managing and controlling the spread
of diabetes over a five-year period. By examining various populations, including susceptible humans,
those with Type-1 diabetes, pancreatic problems, insulin resistance, prediabetes, diabetes without com-
plications, diabetes with complications, and diabetes with disabilities, the impact of each strategy was
assessed. Strategy 1 emphasizing preventive controls, effectively sustains a healthier population and re-
duces progression from early to advanced diabetic stages, though it has limited impact on Type-1 diabetes
and pancreatic issues. Strategy 2 focused on managing the diabetic population with a different approach.
It demonstrated limited impact in maintaining the healthy susceptible population and showed minimal
improvements in the populations. Strategy 3 aimed at controlling the spread and management of diabetes
with another distinct approach. It combines both prevention and treatment controls, proves to be the most
comprehensive approach, achieving reductions across all diabetic stages and significantly minimizing the
most severe complications. However, an increase in insulin resistance under Strategy 3 suggests a need
for enhanced focus on early-stage management.

In summary, Strategy 3 offers the most balanced and effective approach for overall diabetes manage-
ment, combining preventive and treatment measures to control both new cases and disease progression
effectively. It addresses multiple stages of diabetes, reducing the population at risk while minimizing the
transition to severe complications and disabilities.
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