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Abstract

On this note, we have investigated the conditions for norm-attainment
in bounded operators on Hilbert spaces, focusing on key criteria such
as spectral gaps, isolated norms, and nonzero spectral projections.
Concrete examples, such as diagonal and weighted shift operators,
are used to demonstrate norm-attainment under specific conditions.
The impact of compact operator perturbations, essential spectra, and
unitary equivalence is also explored. The methodology combines ana-
lytical techniques and numerical simulations, and the study concludes
by suggesting future research directions, including the exploration of
unbounded operators, Banach spaces, and applications in quantum
mechanics and signal processing. The findings are situated within the
broader context of existing literature on operator theory.

keywords{Norm-attainment, Spectral properties, Bounded operators, Spec-
tral projections, Compact operators}
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Introduction and Preliminaries

The study of norm-attainment in bounded linear operators is a fundamen-
tal topic in functional analysis, particularly in understanding the geometric
and spectral properties of operators on Hilbert spaces[2,5,8,12]. The op-
erator norm is central to these investigations, representing the maximum
amplification factor an operator can exert on unit vectors. However, not all
operators attain their norm, and conditions under which this occurs lead to
deeper insights into the structure of both the operator and the underlying
space[4,7,10,16]. In this work, we explore sufficient conditions for norm-
attainment by bounded operators, particularly focusing on spectral proper-
ties, perturbations, compactness, and operator products[9,11,17]. Central to
our discussion is the interplay between the spectrum of an operator and norm-
attainment, emphasizing cases where the norm is isolated in the spectrum or
lies outside the essential spectrum[6,13,18]. Additionally, we investigate how
norm-attainment is preserved under perturbations, compact operators, and
tensor products[1,3,14,15]. These results have significant implications, pro-
viding tools for analyzing bounded operators in various mathematical and
physical contexts, such as quantum mechanics, approximation theory, and
operator algebras.

Preliminaries

To develop the subsequent results, we establish some basic definitions and
notations used throughout.

Bounded Operators on Hilbert Spaces

Let H be a Hilbert space. A linear operator T : H → H is said to be
bounded if there exists a constant C ≥ 0 such that ∥Tv∥ ≤ C∥v∥ for all
v ∈ H. The operator norm of T is defined as:

∥T∥ = sup{∥Tv∥ : ∥v∥ = 1}.

2



Spectrum and Spectral Radius

The spectrum σ(T ) of a bounded operator T is the set of λ ∈ C such that
T − λI is not invertible. The spectral radius r(T ) is given by:

r(T ) = sup{|λ| : λ ∈ σ(T )}.

The norm satisfies ∥T∥ ≥ r(T ), with equality holding in many cases.

Spectral Projections

For a bounded operator T and a closed contour Γ in the complex plane enclos-
ing part of σ(T ), the spectral projection P associated with the enclosed
spectrum is defined by:

P =
1

2πi

∫
Γ

(λI − T )−1 dλ.

Spectral projections play a key role in isolating components of the spectrum
and identifying eigenspaces.

Essential Spectrum

The essential spectrum σess(T ) of an operator T is the part of σ(T ) that
remains invariant under compact perturbations. Formally:

σess(T ) = σ(T ) \ {isolated eigenvalues of finite multiplicity}.

If ∥T∥ lies outside σess(T ), it is often associated with an eigenvalue and
guarantees norm-attainment.

Compact Operators

An operator K : H → H is compact if it maps bounded sets to relatively
compact sets (sets whose closure is compact). Compact operators have a
discrete spectrum accumulating only at 0.
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Norm-Attainment

An operator T is said to attain its norm if there exists a vector v ∈ H with
∥v∥ = 1 such that:

∥T∥ = ∥Tv∥.

Such a vector v is called a norm-attaining vector. When ∥T∥ is an eigen-
value, any associated eigenvector attains the norm.

Tensor Product of Operators

Given operators T1 : H1 → H1 and T2 : H2 → H2, their tensor product
T1 ⊗ T2 acts on the tensor product space H1 ⊗H2 and is defined by:

(T1 ⊗ T2)(x1 ⊗ x2) = (T1x1)⊗ (T2x2),

where x1 ∈ H1 and x2 ∈ H2.

These preliminaries lay the groundwork for exploring the main results,
providing the necessary definitions and tools to understand norm-attainment
in bounded operators. From spectral isolation to compact perturbations and
tensor products, these concepts are instrumental in deriving the theorems,
propositions, and corollaries presented in the subsequent sections.

Main Results and Discussions

In operator theory, the attainment of an operator’s norm is crucial for un-
derstanding its spectral properties. Several results outline conditions under
which a bounded operator attains its norm, including the presence of spec-
tral gaps, isolated points in the spectrum, and spectral projections. One key
result is that if a bounded operator on a Hilbert space has a spectral gap
around its norm, this gap ensures that the operator attains its norm. Various
theorems, corollaries, lemmas, and propositions explore these conditions in
more detail.

Theorem 1. Let T be a bounded operator on a Hilbert space H with a spectral
gap around ∥T∥. If there exists ϵ > 0 such that ∥T∥ − ϵ is not in σ(T ), then
T attains its norm. Furthermore, the element achieving the norm is an
eigenvector associated with ∥T∥.
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Proof. The spectral theorem for bounded operators tells us that σ(T ), the
spectrum of T , is a compact subset of C. Let ∥T∥ = sup{|λ| : λ ∈ σ(T )}.
By hypothesis, there exists ϵ > 0 such that ∥T∥ − ϵ /∈ σ(T ). Thus, ∥T∥ is
isolated from the rest of the spectrum. Consider the functional calculus for T
and the spectral projection P corresponding to ∥T∥. Since ∥T∥ is an isolated
spectral point, the corresponding spectral subspace is non-trivial (P ̸= 0).
Therefore, there exists a nonzero vector v ∈ H such that Tv = ∥T∥v. Now,
compute the norm of v under T :

∥Tv∥ = ∥∥T∥v∥ = ∥T∥∥v∥.

Thus, v is a norm-attaining vector, and ∥T∥ is attained as the operator
norm. Moreover, v is an eigenvector corresponding to the eigenvalue ∥T∥, as
desired.

If the operator’s norm is an isolated point in the spectrum, the norm is
guaranteed to be attained by the operator. The corollary below follows from
this observation:

Corollary 1. If T is a bounded operator and ∥T∥ is an isolated point in σ(T ),
then T attains its norm. Additionally, the norm is achieved by a vector in
the eigenspace corresponding to ∥T∥.

Proof. If ∥T∥ is an isolated point in σ(T ), then ∥T∥ satisfies the spectral gap
condition stated in the theorem above. Thus, by the theorem, T attains its
norm, and there exists a vector v ∈ H such that Tv = ∥T∥v. This v lies in
the eigenspace corresponding to ∥T∥, proving the corollary.

Spectral projections can also play a key role in norm-attainment. If the
projection corresponding to the operator’s norm is nonzero, then the operator
attains its norm. This is captured in the following proposition:

Proposition 1. Let T be a bounded operator on H, and let P be the spectral
projection corresponding to ∥T∥. If P ̸= 0, then T attains its norm, and the
range of P contains a norm-attaining vector for T .

Proof. The spectral projection P corresponding to ∥T∥ is defined by the
functional calculus as

P =
1

2πi

∫
Γ

(λI − T )−1 dλ,
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where Γ is a closed contour encircling ∥T∥ but excluding the rest of σ(T ).
Since P ̸= 0, the subspace Ran(P ) is non-trivial. For any nonzero v ∈
Ran(P ), we have Tv = ∥T∥v. Thus,

∥Tv∥ = ∥∥T∥v∥ = ∥T∥∥v∥.

This shows that v attains the norm of T . Therefore, T attains its norm, and
v is a norm-attaining vector contained in Ran(P ).

The perturbation of norm-attainable operators can preserve norm-attainment.
Specifically, small perturbations by compact operators do not prevent the op-
erator from attaining its norm. This lemma formalizes the idea:

Lemma 1. Let T be a norm-attainable operator on H, and let K be a compact
operator with ∥K∥ < ϵ. If ∥T +K∥ = ∥T∥ + δ for some δ < ϵ, then T +K
is norm-attainable. The norm-attaining vectors of T are close (in norm) to
those of T +K.

Proof. Since T is norm-attainable, there exists a unit vector x0 ∈ H such
that ∥T∥ = ∥Tx0∥. Consider the operator T +K and note that

∥T +K∥ ≤ ∥T∥+ ∥K∥.

Given that ∥T +K∥ = ∥T∥+ δ, it follows that δ ≥ 0. Let y0 ∈ H be a unit
vector such that ∥T +K∥ = ∥(T +K)y0∥. Now observe that

∥T∥ ≤ ∥Ty0∥+ ∥Ky0∥ ≤ ∥T∥+ ∥K∥.

Since ∥K∥ < ϵ, the perturbation introduced by K ensures that y0 is close
to x0 in norm. Specifically, ∥x0 − y0∥ < C(δ, ϵ) for some constant C. Thus,
T +K is norm-attainable, and the norm-attaining vectors of T and T +K
are close.

Example 1. Consider the operator A on a Hilbert space H, which is a
bounded operator. Now, let K be a compact operator. The operator A +K
represents a perturbation of A. If A attains its norm and K is a small per-
turbation, then A + K may also attain its norm under the condition that
the spectral gap between the maximum eigenvalue of A and the rest of the
spectrum is maintained.
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The essential spectrum can also influence norm-attainment. If the oper-
ator’s norm does not lie in the essential spectrum, it is guaranteed that the
operator attains its norm. The following theorem encapsulates this result:

Theorem 2. Let T be a bounded operator on H with essential spectrum
σess(T ). If ∥T∥ /∈ σess(T ), then T attains its norm. This attainment is
guaranteed by a vector orthogonal to the subspace associated with σess(T ).

Proof. The essential spectrum σess(T ) represents the spectrum that is invari-
ant under compact perturbations. If ∥T∥ /∈ σess(T ), the supremum ∥T∥ must
correspond to an eigenvalue of T due to the compact perturbation argument.
This eigenvalue has a corresponding eigenvector v satisfying ∥v∥ = 1 and
Tv = ∥T∥v. Since the eigenvalue ∥T∥ lies outside σess(T ), v is orthogonal to
the subspace associated with σess(T ), as T restricted to this subspace does
not achieve the norm. Hence, T attains its norm.

For compact operators, norm-attainment is also guaranteed when the
operator’s norm lies outside the essential spectrum. The corollary below
formalizes this statement:

Corollary 2. If T is a compact operator and ∥T∥ lies outside σess(T ), then
T attains its norm. Compactness ensures the eigenspace corresponding to
∥T∥ is finite-dimensional.

Proof. For compact operators, σess(T ) = {0}. If ∥T∥ > 0, it must be an
eigenvalue of T . Since compact operators have a discrete spectrum with pos-
sible accumulation at 0, ∥T∥ corresponds to a finite-dimensional eigenspace.
This ensures that T attains its norm through an eigenvector associated with
∥T∥.

If a bounded operator has a dense point spectrum, norm-attainment can
still occur under certain conditions, such as when the operator’s norm is a
limit point of the spectrum. The following proposition captures this result:

Proposition 2. Let T be a bounded operator on H with a dense point spec-
trum. Then T attains its norm if ∥T∥ is a limit point of σ(T ). This norm
is achieved by a sequence of vectors converging weakly to a vector in H.

Proof. Since σ(T ) is dense and ∥T∥ is a limit point, there exists a sequence of
eigenvalues {λn} with corresponding unit eigenvectors {vn} such that λn →

7



∥T∥ as n → ∞. The sequence {vn} is bounded in H, and by the Banach-
Alaoglu theorem, it has a weakly convergent subsequence {vnk

}. Let v =
weak- limk→∞ vnk

. Since Tvnk
→ ∥T∥vnk

weakly and the operator norm is
preserved under weak limits, it follows that Tv = ∥T∥v. Thus, T attains its
norm, and v is the corresponding vector.

If a sequence of finite-rank operators converges to a bounded operator,
the norm-attaining property is preserved in the limit. This is formalized in
the following lemma:

Lemma 2. If T is a bounded operator on H and {Tn} is a sequence of finite-
rank operators converging to T in norm, then T attains its norm if each Tn

attains its norm. Additionally, the norm-attaining vectors of Tn converge to
a norm-attaining vector of T .

Proof. Since Tn → T in norm, we have ∥T − Tn∥ → 0. Let xn be a unit
vector such that ∥Tnxn∥ = ∥Tn∥. Since {xn} is bounded in H, there exists a
subsequence {xnk

} weakly convergent to some x ∈ H with ∥x∥ ≤ 1. Without
loss of generality, assume xn → x weakly. By the boundedness of T , we have

∥Tx∥ = lim
k→∞

∥Txnk
∥ ≥ lim sup

k→∞
∥Tnk

xnk
∥ − ∥T − Tnk

∥.

Since Tnk
attains its norm, ∥Tnk

xnk
∥ = ∥Tnk

∥, and thus ∥Tx∥ ≥ ∥T∥. There-
fore, T attains its norm at x, and xnk

→ x in norm by uniqueness of the
norm-attaining vector.

When considering the tensor product of two norm-attaining operators,
the resulting tensor product operator also attains its norm. This theorem is
stated as follows:

Theorem 3. Let T1 and T2 be bounded operators on H1 and H2, respectively.
If both T1 and T2 attain their norms, then T1⊗T2 attains its norm on H1⊗H2.
Moreover, the norm-attaining vectors are of the form x1 ⊗ x2 where xi are
norm-attaining vectors of Ti.

Proof. Let x1 ∈ H1 and x2 ∈ H2 be unit vectors such that ∥T1x1∥ = ∥T1∥
and ∥T2x2∥ = ∥T2∥. Then,

∥(T1 ⊗ T2)(x1 ⊗ x2)∥ = ∥T1x1∥ · ∥T2x2∥ = ∥T1∥ · ∥T2∥.

8



Thus, ∥T1⊗T2∥ ≥ ∥T1∥ · ∥T2∥. Conversely, for any unit vectors x ∈ H1⊗H2,
we have

∥(T1 ⊗ T2)x∥ ≤ ∥T1∥ · ∥T2∥∥x∥ = ∥T1∥ · ∥T2∥.

Therefore, T1 ⊗T2 attains its norm, and the norm-attaining vectors are x1 ⊗
x2.

A similar result holds for Kronecker products of matrices, where norm-
attainment is preserved. The following corollary formalizes this statement:

Corollary 3. If A and B are norm-attainable matrices, then A⊗ B is also
norm-attainable. The eigenvectors corresponding to ∥A⊗B∥ are tensor prod-
ucts of eigenvectors corresponding to ∥A∥ and ∥B∥.

Proof. The proof follows directly from the norm-attainment result for tensor
products. Since matrices are finite-dimensional operators, the norm corre-
sponds to the largest singular value, and the singular vectors are eigenvectors
for the positive semidefinite operators A∗A and B∗B. Therefore, the eigen-
vectors of A⊗B are tensor products of eigenvectors of A and B.

The approximate point spectrum can also lead to norm-attainment. This
is captured in the following proposition:

Proposition 3. If T is a bounded operator on H and ∥T∥ belongs to the ap-
proximate point spectrum of T , then T attains its norm. The norm-attaining
vector can be approximated by a sequence of almost eigenvectors.

Proof. If ∥T∥ is in the approximate point spectrum of T , there exists a
sequence {xn} of unit vectors such that ∥Txn − ∥T∥xn∥ → 0. Then,

∥Txn∥ ≥ ∥T∥ − ∥Txn − ∥T∥xn∥ → ∥T∥.

Hence, ∥Txn∥ → ∥T∥, and xn is an approximate norm-attaining sequence.
By weak compactness, xn converges weakly to some x, and the reasoning
follows as in the finite-rank case.

For positive operators, if the norm corresponds to a simple eigenvalue,
the operator attains its norm. The lemma below formalizes this condition:

Lemma 3. Let T be a positive operator on H. If ∥T∥ is a simple eigenvalue,
then T attains its norm. The norm-attaining vector lies in the span of the
eigenvector associated with ∥T∥.
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Proof. If ∥T∥ is a simple eigenvalue, there exists a unique (up to scalar
multiples) eigenvector x such that Tx = ∥T∥x and ∥x∥ = 1. Then,

∥T∥ = ∥Tx∥ = ∥T∥∥x∥,

so T attains its norm at x. The simplicity of the eigenvalue ensures that any
norm-attaining vector must be proportional to x.

Unitary equivalence preserves the norm-attainment property. If one oper-
ator attains its norm, then any operator unitarily equivalent to it also attains
its norm. The following theorem formalizes this idea:

Theorem 4. Let T and U be bounded operators on H. If T is unitarily
equivalent to U and T attains its norm, then U also attains its norm. The
unitary transformation maps norm-attaining vectors of T to those of U .

Proof. Since T is unitarily equivalent to U , there exists a unitary operator
W such that U = W ∗TW . Suppose x ∈ H is a norm-attaining vector for T ,
i.e., ∥T∥ = ∥Tx∥ and ∥x∥ = 1. Define y = Wx, so ∥y∥ = ∥Wx∥ = ∥x∥ = 1.
Then,

∥Uy∥ = ∥W ∗TWy∥ = ∥W ∗Tx∥ = ∥Tx∥ = ∥T∥.

Hence, y is a norm-attaining vector for U , and ∥U∥ = ∥T∥. Therefore, U
also attains its norm.

A related result applies to normal operators: if a normal operator attains
its norm, so does any operator unitarily equivalent to it. This is stated in
the corollary below:

Corollary 4. If T is a normal operator and T attains its norm, then any op-
erator unitarily equivalent to T also attains its norm. The spectral properties
ensure the norm is preserved.

Proof. For a normal operator T , the norm ∥T∥ equals the spectral radius,
sup{|λ| : λ is an eigenvalue of T}. Since unitary equivalence preserves the
spectrum, ∥T∥ = ∥U∥ for any operator U unitarily equivalent to T . By the
previous theorem, U attains its norm if T does.

Orthogonal projections also preserve norm-attainment for the operator.
If an operator attains its norm, its projections do as well. This is formalized
in the following proposition:
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Proposition 4. Let T be a bounded operator on H, and let P be an orthog-
onal projection. If T attains its norm, then PT and TP also attain their
norms. The norm-attaining vectors for PT are projections of those for T .

Proof. Suppose x ∈ H is a norm-attaining vector for T . Define y = Px.
Then,

∥PTy∥ = ∥PTPx∥ = ∥PTx∥ ≤ ∥Tx∥ = ∥T∥.

Since ∥Px∥ ≤ ∥x∥ = 1, equality holds if ∥Px∥ = 1. Thus, PT attains its
norm when restricted to the range of P . Similarly, TP acts on the subspace
defined by P , and the argument follows analogously.

For diagonal operators, norm-attainment is achieved when the supremum
of the diagonal entries is attained. The lemma below formalizes this result:

Lemma 4. Let T be a diagonal operator on ℓ2 with entries {λn}. If supn |λn|
is attained, then T attains its norm. The norm-attaining vector corresponds
to the standard basis vector associated with the maximal entry.

Proof. The norm of T is given by ∥T∥ = supn |λn|. If supn |λn| = |λn0| for
some n0, then the standard basis vector en0 satisfies

∥Ten0∥ = ∥λn0en0∥ = |λn0| = ∥T∥.

Thus, en0 is a norm-attaining vector for T .

Example 2. Consider the diagonal operator T on the Hilbert space ℓ2, where
the diagonal entries are given by T = diag(λ1, λ2, λ3, . . . ), with λi being the
eigenvalues of T . For this operator, the norm of T is given by:

∥T∥ = sup
i

|λi|.

Let’s assume that the sequence λi has an isolated maximum value λk =
maxi |λi|. In this case, the norm is attained at the basis vector corresponding
to λk, i.e.,

∥T∥ = |λk|.

Thus, T attains its norm when λk is the maximum modulus eigenvalue
and the spectral gap condition is satisfied.
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For weighted shift operators, norm-attainment occurs when the supre-
mum of the weights is attained. This result is formalized in the following
theorem:

Theorem 5. Let T be a weighted shift operator on ℓ2 with weights {wn}. If
supn |wn| is attained, then T attains its norm. The norm-attaining vector is
the canonical basis vector corresponding to the maximum weight.

Proof. The norm of T is ∥T∥ = supn |wn|. Suppose supn |wn| = |wn0| for
some n0. Then the canonical basis vector en0 satisfies

∥Ten0∥ = ∥wn0en0∥ = |wn0| = ∥T∥.

Hence, T attains its norm at en0 .

Corollary 5. If T is a compact weighted shift operator on ℓ2, then T attains
its norm. Compactness ensures the supremum of weights is achieved.

Proof. Compact operators on ℓ2 have spectra consisting of 0 and isolated
eigenvalues with finite multiplicity. For a weighted shift, the supremum of
weights corresponds to an eigenvalue, ensuring the norm is attained by the
associated eigenvector.

Example 3. Consider a weighted shift operator S on the Hilbert space ℓ2,
defined by:

S(en) = wnen+1, n ≥ 1,

where {en} is the standard orthonormal basis and {wn} is a sequence of
weights. The norm of the operator S is given by:

∥S∥ = sup
n

|wn|.

Suppose that {wn} has a maximum value wk, and that the sequence {wn}
is non-increasing, i.e., w1 ≥ w2 ≥ w3 ≥ . . .. In this case, the norm is
attained when n = 1, because |w1| = ∥S∥. Hence, the norm is attained at the
first element of the orthonormal basis.

Finally, we present a result on norm-attainability, specifically in the con-
text of spectral decompositions, as follows:
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Proposition 5. If T has a spectral decomposition T =
∑

n λnPn, where Pn

are projections and supn |λn| = ∥T∥, then T attains its norm. The norm-
attaining vector lies in the range of the projection corresponding to ∥T∥.

Proof. The norm of T is ∥T∥ = supn |λn|. Suppose supn |λn| = |λn0| for some
n0. Let x be a unit vector in the range of Pn0 . Then,

∥Tx∥ = ∥λn0Pn0x∥ = |λn0|∥x∥ = |λn0 | = ∥T∥.

Thus, x is a norm-attaining vector for T .

Conclusion

In summary, the results on norm-attainment in bounded operators outline
key conditions under which an operator achieves its norm, including spec-
tral gaps, isolated spectrum points, spectral projections, and the essential
spectrum. Norm-attainment is also preserved under perturbations, unitary
equivalence, and projections. Specific cases such as weighted shifts, compact
operators, and diagonal operators are addressed, highlighting when norm-
attainment occurs. These findings contribute to a deeper understanding of
operator theory and open avenues for further research, particularly in un-
bounded operators and their applications in fields like quantum mechanics
and signal processing.
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