
Identification of the Maximum Safe Dose for Binary Endpoints

Abstract

In most clinical trials, binary outcomes—such as success or failure and presence or absence of side effects—are

used to evaluate treatment safety and efficacy. Determining the Maximum Safe Dose (MSD) is essential, as it

identifies the highest drug dosage that does not cause harmful effects. Exceeding the MSD can pose serious health

risks and undermine the overall benefits of the treatment. This article proposed a confidence interval procedure

designed to simplify the complex analysis of binary endpoints as discussed in Thall et al. (2008). To solve this

problem, we apply a confidence interval process along with a partitioning approach. therefore, application of

reliable statistical approaches in establishing and confirming the range of safe dosages is imperative. It involves

thorough examination of data in preclinical as well as clinical trials in the hopes of reducing side effects and

optimizing the efficacy of treatment. Thus, our paper introduces a confidence interval approach for estimating

MSDs for drugs using binary endpoints. This method was performed using a 100(1 - α)% Wilson (1927) score

interval with step-up method for binary endpoints without multiplicity adjustment. We illustrate it through the

examples which were published by Neuhäuser and Hothorn(1997) in their paper. Additionally, we also observed

that this method’s power increases with increasing sample size. Finally, our simulation results shows that Wilson

score interval proved to have the shortest length and producing good coverage probability. The results further

showed that our newly constructed procedure control the familywise error rate. We advocate that our newly

constructed procedure with wilson score interval is suitable for demonstrating MSD when the respose have binary

outcomes.

keywords: Family-wise error rate, Coverage probability, Binary outcomes, Wilson score interval, confidence-

based procedure, Multiple treatments and Confidence-based procedure.
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1 Introduction

In the vast majority of clinical trials, binary data—that report outcomes which are two types, such as suc-

cess/failure, side effects/absence of side effects, or survival/death—are used to assess both safety and efficacy

of treatments. Dichotomous outcomes necessitate the careful determination of the Maximum Safe Dose (MSD),

i.e., the highest degree of dosage of a drug that is not associated with unacceptable adverse effects. It is important

to establish the MSD because exceeding this level could result in severe health risks to patients and devalue the

general therapeutic benefit of the intervention. Thall and Wathen (2007) and Bauer, and Kohne, (1994) discuss

MSD for binary data. They highlighted the importance of identifying the dose at which the risk of adverse ef-

fects or disease occurrence is minimized while still achieving the desired therapeutic effect. They emphasize that

when the response is binary and the parameter of interest is the risk of the disease, namely the probability of

the occurrence of a disease. However, this study can only be found in various biometric studies. Based on this

situation, Multiple inference procedures founded on the t-statistic may not be conceivable. This challenge is one

of the outstanding questions in the development of multiple comparison strategies for dose finding, according to

Tamhane and Dunnett (1999, p. 67). Technically speaking, the challenge is in the strong control of the familywise

error rate, which is a crucial factor in limiting the error of mistakenly classifying any of the dangerous dosages as

safe.

Iwanami (2001) and Riggs et al. (1991) suggests that any drug has the potential to kill when delivered in large

enough doses and that all toxicants have a no-observed-effect threshold below which no change in structure or

function can be observed. However, drug-related fatalities in Ghana reached 630 in 2020, or 0.36% of all deaths,

according to WHO (2018) data given at the time. The age-adjusted mortality rate of 3.31 per 100,000 people places

Ghana as the 22nd most populous country in the world. This is because the general public consumes dosages that

are hazardous and for this reason, new MSD procedures are needed to enhance the effectiveness of decision and

dosage estimation methods, particularly for binary endpoints, in controlling unsafe drug consumption.

Binary endpoints are commonly used in health sectors, particularly cardiovascular and oncology studies, due to
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their three main benefits: eliminating the need for multiplicity adjustment, providing a better justification for treat-

ment group distinctions, and increasing power as recorded occurrences increase. These endpoints are crucial as

they provide more detailed information about the disease’s course (Bretz et al.,2010). Based on this assertion, the

binary endpoints are important.

Our paper’s goal is to offer stepwise confidence intervals for the identification of MSD for binary endpoints data

sets where the proportion of treatment vs control is studied. We employed the partitioning concept, the suggested

procedure extends the method proposed by Hsu and Berger (1999) into a stepwise confidence-based procedure

without multiplicity adjustment for binary endpoints. The article is organized as follows. In Section 2, the ma-

terial and methods notations are defined, Our proposed stepwise confidence intervals methods in Section 2.1, the

formulation of the proposition 1 in section 3.1, the Family-wise error rate in section 3.2, Results and discussion in

section 4, Simulation study of coverage probability, abberration and power comprison and discussion of results in

section 4.2. Finally, discussion of results in section 4.5 and conclusion in Section 5.

2 Material and Methods

Suppose that the proportion of k treatments and zero control group called placebo are investigated. Denote

i = 0, 1, 2, . . . , k be a set of inceasesing doses levels used in the study of dose-findings where 0 represents placebo.

Consider binary endpoints setting in which a random sample Yi1,Yi2,Yi3, . . . ,Yini is the observed response of toxi-

city from the ithe dose level (i = 0, 1, . . . , k). Let Pi be the proportions of toxicity at dose i and P0 to be proportion

of zero control dose such that Pi = {P0, P1, . . . , Pk},i = 0, 1, . . . , k respectively. We assumed that large values of

the proportions of treatment represents high toxicity relative to the proportions of the placebo Let Yi j ∼ B(ni, pi)

and Y0 j ∼ B(n0, p0) to be two independent binomial random variables for any i = 1, . . . , k and j = 1, . . . , ni, n0.

In this article, we provide a procedure that will estimate the difference between two unknown proportions λi,0 =

Pi − P0, i = 0, 1, . . . , k without loss of generality, let λi,0 = Pi − P0, i = 1, 2, . . . , k be difference of two proportions

of interest. Let γ represents the pre-specified threshold constant for toxicity of a drug.The problem of identifying

the MSD is formulated as follows;

H0i :
k⋃
i

λi,0 ≥ γ versus Hai :
k⋂
i

λi,0 < γ, i = 1, . . . , k (1)

Assume the random variable Yi j has a distribution determined by the parameter θ = (λ1,0, . . . , λk,0) with θ ∈ Θ,

where Θ is the parameter space, let Θi = (θ : λi,0 ≥ γ) and Θc
i = (θ : λi,0 < γ)) i = 1, . . . , k.

We defined a confidence set, C(Y), for θ is said to be directed toward a subset of the parameter space, Θ∗ ⊂ Θ

if, for every sample point Y, either Θ∗ ⊂ C(Y) or C(Y) ⊂ Θ∗. For the case of one sided significant difference

of two proportions inference, say Θc
i = λi,0 < γ, confidence intervals for λi,0 of the form Ci(Y) = (−∞,Wi(Y))
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are directed towards Θc
i for i = 1, . . . , k and Ci(Y) is the upper limit of the confidence interval. If Di(Y) is a

100(1 − α)% confidence set for λi,0 , then a 100(1 − α)% confidence set, which is directed toward λi,0 < γ, for λi,0

is

Ci(Y) =


Di(Y) if Di(Y) ⊂ Θc

Di(Y) ∪ Θc otherwise
. (2)

We create disjoint sets in the parameter space, ensuring that exactly one partition contains the true parameter θ.

By achieving this, our procedure effectively controls the Family-Wise Error Rate (FWER) by managing it within

each Θ∗k ⊆ Θ for every k ∈ K,where, K is an index. This partitioning strategy provides a robust validation frame-

work, ensuring the accuracy of our inferences while controlling the overall error rate within specified subsets of

the parameter space.

2.1 Our Proposed Method

2.2 The proposed method: A Stepwise Procedure

Making inference of MSD with dichotomous responses, we offer a stepwise simultaneous inference approach

in this section. The next part provides discussions on the proposition and family-wise error rate control using

any standard confidence technique for the difference between two binomial proportions. The first step in solving

the problem(1) is to defined the MSD as MSD=max(i;λi,0 < γ). We then employed Wilson (1927) method to

obtained the individual 100(1 − α)% confidence intervals Ci(Y) for λi,0.Taking Ci(Y) and λi,0, i = 1, 2, . . . , k as

sample statistics , we test H0 = ∪k
i=1Θi versus Ha = ∩k

i=1Θc
i ;

Wi(Y) =
1

(ni + z2
α)

((2niλi,0 − z2
α) + zα

√
4niλi,0(1 − λi,0) + z2

α)) (3)

In the aforementioned expression, Wi(Y) is the upper bound of the confidence interval, ni is the sample size of

dose i and P(Z ≥ z) = 1− α for the standard normal random variable Z, λi0 or the proportion of the risk difference

between dose i and zero control dosage group and where Pi =
yi

ni
, P0 =

y0

n0
, yi and y0 are realizations of the random

variables Yi and Y0..
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2.3 Proposed Procedure

The Proposed Stepwise confidence interval Procedure

Step 1: We identify MSD firstly by computing the upper confidence intervals (Wi(Y)) using equation(3.3) for all

doses level i = 1, 2, . . . k.

Step 2:We screen the doses in ascending order (i = 1, . . . , k) and designate the dose at B as the MSD such that

WB(Y) < γ and WB+1(Y) ≥ γ.

Step 3:However, if W1(Y) ≥ γ then no dose is safe and if Wk(Y) < γ all dose are safe.

Step 4:We defined the stopping point of the procedure to be step B if WB(Y) ≤ γ and WB+1(Y) ≥ γ. So computing

confidence intervals for a dose at steps B+1 and B+2 are uneccessary.

Therefore, patients should be strictly limited to doses below ”k”, which is a preventive measure that reduces

the likelihood of exceeding this limit. This positive feedback will reduce the likelihood that patients will suffer

unnecessarily from new drugs or drug combinations throughout clinical trials.

3 Our main theoretical results

3.1 Our Proposition

Proposition 1

Let Y represent the set of observed data collected from an experimental study, while Θ defines the parameter space

for the parameter vector θ = (λ1,0, . . . , λk,0). Let Ci(Y) be the 100(1-α)% upper confidence limits for λi,0 = Pi − P0

for each i = 1, 2, . . . , k and Θc
i = {λi,0 < γ}. Suppose that the procedure stops at step B, where B is the largest

integer i such that Ci(Y) 1 Θc
i ,if such an i(1 ≤ i ≤ k + 1) exists,otherwise, Θ0 = ∅(so Θc

0 = Θ) and

C∗(Y) = Θc
1 ∩ Θc

2∩, . . . ,∩Θc
B−1 ∩ Θc

B ∩CB(Y)

For all θ ∈ Θ,

P(θ ∈ C∗(Y)) ≥ 1 − α.

Proof of Proposition 1

We denote Θc
i = {λi,0 < γ}, and Θi = {λi,0 ≥ γ)}, i = 1, . . . , k.

We partition the parameter space as follows:

Θ∗1 = Θ1

Θ∗2 = Θc
1 ∩ Θ2

Θ∗3 = Θc
1 ∩ Θc

2 ∩ Θ3
...

Θ∗k+1 = Θc
1 ∩ Θc

2 ∩ Θc
3∩, . . . ,∩Θc

k ∩ Θ∗k+1
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Since the response are observed over safety across the increasing dose levels.

we now have

C(Y) =
⋃k+1

i=1 Ci(Y) ∩ Θ∗i , Θ =
⋃k+1

i=1 Θi =
⋃k+1

i=1 Θ∗i . if θ ∈ Θ∗i , then

The proposition is prove using the the following properties below:

(1).Ci(Y) ∩ Θ∗i = ∅ for all i < B, because Θ∗i ⊂ Θi;

(2).Θc
1 ∩ Θc

2∩, . . . ,∩Θc
B−1 ∩CB(Y)∩, . . . ,∩Θc

i−1Θi ⊂ Θc
1 ∩ Θc

2∩, . . . ,∩Θc
B−1 ∩CB(Y) for all i > B.;

(3).Θc
B ⊂ CB(Y).

Since the response are observed over safety across the increasing dose levels.

we now have

C∗(Y) =

k+1⋃
i=1

Ci(Y) ∩ Θ∗i

=

B−1⋃
i=1

B⋃
i=B

k+1⋃
i=B+1

Ci(Y) ∩ Θ∗i

=

B⋃
i=B

k+1⋃
i=B+1

Ci(Y) ∩ Θ∗i (Property 1)

=
(
CB(Y) ∩ Θ∗B

)⋃ k+1⋃
i=B+1

Ci(Y) ∩ Θ∗i

= (Θc
1 ∩ Θc

2 ∩ · · · ∩ Θc
B−1 ∩ Θc

B)
⋃ k+1⋃

i=B+1

Ci(Y) ∩ Θ∗i


⊂

(
Θc

1 ∩ Θc
2 ∩ · · · ∩ Θc

B−1 ∩CB(Y)
)⋃(

Θc
1 ∩ Θc

2 ∩ · · · ∩ Θc
B−1 ∩ Θc

B

)
(by Property 2)

= Θc
1 ∩ Θc

2 ∩ · · · ∩ Θc
B−1 ∩ Θc

B ∩CB(Y) (by Property 3)

=

 B⋂
i=1

{λi,0 < γ}

 ∩ {λB−1,0 < γ} ∩CB(Y) (4)

We also use this property to have the above results,

(CB(Y)ΘB)
⋃

(CB(Y)Θc
B) = (CB(Y)ΘB)

⋃
Θc

B = CB(Y) since Θc
B ⊂ CB(Y).

Hence, we have for all θ ∈ Θ

C∗(Y) = Θc
1 ∩ Θc

2∩, . . . ,∩Θc
B−1 ∩ Θc

B ∩CB(Y))

P(θ ∈ C∗(Y)) ≥ 1 − α
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3.2 Family-wise error rate

Proposition 2 :Stepwise confidence intervals procedure for binary endpoints strongly controls the familywise

error rate(FWER) at level α

Proof of Propositon 2

We made the assumption that our procedure ends at step B in order to demonstrate that it controls the FWER. We

also proved that our method works for step B + 1.

We indicate the composite confidence set up to step B with C∗(Y). Next we obtain: P(θ ∈ C∗(Y)) ≥ 1 − α.

Now that step B + 1 has been considered the composite confidence set is still unchanged and the property holds

for which CB+1(Y) ∈ Θc
B+1.

Thus control of the FWER at level α is ensured since by induction the property holds for all steps up to k + 1.Thus

the FWER is effectively controlled by the closed Testing procedure which guarantees that for all θ ∈ Θ the

probability of θ being in C∗(Y) is at least 1- α.

4 Results and Discussion

4.1 Practical Application of MSD

The study validated theoretical findings by using the lung tumor data set from Neuhäuser and Hothorn’s 1997

publication to implement a confidence set-based procedure for determining the MSD. The lung tumor results from

1,2-dichloroethane research show unbalanced sample sizes, typical in carcinogenicity research. The control group

was compared with experimental treatments to determine safety for individual dose levels, ensuring control of

the family-wise error rate. This approach allows for dichotomous outcomes in toxicological investigations and

clinically relevant cut-off values. The study used a binomial distribution random variable to represent a dichoto-

mous endpoint, with a negative control group and various dosage groups. A safety margin of γ = 0.80 was set to

demonstrate the dose’s safety. R software was used to derive upper confidence intervals, and the control group was

compared to each experimental treatment to control family-wise error rates. Where, UCB denote upper confident

bound.

MSD is correctly specified,if and only if Ci(Y) < γ and Ci+1(Y) ≮ γ, i = 1, 2, . . . , k

Step 1 C1(X) = (−∞, 0.7286) ⊂ (−∞, 0.80) we reject H01 and proclaim that dose 1 is safe and go to step 2.

Step 2 C2(X) = (−∞, 0.9275) ⊂ (−∞, 0.80) we do not reject H02 and proclaim that dose 2 is not safe and stop.

The stepwise confidence interval procedure concludes after step 2, requiring no further testing. Our analysis indi-

cates that dose 1 is deemed safe, while doses 2 is deemed unsafe at a significance level of 0.05. Consequently, we

recommend dose 1 as MSD.
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Table 1: Upper confidence intervals for Lung tumor data

Dose Tumor absent Number at risk Risk difference 95% UCB
0 35 37 - -
1 41 48 P1 − P0 0.7283
2 21 36 P2 − P0 0.9275

4.2 Simulation Study

Since the binomial distribution exhibited poor coverage probability then we proceeded to investigate the coverage

probability of the eleven confidence methods and abberration in table 2 and 3 in order to select an appropriate

confidence interval that guarantee good coverage probability and was free from abberration problem. We also

estimated the length of the various confidence interval methods in order to determine which of the methods that

are the most efficient in estimating confidence intervals for binary outcomes. We measured the efficiency of the

confidence methods by taking confidence method that has the shortest length. However, we conducted 10,000 sim-

ulations to assess the performance of eleven confidence interval methods in terms of coverage probability, length

and abberration. The reason was that any confidence interval methods that ensures good coverage probability and

free from abberration are considered in dose findings. We considered the various risk proportions and sample sizes

as (ni = 20, 18, 10, 48, and 36, for i = 1, 2, . . . , 5), incorporating differences between two binomial proportions

(P1−P0 = 0.25, P2−P0 = 0.51, P3−P0 = 0.50, P4−P0 = 0.1, and P5−P0 = 0.37). The nominal confidence level

was set at 90%. Subsequently, we computed the coverage probability for each of the eleven conditional confidence

interval methods. A detailed presentation of the results is provided in Table 2 below: As per the findings presented

in Table 2, the prop test, Bayes, logit, and exact confidence intervals exhibited inadequate coverage and dispro-

portionately long lengths. In contrast, the remaining confidence techniques demonstrated commendable coverage

probability and relatively shorter lengths. Notably, the Wilson confidence interval outperformed its counterparts,

boasting the smallest length among them. General observations from the simulation exercise consistently indi-

cated that the Wilson score method exhibited a mean coverage probability that was not only shorter but also closer

to the nominal level. This implies that methods producing confidence intervals with robust coverage probabilities

and relatively shorter lengths are more effective.

4.3 Comprison of FWER

To investigate the familywise error rate performance of the three techniques, we ran 10,000 simulations. For the

difference between two independent binomial proportions, we used a step-up technique with different confidence

interval methods like Wald confidence, Wald CC confidence, and Wilson’s score interval. We ran simulations un-
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Table 2: Comprison of wilson score interval with other confidence methods under coverage probability

Methods
CP(Length)

n1=20
P1-P0=0.25

CP(Length)
n2=18

P2 − P0=0.51

CP(Length)
n3=10

P3-P0=0.50

CP(Length)
n4=48

P4 − P0=0.10

CP(Length)
n5=36

P5 − P0=0.37
Agresti-C 0.9353(0.3028) 0.9058(0.3537) 0.8901(0.4463) 0.9153(0.1478) 0.8869(0.2521)
Asymp 0.8668(0.3068) 0.9058(0.3765) 0.8901(0.4911) 0.8500(0.1376) 0.8869(0.2593)
Bayes 0.8668(0.2912) 0.9058(0.3576) 0.8901(0.4480) 0.8232(0.1332) 0.8869(0.2524)
cloglog 0.8668(0.2958) 0.9424(0.3662) 0.9314(0.4695) 0.9153(0.1373) 0.9156(0.2539)
Exact 0.9353(0.3415) 0.9424(0.4072) 0.9774(0.5317) 0.9153(0.1373) 0.8869(0.2544)
logit 0.9353(0.3057) 0.9119(0.4075) 0.8901(0.4603) 0.9512(0.1460) 0.8869(0.2547)
Irt 0.8668(0.2991) 0.9058(0.3607) 0.8901(0.4618) 0.9153(0.1376) 0.8869(0.2549)
Probit 0.9353(0.3022) 0.9058(0.3631) 0.8901(0.4632) 0.9153(0.1413) 0.8869(0.2547)
Profile 0.8668(0.2992) 0.058(0.3631) 0.8901(0.4618) 0.9153(0.1376) 0.8869(0.2549)
Prop.test 0.9887(0.3883) 0.9692(0.4462) 0.9774(0.5394) 0.9780(0.1888) 0.9754(0.3196)
Wilson Sc 0.9353(0.2961) 0.9058(0.3525) 0.9018(0.2988) 0.9153(0.1414) 0.9088(0.2511)

der one-sided (α = 0.025) and two-sided (α = 0.05) conditions to compare the familywise error rate performance

of the three techniques. The steps’ specifics are provided below:

Procedure A: Step-up method(without adjusting the alpha level) with Wilson’s score interval

Procedure B: Step-up method(without adjusting the alpha level) with Wald’s confidence interval

Procedure C: Step-up method(without adjusting the alpha level) with Wald’s CC confidence interval

The FWER for three distinct techniques (A, B, and C) at two significance levels (α = 0.025 and α = 0.050)

are shown in Table 4 for a range of sample sizes (n). Procedure A’s FWER falls between 0.0103 and 0.0237. At

n = 15 (0.0103), the lowest FWER is recorded, and at n = 45 (0.0237), the greatest. This process keeps the FWER

low and comparatively constant for varying sample sizes.Procedure B’s FWER ranges from 0.0084 to 0.0269. At

n = 25 (0.0084), the lowest FWER is recorded, and at n = 75 (0.0269), the highest. Procedure B too exhibits

erratic performance, albeit not significantly.Procedure C’s FWER falls between 0.0084 and 0.0265. Similar to

Procedure B, the lowest FWER is seen at n = 25 (0.0084), and the greatest is at n = 65 (0.0265). In terms of

continuing to have a high error rate, Procedure C shows a similar tendency to Procedure B. It is clear that some of

the FWER values for methods B and C are either much lower or much higher than the nominal value, indicating

inadequate control over the familywise error rate. Table 3 clearly shows that process A performs better than pro-

cedures B and C at α = 0.025 when comparing the FWER performance of the three procedures, as some of the

FWER values for procedures B and C are comparatively higher than the nominal value. Nevertheless, Procedure

A appears to perform better than B and C at 0.050 in terms of keeping FWER around or below the nominal thresh-

old. According to the results, Procedure A is recommended since it ensures that the FWER for both one-sided

and two-sided situations is under control.Procedure A is the recommended method since it exhibits better control

over the FWER at both significance levels. Even if they work well, procedures B and C show more variability

and sporadic peaks in FWER, particularly for n = 15 for α = 0.05. Because Procedure A consistently keeps the

FWER near to or below the nominal level for both one-sided and two-sided testing, it is therefore advised.
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Table 3: Comparison of Familywise error rate among the three procedures

α = 0.025 α = 0.050
n Procedure A Procedure B Procedure C Procedure A Procedure B Procedure C

10 0.0194 0.0206 0.0185 0.0195 0.0197 0.0185
15 0.0103 0.0125 0.0092 0.0105 0.0743 0.0670
25 0.0217 0.0084 0.0084 0.0401 0.0422 0.0363
35 0.0174 0.0194 0.0179 0.0190 0.0572 0.0550
45 0.0237 0.0241 0.0226 0.0236 0.0663 0.0598
55 0.0201 0.0261 0.0245 0.0235 0.0582 0.0588
65 0.0107 0.0254 0.0265 0.0265 0.0623 0.0590
75 0.0228 0.0269 0.0234 0.0249 0.0501 0.0504
85 0.0231 0.0220 0.0221 0.0419 0.0453 0.0425
95 0.0195 0.0155 0.0227 0.0376 0.0376 0.0419

100 0.0186 0.0204 0.0173 0.0346 0.0401 0.0342

4.4 Comparison of Powers

We conducted 10000 simulation to study the power performance of the three procedures. We compared a step-up

technique for the difference between two independent binomial proportions with a method based on Wald confi-

dence, Wald CC confidence, and Wilson’s score. The family-wise error rate is managed by the step-up approach

without multiplicity correction, which does not take the population distribution into account. We just consider

the support method in our evaluation; no other assumptions are made. We take into consideration the next three

comparisons in this context.

Procedure A: Step-up method(without adjusting the alpha level) with Wilson’s score interval

Procedure B: Step-up method(without adjusting the alpha level) with Wald’s confidence interval

Procedure C: Step-up method(without adjusting the alpha level) with Wald’s CC confidence interval

As can be seen in Table 4, the power of procedure A increases as the sample size increases, reaching 100 (or 100%

power) for sample sizes of 40 and above. This shows that procedure A is effective in statistical analysis even with a

small sample size (e.g., the power of 0.9965 at n = 25). The performance of Procedure A shows that it is a reliable

method to obtain the best results for simulation. The threshold value for a sample size of 5 is 40 and for a sample

size of 100 it is as low as 0.546, with the power increasing to 0.701. This is 0.533 when n = 30 and 0.456 when

n = 35, showing some discrepancies. In general, procedure B was found to be valid but inferior to Method A in

terms of consistency and reliability. It reached 0.799 at n = 40 and then changed slightly. The power changes very

little at the average rate (e.g. the power decreases to 0.488 for n = 35, to 0.601 for n = 70). Although procedure C

does not achieve the same power as A, it is generally similar to B and shows the performance of different models.

This shows that it is quite sensitive and reliable in detecting the effects in simulations. These changes indicate that

the method may not always be reliable, especially in small samples. It improves with increasing volume and can

be a valid alternative when procedure A is not appropriate. This is desirable because larger samples can increase

the information and power of the test. Procedure A demonstrates that even a small sample size (n = 25 to n = 40)
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is sufficient to obtain high power, whereas procedure B and C may require larger samples to obtain comparable

power. It is the most efficient and is preferred if high sensitivity is desired. procedure C provides greater energy

efficiency and can be considered where procedure A cannot be applied, especially if it is important to maintain a

certain energy level between different models.

Table 4: Comprison of Powers

Sample size Power of A Power of B Power of C
5 0.7357 0.546 0.675
10 0.7441 0.658 0.688
15 0.9495 0.648 0.679
20 0.9914 0.605 0.689
25 0.9965 0.659 0.701
30 0.9996 0.533 0.635
35 0.9999 0.456 0.488
40 1.0000 0.701 0.799
50 1.0000 0.688 0.691
70 1.0000 0.599 0.601
100 1.0000 0.701 0.771

4.5 Discussion of Results

In situations where safety margins were set at 80%, we employed meticulous stepwise confidence procedures to

calculate the MSD of lung tumor data, resulting in an MSD of dose 1 for binary data. This determination holds

paramount significance for both pharmaceuticals and consumers. Given that a drug’s adverse effects intensify

with dosage, and patient concerns predominantly revolve around safety rather than efficacy, our focus was di-

rected towards pioneering novel stepwise confidence-based procedures to pinpoint the MSD in binary endpoints.

The procedures elucidated in this study exhibit robust control over the familywise error rate, and their valida-

tion through the partition principle bolsters their credibility. The significance of coverage probability cannot be

overstated in clinical dose-finding studies, as it mitigates the risk of erroneously labeling an unsafe dose as safe.

Neglecting this aspect could have adverse consequences for drug users. Consequently, we meticulously assessed

the performance of eleven binary confidence interval methods in terms of coverage probability. Our findings reveal

that while the asymptotic confidence interval is conventional, it consistently exhibited poor coverage probability

throughout the study. In contrast, the prop test, Bayes, Logit, and exact methods consistently demonstrated subpar

coverage probabilities. On the other hand, the Wilson score, Agresti, Profile, and LRT methods consistently en-

sured a high coverage probability. However, we investigated the efficiency level of the various confidence methods

by computing the length for each method and the Wilson score method recorded the shortest length throughout the

simulation study. Thus, it was evident that the Wilson score interval was the most efficient method for estimating
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confidence intervals under binary endpoints. For the case of the power comparison among the three procedures,

it was clear from the findings that procedure A recorded the highest performance among its counterparts B and

C. Thus, the procedure attained 100% performance at a relatively smaller sample of 40. But when Procedure A

isn’t applicable, Procedure C in particular can be thought of as a good substitute. Also, when we further compare

the FWER performance among the three procedures, it was evident from the findings that procedure A strongly

controls the FWER whereas B and C do not. Although Procedures B and C also perform well, they exhibit greater

variability and sporadic peaks in FWER, especially for n = 15 at α = 0.05. Procedure A is the preferred method

for controlling the FWER in binary data, and Wilson’s score is recognized as the most efficient method for es-

timating confidence intervals in binary data, based on newly constructed stepwise confidence-based procedures.

Wilson’s score stands out due to its strong coverage probability and shorter interval lengths. In a dose-response

study, the criteria for selecting an appropriate confidence method said to be the method must control the FWER,

and guarantee good coverage probability.

5 Conclusion

Based on the findings and discussion of the results, we concluded that our newly constructed confidence-based

procedure (A) strongly controlled the FWER and as well as obtained the highest power performance among the

three procedures compared. Therefore, we recommend that our newly constructed confidence-based procedure

coupled with Wilson’s score interval, is the most suitable for estimating confidence intervals for binary endpoint

trials.
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