


The physiological impacts of bacterial endophytes on pigeonpea growth	Comment by SAR 07: Add the species name 



ABSTRACT
Aims: Endophytes are microorganisms that establish intimate, non-pathogenic associations with host plants, were isolated from wild pigeonpea. The study aimed to determine their potential as biofertilizers and biostimulants for enhancing the cultivated pigeonpea variety ICP 8863 growth.
Study design:  The experiment was laid out in completely randomized design with three replications
Place and Duration of Study: Department of Plant Pathology, UAS, Bangalore, between January 2023 and February 2024
Methodology: Endophytic bacteria were isolated from leaf and stem tissues of Cajanus scarabaeoides. These isolates were subjected to a qualitative screening assay to evaluate their potential for biofertilization, assessing phosphate, potassium, and zinc solubilization, siderophore production, and atmospheric nitrogen fixation. In planta experiments were conducted to determine the biostimulatory effects of these endophytes on plant growth. High-performance liquid chromatography (HPLC) was employed to profile phytohormone production by a selected, effective endophyte. Subsequent molecular characterization was performed for taxonomic identification.
Results: Twenty-five bacterial endophytes were isolated from wild pigeonpea, with nine displaying biofertilization potential. In planta evaluation identified SB3 as the most effective, significantly improving germination (91.11%), plant height (83.21 cm), branching (15.66), leaf production (49.66), and dry matter accumulation (139.84 g/plant). SB3 was shown to produce indole acetic acid, cytokinin, gibberellic acid, and abscisic acid via HPLC, and was identified as Bacillus subtilis through 16S rRNA sequencing.
Conclusion: This study reveals the potential of wild pigeonpea endophytes as a bioresource for sustainable agriculture due to their ability to enhance plant growth through nutrient solubilization and phytohormone production, making them ideal for eco-friendly biofertilizers and biostimulants.
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1. INTRODUCTION	Comment by SAR 07: 1. Information about the peas themselves needs to be added. 2. Issues of low pea productivity or environmental stress affecting the crop need to be added 3. The purpose statement at the end is too brief and mentions the main method used or the hypothesis being tested. 4. References are needed for each claim to be stronger. 
The term "endophyte," derived from Greek, refers to microorganisms (fungi, bacteria, protozoa, viruses, or algae) that reside within plant tissues without causing disease (De Bary, 1866; Saikkonen et al., 2004). These organisms are widespread, inhabiting nearly all plant tissues, and a single plant species can harbor a remarkable diversity, sometimes exceeding 100 different endophyte species. This highlights the intricate ecological relationships between plants and their endophytes, shaped by both environmental pressures and evolutionary history (Liu et al., 2017).
Pigeonpea, a resilient legume, thrives in diverse environments. Wild pigeonpea varieties, exposed to various stressors, may harbor unique endophytes with plant growth-promoting and stress-resistant traits. These endophytes represent a valuable resource for enhancing crop resilience and productivity (Kuzniar et al., 2019; Lacava et al., 2022). 
Plant growth-promoting endophytes (PGPE) enhance plant development through three primary mechanisms: biostimulation (phytohormone modulation), biofertilization (nutrient availability), and biocontrol (Santos et al., 2018). They also contribute to bioremediation (Afzal et al., 2019). The long-standing symbiotic relationship between plants and endophytes, evident in fossil records, underscores their crucial role in plant evolution and adaptation (Clay and Schardl, 2002). Investigating endophytes from resilient plants like wild pigeonpea offers opportunities to improve agricultural sustainability and environmental management.
This study assesses the effectiveness of wild pigeonpea-derived bacterial endophytes in improving growth performance of the cultivated pigeonpea variety.
2. MATERIAL AND METHODS	Comment by SAR 07: Statistical analysis is needed in this method, and what statistical analysis is used? 
2.1 Isolation of bacterial endophytes 
Isolation of endophytic bacteria from leaf and stem tissues of Cajanus scarabaeoides (L.) Thouars (wild pigeonpea) was done using a standard protocol (Kumar et al., 2016). This research was conducted in the Department of Plant Pathology at the University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, India, between 2023 and 2024. Specifically, 1 cm segments of leaf and stem tissue were surface-sterilized by sequential washes: 70% ethanol (1 min), 1% sodium hypochlorite (30 sec), and a final 70% ethanol wash (1 min), followed by rinsing with sterile distilled water and air-drying. These segments were then aseptically placed onto nutrient agar (NA) and King's B media and incubated for 48-72 hours to observe bacterial outgrowth from the cut ends. Imprints of the surface-sterilized tissues were also made on the media to confirm the absence of epiphytic contamination. Endophyte isolates were coded using a system that denoted the tissue of origin (L for leaf, S for stem) and the type of microorganism (B for bacteria)."	Comment by SAR 07: It is necessary to explain the reason for using 70% ethanol (1 min), and 1% sodium hypochlorite (30 sec) 	Comment by SAR 07: Are these two media a comparison? 
2.2 Colonization frequency of endophytes
For each stem and leaf tissue, four segments were placed onto separate media, with three replicates per treatment. In total, 24 segments from each tissue type were assessed for bacterial colonization. The colonization frequency (Cf) of endophytic bacteria was determined by the number of segments colonized by each endophyte to the total number of segments observed (Suryanarayanan et al., 2003).
2.3 Phenotypic differentiation of bacterial endophytes
The isolated bacterial endophytes were characterized phenotypically by macroscopic studies. All the isolates were streaked on agar plates and incubated at 30°C for 24 h. Thereafter colony morphological traits viz., colour, form, elevation and margin were then noted. Microscopic observations were performed to investigate the Gram reaction as per standard methods (Cappuccino and Sherman, 2008).
2.4 Evaluation of bacterial endophytic biofertilization potential
Qualitative assessment of the potentiality of isolated bacterial endophytes for biofertilization traits, viz., phosphorus, potassium, and zinc solubilization, siderophores production, and atmospheric nitrogen fixation was done following established methods and specific media: Pikovskaya medium for phosphorus solubilization (Jasim et al., 2013), Aleksandrow medium for potassium (Hu et al., 2006), a minimal medium with ZnO for zinc (Fomina et al., 2005), Norris glucose nitrogen-free medium for free-living nitrogen fixation (Pathak and Kalekar, 2012) and Chrome Azurol S (CAS) solid medium for siderophore production (Schwyn and Neilands, 1987). For in vitro assays, bacterial isolates were pre-cultured in tryptic soy broth at 30°C and 120 rpm for 24 hours. A 5 µL aliquot of each culture was then spot-inoculated onto the respective media and incubated at 30°C for three days. Solubilization of phosphorus, potassium, and zinc was indicated by clear halo zones around bacterial colonies. Siderophore production was identified by an orange halo around the colonies. For nitrogen fixation, isolates were streaked onto Norris glucose nitrogen-free medium and incubated at 28°C for seven days. Growth on this nitrogen-free medium indicated positive nitrogen fixation.
2.5 Assessing endophytic biostimulant activity in pigeonpea
In planta studies were done by priming the pigeonpea (ICP 8863) seeds with the respective endophytic bacterial suspension (1×108 CFU/mL). Germination percentage was determined after 2-3 days of germination on blotter paper. Primed seeds were then sown in 2 kg pots and grown under glasshouse conditions. After 12 weeks, plant height (cm), number of branches, number of leaves, and dry matter accumulation (g/plant) were measured.	Comment by SAR 07: Endophytic bacteria are suspended in soil media or in the tree, and what is the method. Is it sprayed or soaked in bacterial fluid? 
2.6 High-Performance Liquid Chromatography (HPLC) based phytohormone analysis from effective bacterial endophyte
Endophytic bacteria, previously identified as possessing biostimulant and biofertilizer properties, underwent High-Performance Liquid Chromatography (HPLC) to quantify phytohormones, specifically indole-3-acetic acid (IAA), gibberellic acid (GA), cytokinins, and abscisic acid (ABA). Bacterial cultures were grown in 50 mL Tryptic soy broth (TSB) supplemented with 5 mg/mL tryptophan for IAA quantification, following Tien et al. (1979), and incubated at 37℃ for 7 days. Uninoculated TSB served as a control. After incubation, cultures were centrifuged at 6000 rpm for 15 minutes. The supernatant's pH was adjusted to 2.5-3.0 with 0.1 N HCl, and then extracted with an equal volume of diethyl ether overnight at 4°C. The aqueous phase was discarded, and the organic phase was evaporated using a rotary vacuum evaporator at 40℃ and 10000 rpm. The resulting residue was dissolved in HPLC-grade acetonitrile/methanol, filtered through a 0.22 μm filter, and immediately analyzed via HPLC. C18 reverse phase HPLC column was fitted with the column temperature of 30℃ was maintained for all samples.
2.7 Characterization of efficient bacterial endophyte
Molecular characterization of efficient endophyte was done by DNA isolation by the by the alkaline lysis method (Ramu et al., 2010). The quality of the isolated DNA was verified by 0.8% agarose gel electrophoresis. Further, amplification of the 16S rRNA gene, by using universal primers 27F: 5’-AGAGTTTGATCCTGGCTCAG-3’ and 1492R: 5’-TACGGYTACCTTGTTACGACTT. PCR mixture prepared contained 1x Taq buffer (2 µL), dNTP mix (2µL), forward and reverse primer (0.5 µL each) template DNA (1 µL) and Taq polymerase (0.3 µL) and final volume is adjusted to 20 µL of sterile water. The PCR was conducted using a Proflex PCR thermal cycler (Carlsbad, California, United States). The amplification protocol included an initial denaturation at 94°C for 3 min, followed by 30 cycles of denaturation at 94°C for 1 min, annealing at 55°C for 30 sec, and extension at 72°C for 60 sec, with a final extension at 72°C for 10 min. The amplified products were verified via electrophoresis on a 1% (w/w) agarose gel to confirm the specific region's amplification.
Sequence analysis of the PCR products was performed by Eurofins Genomics. The resulting sequence was then subjected to a BLASTn search against the GenBank database to determine sequence similarity. Using BioEdit (v5.0.9), sequence identity matrices were created to compare the target endophyte to closely related sequences. To further understand the evolutionary context, a phylogenetic tree was generated using MEGA X.
3. RESULTS AND DISCUSSION	Comment by SAR 07: A more detailed discussion is needed regarding the variability between isolates in terms of biofertilizer properties. 
[bookmark: _Hlk170137130]3.1 Endophytic bacterial community: isolation and colonization analysis
From 48 tissue segments (24 leaf and 24 stem) of wild pigeonpea, 25 bacterial endophytes were successfully isolated of which 9 from leaf tissue (Fig. 1) and 16 from stem tissue (Fig. 2). Colonization frequencies were 58.33% for leaf segments and 87.50% for stem segments, indicating a higher prevalence of endophytes in stems (Table 1). The isolated endophytes were then characterized based on their morphology, as detailed in Table 2.
A diverse bacterial endophyte community was isolated and phenotypically characterized from wild pigeonpea (Cajanus scaraboides) leaf and stem tissues, revealing insights into their ecological roles. The viability and successful recovery of these endophytes were confirmed by high colonization frequencies and bacterial colony formation within 48-72 hours, indicating an effective isolation protocol.
Twenty-five endophytes were isolated from 48 tissue segments of Cajanus scaraboides, with a higher isolation frequency from stems (16 isolates) compared to leaves (9 isolates). Colonization frequencies, ranging from 58.33% to 87.50%, indicated a significant presence of endophytic bacteria. Notably, stem segments exhibited a higher colonization frequency (87.50%), suggesting a tissue-specific distribution of endophytes. This higher bacterial colonization in stems aligns with previous studies indicating stems as favorable microbial habitats (Rai et al., 2007; Yang et al., 2011). The vascular system within stems may facilitate endophyte movement and colonization, contributing to this increased presence (McCully, 2001), consistent with our findings. Recent studies on tea and sweet potato also reported higher bacterial diversity in stems compared to leaves, potentially due to the more stable internal environment of stems (Lin et al., 2022; Wang et al., 2023; Kandel et al., 2017). However, significant colonization was also observed in leaf tissues, highlighting both stems and leaves as important habitats for endophytic bacterial communities in C. scaraboides.
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Fig. 1. Leaf bacterial endophytes:  A-LB1, B-LB2, C-LB3, D-LB4, E-LB5, F-LB6, G-LB7, H-LB8, I-LB9


	[image: ]Fig. 2. Stem bacterial endophytes: A-SB1, B-SB2, C-SB3, D-SB4, E-SB5, F-SB6, G-SB7, H-SB8, I-SB9, J-SB10, K-SB11, L-SB12, M-SB13, N-SB14, O-SB15, P-SB16





Table 1. Endophytic colonization frequency from diverse tissues of pigeonpea
	Plant part
	Number of segments placed on media
	Number of segments colonized by endophytes
	Number of endophytes emerged
	Colonization frequency (%)

	Leaf
	24
	14
	9
	58.33

	Stem
	24
	21
	16
	87.50


3.2 Endophyte biofertilization potential: a qualitative assessment
The plant growth-promoting traits of 25 bacterial endophytes were assessed, focusing on siderophore production, nitrogen fixation, and the solubilization of phosphate, potassium, and zinc. Qualitative analysis revealed universal phosphate solubilization, evidenced by clear zone formation. However, only nine isolates (LB5, LB7, LB8, SB1, SB3, SB4, SB5, SB8, and SB13) displayed positive results for all tested parameters. These isolates demonstrated clear zones for mineral solubilization, orange zones for siderophore production, and bacterial growth on nitrogen-free media, indicating nitrogen fixation. The variability in these traits among the isolates is summarized in a binary category plot (Fig. 3).
The consistent phosphate solubilization observed across all isolates suggests a potential role in enhancing soil phosphorus availability, a crucial factor for plant growth (Singh et al., 2020). This observation aligns with previous reports demonstrating improved phosphorus acquisition following endophytic bacterial inoculation (Chauhan et al., 2013; Lovecka et al., 2023). While phosphate solubilization was universal, potassium and zinc solubilization was selective. These micronutrients are essential for plant physiological processes, including enzyme activation and protein synthesis (Ehsanullah et al., 2015; Perelman et al., 2022). The nine isolates capable of solubilizing phosphate, potassium, and zinc display a broad spectrum of nutrient-mobilizing properties, as previously reported in rice, maize, and potato (Walitang et al., 2017; Marag et al., 2018; Singh et al., 2022). This suggests their potential efficacy in biofertilization, enhancing nutrient uptake and plant health. Furthermore, siderophore production by some isolates indicates their ability to improve iron availability in crop systems (Han-Song et al., 2011), thereby supporting plant growth in iron-deficient environments.
Table 2. Morphological traits of bacterial endophytes of pigoenpea
	SL.No.
	Isolate
	Colony characteristics
	Gram reaction
	Cell shape

	
	
	Color
	Form
	Elevation
	Margin
	Surface
	
	

	1.
	LB1
	Creamy white
	Circular
	Flat
	Entire
	Smooth
	Gram -ve
	Cocci

	2.
	LB2
	Creamy White
	Circular
	Flat
	Entire
	Smooth
	Gram +ve
	Rod

	3.
	LB3
	White
	Circular
	Flat
	Entire
	Smooth
	Gram -ve
	Cocci

	4.
	LB4
	Creamy White
	Circular
	Flat
	Entire
	Smooth
	Gram -ve
	Coccobacilli

	5.
	LB5
	Pale Yellow
	Circular
	Raised
	Entire
	Smooth
	Gram +ve
	Rod

	6.
	LB6
	Creamy White
	Circular
	Convex
	Entire
	Smooth
	Gram -ve
	Coccobacilli

	7.
	LB7
	Creamy White
	Circular
	Raised
	Entire
	Smooth
	Gram +ve
	Coccobacilli

	8.
	LB8
	Pale Yellow
	Circular
	Flat
	Entire
	Smooth
	Gram +ve
	Rod

	9.
	LB9
	White
	Circular
	Flat
	Entire
	Smooth
	Gram -ve
	Cocci

	10.
	SB1
	White
	Circular
	Raised
	Entire
	Smooth
	Gram +ve
	Rod

	11.
	SB2
	Pale Yellow
	Circular
	Convex
	Entire
	Smooth
	Gram +ve
	Rod

	12.
	SB3
	White
	Circular
	Convex
	Entire
	Smooth
	Gram +ve
	Rod

	13.
	SB4
	Pale Yellow
	Circular
	Raised
	Entire
	Smooth
	Gram +ve
	Coccobacilli

	14.
	SB5
	White
	Circular
	Convex
	Entire
	Rough
	Gram -ve
	Cocci

	15.
	SB6
	Creamy White
	Irregular
	Raised
	Undulate
	Smooth
	Gram +ve
	Rod

	16.
	SB7
	White
	Irregular
	Raised
	Undulate
	Smooth
	Gram -ve
	Cocci

	17.
	SB8
	Creamy White
	Circular
	Raised
	Entire
	Smooth
	Gram -ve
	Cocci

	18.
	SB9
	White
	Circular
	Raised
	Entire
	Smooth
	Gram -ve
	Cocci

	19.
	SB10
	Pale Yellow
	Circular
	Flat
	Entire
	Smooth
	Gram +ve
	Coccobacilli

	20.
	SB11
	White
	Irregular
	Raised
	Entire
	Smooth
	Gram +ve
	Rod

	21.
	SB12
	Creamy White
	Irregular
	Raised
	Undulate
	Smooth
	Gram -ve
	Coccobacilli

	22.
	SB13
	Pale Yellow
	Circular
	Raised
	Entire
	Rough
	Gram +ve
	Rod

	23.
	SB14
	Creamy White
	Circular
	Flat
	Undulate
	Smooth
	Gram -ve
	Cocci

	24.
	SB15
	Pale Yellow
	Circular
	Flat
	Entire
	Smooth
	Gram +ve
	Coccobacilli

	25.
	SB16
	Pale Yellow
	Circular
	Flat
	Entire
	Smooth
	Gram +ve
	Rod


The observed universal phosphate solubilization suggests that these bacterial endophytes can effectively increase soil phosphorus availability, a critical factor for plant growth. These microorganisms can convert unavailable elements into plant-accessible forms through root exudates, thereby enhancing plant growth. The nine isolates (LB5, LB7, LB8, SB1, SB3, SB4, SB5, SB8, and SB13) demonstrating phosphate, potassium, and zinc solubilization, along with siderophore production, are particularly promising candidates for biofertilizer development. Their multifunctional properties enable simultaneous mitigation of multiple nutrient limitations, leading to enhanced plant growth
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Fig. 3. Binary category plot depicting endophyte biofertilization activities






3.3 Biostimulant activity of selected endophytes
Nine endophytes, previously identified for their biofertilizer activity, were evaluated for in planta growth promotion. Seed priming with these endophytes resulted in enhanced germination rates compared to the control (62.22%). Notably, seeds treated with SB3 exhibited the highest germination rate (91.11%), followed by SB13 (86.66%), with a significant difference observed between these two treatments (Table 3). Consistent with germination results, significant improvements were also observed in plant height, branching, leaf number, and dry matter accumulation in endophyte-treated plants. Specifically, SB3-treated plants showed significant increases in plant height (83.21 cm), branch number (15.66), leaf number (49.66), and dry matter accumulation (139.84 g/plant) compared to the control (69.26 cm, 7.33, 30.33, and 97.78 g/plant, respectively). These results highlight the potential of SB3 as an effective biostimulant.
In planta growth promotion analysis demonstrated the potential of these endophytes to enhance plant growth and development through various mechanisms. The increased germination percentages observed in endophyte-treated seeds, compared to the control, suggest a positive impact on seed viability and early growth stages (Verma et al., 2019). This aligns with prior research on seed endophytic Bacillus, which accelerated quinoa germination and indicated improved seed health (Pitzschke, 2016). The significant increase in germination rates, particularly with the SB3 isolate (91.11%), suggests the production of growth-promoting substances, such as phytohormones, which likely contribute to enhanced seed germination and vigor. For example, indole acetic acid (IAA) produced by Bacillus amyloliquefaciens has been shown to enhance seed germination and seedling vigor in capsicum (Gowtham et al., 2018). Furthermore, gibberellin biosynthesis intermediates, which are transported between cells to produce active gibberellins, play a crucial role in seed germination by activating the embryo, weakening the endosperm, mobilizing food reserves, and counteracting abscisic acid (Kucera et al., 2005).	Comment by SAR 07: It is necessary to explain the hormones that have an effect, such as IAA affecting cell elongation in peas and siderophore production helping iron absorption. 
Analysis at 12 weeks post-sowing revealed that endophyte treatment not only enhanced germination but also significantly improved other growth parameters. Plants treated with the SB3 isolate exhibited the greatest increase in plant height compared to the control, suggesting enhanced cell elongation and division, and improved vertical growth. This could be attributed to the endophyte's ability to increase nutrient availability and potentially produce phytohormones (Sandhya et al., 2017). Furthermore, SB3-treated plants showed a notable increase in branch and leaf number, indicating stimulated lateral growth and foliage development, possibly through improved nutrient solubilization and availability (de Melo Pereira et al., 2012). Increased branching and leaf production are associated with enhanced photosynthetic capacity and resource acquisition, ultimately leading to greater biomass production.
Table 3. Biostimulatory effects of endophytes on pigeonpea growth
	Treatments
	Isolates
	Plant height (cm)
	Number of branches
	Number of leaves
	Dry matter accumulation (g/plant)
	Germination percent (%)

	T1
	LB5
	75.54e
	12.33c
	44.33c
	132.01c
	82.22bc

	T2
	LB7
	74.61f
	12.00cd
	41.33d
	128.83d
	77.77cde

	T3
	LB8
	78.40c
	11.33cde
	39.33e
	125.03e
	68.88fg

	T4
	SB1
	75.93de
	10.33ef
	35.33g
	121.89f
	66.66fg

	T5
	SB3
	83.21a
	15.66a
	49.66a
	139.84a
	91.11a

	T6
	SB4
	76.32d
	9.33f
	33.66h
	112.80h
	80.00bcd

	T7
	SB5
	71.22h
	10.66e
	36.33g
	118.72g
	73.33def

	T8
	SB8
	73.45g
	11.00de
	37.66f
	124.85e
	71.11ef

	T9
	SB13
	80.89b
	13.66b
	46.66b
	136.77b
	86.66ab

	T10
	control
	69.26i
	7.33g
	30.33i
	97.78i
	62.22g

	Values are mean (±SE) (n=3) and values followed by the same letter in each column are not significantly different from each other as determined by DMRT (P= .05).




The observed increase in dry matter accumulation in endophyte-treated plants indicates enhanced biomass production, a key indicator of overall plant health and productivity. This enhancement is likely attributed to improved nutrient availability, increased photosynthetic efficiency resulting from a larger leaf area, and the overall stimulation of plant metabolic processes by the endophytes (Rana et al., 2020). These results highlight the potential of these endophytes, particularly SB3, as effective biostimulants for improving plant growth and productivity. Our findings corroborate previous reports on bacterial endophyte-mediated growth promotion (Kabir et al., 2023; Tsipinana et al., 2024).
3.4 Quantification of phytohormones produced by efficient endophyte
The endophytic bacterium SB3, known for its biofertilizing and biostimulating properties, was analyzed using HPLC to quantify the production of key phytohormones: IAA, gibberellin (GA), cytokinin, and abscisic acid (ABA). The resulting data, visualized in a balloon plot (Fig. 4), demonstrates the levels of these hormones synthesized by SB3.
While some microorganisms can produce small amounts of auxins without L-tryptophan (TRP), in vitro studies consistently show a significant increase in auxin production when TRP is present ((Zahir et al., 2010; Kabir et al., 2023). This was confirmed in our study, where endophyte SB3 produced substantially higher levels of IAA (2.83 to 8.28 µg/mL) in a medium supplemented with L-TRP compared to a standard medium. This highlights the importance of root exudates, which include TRP, in facilitating IAA synthesis by plant growth-promoting microorganisms under natural conditions (Mano and Nemoto, 2012). SB3 also demonstrated significant production of gibberellin GA3 (92.52 µg/mL), the most prevalent and biologically active form among gibberellins. These hormones are known to influence stem elongation, seed dormancy, leaf and fruit senescence, and flowering, often through interactions with other phytohormones (Yamaguchi, 2008; Gusmiaty et al., 2019). Furthermore, SB3 produced cytokinin (41.79 µg/mL), a level comparable to IAA production with TRP supplementation. Cytokinins play a vital role in cell division, tissue growth, and delaying leaf senescence, thereby enhancing plant productivity (Kiba and Sakakibara, 2010; Li et al., 2021). In contrast, SB3 produced a low concentration of abscisic acid (ABA, 1.38 µg/mL), aligning with its known growth-inhibitory effects. ABA acts antagonistically to auxins, gibberellins, and cytokinins, promoting stress responses and limiting growth under unfavorable conditions (Brookbank et al., 2021).
In summary, SB3's ability to synthesize a range of plant growth and stress-related phytohormones confirms its potential as a versatile biofertilizer and biostimulant, capable of enhancing plant performance across diverse environmental conditions.
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Fig. 4. Ballon plot displaying the phytohormone quantification in efficient endophyte SB3




3.6 Molecular characterization of SB3 (efficient endophyte)
Molecular characterization of endophytic bacteria SB3 was performed to ascertain its genetic identity. Genomic DNA was extracted via alkaline lysis, and the 16S rRNA gene was amplified using PCR, producing a fragment of approximately 1500 base pairs (Fig. 5a). Subsequent sequencing and BLASTn analysis against the NCBI GenBank database facilitated the identification of SB3 as Bacillus subtilis (Fig. 5b). 
Endophytic microorganisms within the Bacillus genus, notably Bacillus subtilis, are extensively studied for their plant growth-promoting and biological control attributes (Khan et al., 2018; Kushwaha et al., 2020). Endophytic B. subtilis enhances plant development through phytohormone synthesis and nutrient acquisition (Sorokan et al., 2021; Di et al., 2023) and confers biotic and abiotic stress resistance via secondary metabolite production (Lastochkina et al., 2020; Mageshwaran et al., 2022). The identification of isolate SB3 as Bacillus subtilis underscores its potential utility in agricultural biotechnology.
4. CONCLUSION	Comment by SAR 07: The conclusion must answer the research objectives 
This study establishes the significant plant growth-promoting potential of endophytic bacteria from wild pigeonpea, particularly Bacillus subtilis isolate SB3. To fully capitalize on this potential, future research should prioritize: (1) large-scale field trials to validate efficacy across diverse agro-climatic conditions; (2) mechanistic studies to elucidate the underlying biostimulation and biofertilization processes; and (3) exploration of biocontrol applications against plant pathogens. These investigations will facilitate the development of sustainable agricultural practices through the utilization of these beneficial endophytes.
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Fig. 5. Identification of efficient endophyte, SB3: A- Gel picture showing 1500 bp amplification (L: Ladder; 1 and 2: DNA samples), B- Phylogeny tree constructed by a neighbor-joining method
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