Anticenter-Symmetric Bialgebras

Abstract

This paper develops a bialgebra theory for anticenter-symmetric algebras by introducing the concept of an *anticenter-symmetric bialgebra*, equivalent to a Manin triple of anticentersymmetric algebras. A study of this framework leads to the *anticenter-symmetric Yang-Baxter equation* in anticenter-symmetric algebras, analogous to the classical Yang-Baxter equation in Mock Lie algebras and the associative Yang-Baxter equation.

An unexpected finding is that the anticenter-symmetric and associative Yang-Baxter equations share the same form. Additionally, skew-symmetric solutions to the anticenter-symmetric Yang-Baxter equation define anticenter-symmetric bialgebras. To advance the theory, the paper introduces \mathcal{O} -operators and pre-anticenter-symmetric algebras, which facilitate the construction of these solutions and provide a foundation for further exploration.

Keywords. Anticenter-Symmetric Algebras, Pre-Anticenter-Symmetric Algebras, Matched Pairs, Manin Triples, Bialgebras, Yang-Baxter Equation and O-operators

MSC2010. 16T25, 05C25, 16S99, 16Z05.

1 Introduction

Mock-Lie algebras are commutative algebras characterized by their adherence to the Jacobi identity, with significant contributions to their study made by P. Zusmanovich in [14]. These algebras have appeared under various names, reflecting diverse mathematical perspectives.

Their earliest mention was in [12], where an infinite-dimensional solvable but non-nilpotent example was introduced, later reproduced in [13]. They are also referred to as "Jordan algebras of nil index 3" in Jordan-algebraic literature, "Lie–Jordan algebras" in [11], and "Jacobi–Jordan algebras" in recent studies [6] and [1]. The term "mock-Lie" originates from [9], where the operad appears in a classification of quadratic cyclic operads. They possess two particularly noteworthy features:

- (a) Algebras associated with the Koszul dual of the Mock-Lie operad can be equivalently characterized in three distinct ways, as detailed in [14] and [7].
- (b) As observed in [11], Mock-Lie algebras can also be constructed from antiassociative algebras, paralleling their derivation from associative algebras. This underscores a profound relationship between Mock-Lie and antiassociative algebras.

Significant progress has been made in understanding the cohomology and deformation theories of Mock-Lie algebras. A notable development is the introduction of a cohomology framework based on two operators, referred to as *zigzag cohomology*, which was explored in [4] alongside a detailed examination of low-degree cohomology spaces. Furthermore, [5] investigated Mock-Lie bialgebras, the Yang-Baxter equation, and Manin triples, broadening the algebraic and structural insights into these algebras. The study of Lie-admissible algebras has been of great significance, particularly the bialgebraic exploration of left-symmetric algebras as detailed in [2]. More recently, anti-flexible algebras, also known as center-symmetric algebras, have emerged as another class of Lie-admissible algebras, with their bialgebraic properties investigated by [8]. In addition, we have recently introduced the concept of anticenter-symmetric Jacobi-Jordan algebras, which we refer to more succinctly as anticenter-symmetric algebras [10]. These algebras belong to the category of Mock-Lie admissible algebras.

The primary aim of our paper is to undertake an algebraic study of these structures; we establishe a bialgebra theory for anti-center-symmetric algebras by defining the concept of an *anticenter-symmetric bialgebra*, linked to a Manin triple of such algebras. This framework introduces the *anticenter-symmetric Yang-Baxter equation*, paralleling the classical Yang-Baxter equation in Mock Lie algebras and the associative Yang-Baxter equation. Remarkably, the anticenter-symmetric solutions to the former directly define anticenter-symmetric bialgebras. To support this theory, we introduce \mathcal{O} -operators and pre-anticenter-symmetric algebras, providing tools for constructing solutions.

The paper begins in Section 2 with a review of the bimodules and matched pairs of anti-centersymmetric algebras. Section 3 then focuses on the Manin triple of anti-center-symmetric algebras, providing a deeper understanding of their bialgebraic structural aspects. Section 4 explores a special class of anticenter-symmetric bialgebras, this leads to anticenter-symmetric Yang-Baxter equation.

Section 5 develops the theory of \mathcal{O} -operators of anticenter-symmetric algebras and pre-anticenter-symmetric algebras. Finally, Section 6 concludes the paper with reflective remarks that summarize the findings.

2 Bimodules and matched pairs of anticenter-symmetric algebras

Definition 2.1 [10] (\mathcal{A}, \cdot) , is said to be an anticenter-symmetric algebra if $\forall x, y, z \in \mathcal{A}$, the antiassociator of the bilinear product \cdot defined by $(x, y, z)_{-1} := (x \cdot y) \cdot z + x \cdot (y \cdot z)$, is symmetric in x and z, i.e.,

$$(x, y, z)_{-1} = -(z, y, x)_{-1}.$$
 (2.1)

As matter of notation simplification, we will denote $x \cdot y$ by xy if not any confusion.

Definition 2.2 [10] Let \mathcal{A} be an anticenter-symmetric algebra, V be a vector space. Suppose $l, r : \mathcal{A} \to \mathfrak{gl}(V)$ be two linear maps satisfying: for all $x, y \in \mathcal{A}$,

$$[l_x, r_y] = -[l_y, r_x]$$
(2.2)

$$l_{xy} + l_x l_y = -r_{yx} - r_x r_y. ag{2.3}$$

Then, (l, r, V) (or simply (l, r)) is called bimodule of the anticenter-symmetric algebra A.

Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. For any $x, y \in \mathcal{A}$, let L_x and R_x denote the left and right multiplication operators respectively, that is, $L_x(y) = xy$ and $R_x(y) = yx$. Let $L, R : \mathcal{A} \to \text{End}(\mathcal{A})$ be two linear maps with $x \to L_x$ and $x \to R_x$ for any $x \in \mathcal{A}$ respectively.

Example 2.3 Let (\mathcal{A}, \cdot) be an antisymmetric algebra. Then (L, R, \mathcal{A}) is a bimodule of (\mathcal{A}, \cdot) , which is called the **regular bimodule of** (\mathcal{A}, \cdot) .

Proposition 2.4 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and V be a vector space over K. Consider two linear maps, $l, r : \mathcal{A} \to \mathfrak{gl}(V)$. Then, (l, r, V) is a bimodule of \mathcal{A} if and only if, the semi-direct sum $\mathcal{A} \oplus V$ of vector spaces is turned into an anticenter-symmetric algebra by defining the multiplication in $\mathcal{A} \oplus V$ by $\forall x_1, x_2 \in \mathcal{A}, v_1, v_2 \in V$,

$$(x_1 + v_1) * (x_2 + v_2) = x_1 \cdot x_2 + (\frac{l_{x_1}v_2 + r_{x_2}v_1}{v_1})$$

We denote it by $\mathcal{A} \ltimes_{l,r}^{-1} V$ or simply $\mathcal{A} \ltimes^{-1} V$.

It is known that an anticenter-symmetric algebra is a Mock Lie-admissible algebra ([10]).

Proposition 2.5 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. Define the anticommutator by

$$[x, y] = x \cdot y + y \cdot x, \quad \forall x, y \in A.$$

$$(2.4)$$

Then it is a Mock Lie algebra and we denote it by $(\mathcal{G}(\mathcal{A}), [,])$ or simply $\mathcal{G}(\mathcal{A})$, which is called the **the sub-adjacent** Mock Lie algebra of (\mathcal{A}, \cdot) .

Corollary 2.6 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and V be a vector space over \mathbb{K} . Consider two linear maps, $l, r : \mathcal{A} \to \mathfrak{gl}(V)$, such that (l, r, V) is a bimodule of \mathcal{A} . Then, the map: $l+r : \mathcal{A} \longrightarrow \mathfrak{gl}(V) \xrightarrow{} x \longmapsto l_x + r_x$, is a linear representation of the sub-adjacent Mock Lie algebra of \mathcal{A} .

Proof: Let (l, r, V) be a bimodule of the anticenter-symmetric algebra \mathcal{A} . Then, $\forall x, y \in \mathcal{A}$ $[l_x, r_y] = -[l_y, r_x]; l_{xy} + l_x l_y = -r_x r_y - r_{yx}$. Besides, it is a matter of straightforward computation to show that l + r is a linear map on \mathcal{A} . Then, we have:

$$[(l+r)(x), (l+r)(y)] = [l_x + r_x, l_y + r_y]$$

$$= [l_x, l_y] + [l_x, r_y] + [r_x, l_y] + [r_x, r_y]$$

$$= [l_x, l_y] + [r_x, r_y]$$

$$= l_x l_y + l_y l_x + r_x r_y + r_y r_x$$

$$= \{l_x l_y + r_x r_y\} + \{l_y l_x + r_y r_x\}$$

$$= \{l_x y + r_y r_y\} + \{l_y x + r_x r_y\}$$

$$= (l+r)_{xy} + (l+r)_{yx} = (l+r)_{[x,r]}.$$

Therefore, (l, r, V) is a bimodule of \mathcal{A} implies that l + r is a representation of the linear representation of the sub-adjacent Mock Lie algebra of \mathcal{A} .

Theorem 2.7 [10] Let (\mathcal{A}, \cdot) and (\mathcal{B}, \circ) be two anticenter-symmetric algebras. Suppose that $(l_{\mathcal{A}}, r_{\mathcal{A}}, \mathcal{B})$ and $(l_{\mathcal{B}}, r_{\mathcal{B}}, \mathcal{A})$ are bimodules of \mathcal{A} and \mathcal{B} , respectively, obeying the relations:

$$r_{\mathcal{A}}(x)(a \circ b) + r_{\mathcal{A}}(l_{\mathcal{B}}(b)x)a + a \circ (r_{\mathcal{A}}(x)b) + l_{\mathcal{A}}(r_{\mathcal{B}}(b)x)a + (l_{\mathcal{A}}(x)b) \circ a + l_{\mathcal{A}}(x)(b \circ a) = 0,$$

$$(2.5)$$

$$r_{\mathcal{B}}(a)(x \cdot y) + r_{\mathcal{B}}(l_{\mathcal{A}}(y)a)x + x \cdot (r_{\mathcal{B}}(a)y) + l_{\mathcal{B}}(r_{\mathcal{A}}(y)a)x + (l_{\mathcal{B}}(a)y) \cdot x + l_{\mathcal{B}}(a)(y \cdot x) = 0,$$
(2.6)

$$a \circ (l_{\mathcal{A}}(x)b) + (r_{\mathcal{A}}(x)b) \circ a + (r_{\mathcal{A}}(x)a) \circ b + l_{\mathcal{A}}(l_{\mathcal{B}}(a)x)b + r_{\mathcal{A}}(r_{\mathcal{B}}(b)x)a + l_{\mathcal{A}}(l_{\mathcal{B}}(b)x)a + b \circ (l_{\mathcal{A}}(x)a) + r_{\mathcal{A}}(r_{\mathcal{B}}(a)x)b = 0,$$

$$(2.7)$$

$$x \cdot (l_{\mathcal{B}}(a)y) + (r_{\mathcal{B}}(a)y) \cdot x + (r_{\mathcal{B}}(a)x) \cdot y + l_{\mathcal{B}}(l_{\mathcal{A}}(x)a)y + r_{\mathcal{B}}(r_{\mathcal{A}}(y)a)x + l_{\mathcal{B}}(l_{\mathcal{A}}(y)a)x + y \cdot (l_{\mathcal{B}}(a)x) + r_{\mathcal{B}}(r_{\mathcal{A}}(x)a)y = 0,$$

$$(2.8)$$

for all $x, y \in A$ and $a, b \in \mathcal{B}$. Then, there is an anticenter-symmetric algebra structure on $\mathcal{A} \oplus \mathcal{B}$ given by:

$$(x+a)*(y+b) = (x \cdot y + l_{\mathcal{B}}(a)y + r_{\mathcal{B}}(b)x) + (a \circ b + l_{\mathcal{A}}(x)b + r_{\mathcal{A}}(y)a).$$
(2.9)

We denote this anticenter-symmetric algebra by $\mathcal{A} \bowtie_{l_{\mathcal{B}},r_{\mathcal{B}}}^{-1,l_{\mathcal{A}},r_{\mathcal{A}}} \mathcal{B}$, or simply by $\mathcal{A} \bowtie^{-1} \mathcal{B}$. Then $(\mathcal{A}, \mathcal{B}, l_{\mathcal{A}}, r_{\mathcal{A}}, l_{\mathcal{B}}, r_{\mathcal{B}})$ satisfying the above conditions is called matched pair of the anticenter-symmetric algebras \mathcal{A} and \mathcal{B} . **Definition 2.8** Let (l, r, V) be a bimodule of an anticenter-symmetric algebra \mathcal{A} , where V is a finite dimensional vector space. The dual maps l^*, r^* of the linear maps l, r, are defined, respectively, as: $l^*, r^* : \mathcal{A} \to \mathfrak{gl}(V^*)$ such that: for all $x \in \mathcal{A}, u^* \in V^*, v \in V$,

$$l^{*}: \mathcal{A} \longrightarrow \mathfrak{gl}(V^{*}) \qquad V^{*} \longrightarrow V^{*} \qquad (2.10)$$

$$x \longmapsto l_{x}^{*}: u^{*} \longmapsto l_{x}^{*}u^{*}: V \longrightarrow \mathbb{K} \qquad (2.10)$$

$$r^{*}: \mathcal{A} \longrightarrow \mathfrak{gl}(V^{*}) \qquad V^{*} \longrightarrow V^{*} \qquad X \longmapsto r_{x}^{*}: u^{*} \longmapsto r_{x}^{*}u^{*}: V \longrightarrow \mathbb{K} \qquad (2.11)$$

Proposition 2.9 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $l, r : \mathcal{A} \to \mathfrak{gl}(V)$ be two linear maps, where V is a finite dimensional vector space. The following conditions are equivalent:

- 1. (l, r, V) is a bimodule of A.
- 2. (r^*, l^*, V^*) is a bimodule of \mathcal{A} .

Proof:

(1) \Rightarrow (2) Suppose that (l, r, V) is a bimodule of (\mathcal{A}, \cdot) and show that (r^*, l^*, V^*) is also a bimodule of (\mathcal{A}, \cdot) . We have:

•

$$\langle \frac{(r_{xy}^* + r_x^* r_y^*)u^*, v}{(r_{xy}^* u^*, v)} \rangle$$

$$= \langle r_{xy}^* u^*, v \rangle + \langle (r_x^* r_y^*)u^*, v \rangle = \langle r_{xy}(v), u^* \rangle + \langle r_y(r_x(v)), u^* \rangle$$

$$= \langle (r_{xy} + r_y r_x)(v), u^* \rangle = \langle -(l_{yx} + l_y l_x)(v), u^* \rangle$$

$$= -\langle l_{yx}(v), u^* \rangle - \langle (l_y l_x)(v), u^* \rangle$$

$$= -\langle l_{yx}^* u^*, v \rangle - \langle (l_x^* l_y^*)u^*, v \rangle$$

$$= \langle -(l_{yx}^* + l_x^* l_y^*)u^*, v \rangle.$$

Therefore,

$$l_{yx}^* + l_x^* l_y^* = -r_{xy}^* - r_x^* r_y^*, \ \forall \ x, y \ \mathcal{A}$$
(2.12)

•

$$\langle [l_x^*, r_y^*]u^*, v \rangle$$

$$= \langle l_x^*(r_y^*)u^*, v \rangle + \langle r_y^*(l_x^*)u^*, v \rangle = \langle l_x(v), r_y^*u^* \rangle + \langle r_yv, l_x^*u^* \rangle$$

$$= \langle r_y(l_x(v)), u^* \rangle + \langle l_x(r_y(v)), u^* \rangle = \langle [r_y, l_x]v, u^* \rangle$$

$$= \langle -[r_x, l_y]v, u^* \rangle = \langle -(r_x(l_y) + l_y(r_x))v, u^* \rangle$$

$$= \langle -(l_y^*r_x^* + r_x^*l_y^*)u^*, v \rangle = \langle -[l_y^*, r_x^*]u^*, v \rangle$$

Therefore

$$[l_x^*, r_y^*] = -[l_y^*, r_x^*], \ \forall \ x, y \in \mathcal{A}.$$
(2.13)

By considering the relations (2.12) and (2.13), we conclude that (r^*, l^*, V) is a bimodule of (\mathcal{A}, \cdot) .

(2) \Rightarrow (1) The converse, (i.e., by supposing that (r^*, l^*, V) is a bimodule of (\mathcal{A}, \cdot) then (l, r, V) is also a bimodule of (\mathcal{A}, \cdot)), can be proved by direct calculations by using similar relations as for the first part of the proof.

3 Manin triple of anticenter-symmetric algebras

In this section, we first give the definition of Manin triple of an anticenter-symmetric algebra and investigate its main properties.

Definition 3.1 A Manin triple of anticenter-symmetric algebras is a triple $(\mathcal{A}, \mathcal{A}^+, \mathcal{A}^-)$ equipped with a nondegenerate symmetric bilinear form $\mathfrak{B}(,)$ on \mathcal{A} which is invariant, i.e., $\forall x, y, z \in \mathcal{A}$, $\mathfrak{B}(x * y, z) = \mathfrak{B}(x, y * z)$, satisfying:

- 1. $\mathcal{A} = \mathcal{A}^+ \oplus \mathcal{A}^-$ as \mathbb{K} -vector space;
- 2. \mathcal{A}^+ and \mathcal{A}^- are anticenter-symmetric subalgebras of \mathcal{A} ;
- 3. \mathcal{A}^+ and \mathcal{A}^- are isotropic with respect to $\mathfrak{B}(,)$, that is $\mathfrak{B}(\mathcal{A}^+; \mathcal{A}^+) = \mathfrak{B}(\mathcal{A}^-; \mathcal{A}^-) = 0$.

Definition 3.2 Two Manin triples $(\mathcal{A}_1, \mathcal{A}_1^+, \mathcal{A}_1^-, \mathfrak{B}_1)$ and $(\mathcal{A}_2, \mathcal{A}_2^+, \mathcal{A}_2^-, \mathfrak{B}_2)$ of anticenter-symmetric algebras \mathcal{A}_1 and \mathcal{A}_2 are homomorphic (isomorphic) if there is a homomorphism (isomorphism) $\varphi : \mathcal{A}_1 \to \mathcal{A}_2$ such that: $\varphi(\mathcal{A}_1^+) \subset \mathcal{A}_2^+, \ \varphi(\mathcal{A}_1^-) \subset \mathcal{A}_2^-, \ \mathfrak{B}_1(x, y) = \mathfrak{B}_2(\varphi(x), \varphi(y)).$

In particular, if (\mathcal{A}, \cdot) is an anticenter-symmetric algebra, and if there exists an anticentersymmetric algebra structure on its dual space \mathcal{A}^* denoted (\mathcal{A}^*, \circ) , then there is a anticentersymmetric algebra structure on the direct sum of the underlying vector spaces of \mathcal{A} and \mathcal{A}^* (see Theorem 2.7) such that $(\mathcal{A} \oplus \mathcal{A}^*, \mathcal{A}, \mathcal{A}^*)$ is the associated Manin triple with the invariant bilinear symmetric form given by

$$\mathfrak{B}_{d}(x+a^{*},y+b^{*}) = < x, b^{*} > + < y, a^{*} >, \ \forall x, y \in \mathcal{A}; a^{*}, b^{*} \in \mathcal{A}^{*},$$
(3.1)

called the standard Manin triple of the anticenter-symmetric algebra \mathcal{A} .

Theorem 3.3 Let (\mathcal{A}, \cdot) and (\mathcal{A}^*, \circ) be two anticenter-symmetric algebras. Then,

the sixtuple $(\mathcal{A}, \mathcal{A}^*, R^*, L^*; R^*_{\circ}, L^*_{\circ})$ is a matched pair of anticenter-symmetric algebras \mathcal{A} and \mathcal{A}^* if and only if $(\mathcal{A} \oplus \mathcal{A}^*, \mathcal{A}, \mathcal{A}^*)$ is their standard Manin triple.

Proof:

By considering that $(\mathcal{A}, \mathcal{A}^*, R^*, L^*; R^*_\circ, L^*_\circ)$ is a matched pair of anticenter-symmetric algebras, it follows that the bilinear product * defined in the Theorem 2.7 is anticenter-symmetric on the direct sum of underlying vectors spaces, $\mathcal{A} \oplus \mathcal{A}^*$.

We have $\forall x, y, z \in \mathcal{A}; a, b, c \in \mathcal{A}^*$.

$$\begin{aligned} \mathfrak{B}_{d}((x+a)*(y+b),z+c) &= \langle xy+R_{\circ}^{*}(a)y+L_{\circ}^{*}(b)x,c\rangle + \langle z,a\circ b+R_{\cdot}^{*}(x)b+L_{\cdot}^{*}(y)a\rangle \\ &= \langle xy,c\rangle + \langle R_{\circ}^{*}(a)y,c\rangle + \langle L_{\circ}^{*}(b)x,c\rangle + \langle z,a\circ b\rangle + \langle z,R_{\cdot}^{*}(x)b\rangle \\ &+ \langle z,L_{\cdot}^{*}(y)a\rangle = \langle xy,c\rangle + \langle y,R_{a}(c)\rangle + \langle x,L_{b}(c)\rangle + \langle z,a\circ b\rangle \\ &+ \langle R_{x}(z),b\rangle + \langle L_{y}(z),a\rangle = \langle xy,c\rangle + \langle y,c\circ a\rangle \\ &+ \langle x,b\circ c\rangle + \langle z,a\circ b\rangle + \langle zx,b\rangle + \langle yz,a\rangle. \end{aligned}$$

$$\begin{aligned} \mathfrak{B}_{d}\left((x+a),(y+b)*(z+c)\right) &= \langle x,b\circ c+R^{*}_{\cdot}(y)c+L^{*}_{\cdot}(z)b\rangle + \langle yz+R^{*}_{\circ}(b)z \\ &+ L^{*}_{\circ}(c)y,a > + \langle x,b\circ c\rangle + \langle x,R^{*}_{\cdot}(y)c\rangle + \langle x,L^{*}_{\cdot}(z)b\rangle \\ &+ \langle yz,a\rangle + \langle R^{*}_{\circ}(b)z,a\rangle + \langle L^{*}_{\circ}(c)y,a\rangle \\ &= \langle x,b\circ c\rangle + \langle R_{y}(x),c\rangle + \langle L_{z}(x),b\rangle \\ &+ \langle yz,a\rangle + \langle z,R_{b}(a)\rangle + \langle y,L_{c}(a)\rangle \\ &= \langle x,b\circ c\rangle + \langle xy,c\rangle + \langle zx,b\rangle + \langle yz,a\rangle \\ &+ \langle z,a\circ b\rangle + \langle y,c\circ a\rangle .\end{aligned}$$

Therefore, the following relation

$$\mathfrak{B}_d((x+a)*(y+b),(z+c)) = \mathfrak{B}_d((x+a),(y+b)*(z+c))$$
(3.2)

holds, which expresses the invariance of the standard bilinear form on $\mathcal{A} \oplus \mathcal{A}^*$. Therefore, $(\mathcal{A} \oplus \mathcal{A}^*, \mathcal{A}, \mathcal{A}^*)$ is the standard Manin triple of the anticenter-symmetric algebras \mathcal{A} and \mathcal{A}^* . \Box

Proposition 3.4 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. Suppose that there exists an anticenter-symmetric algebra structure " \circ " on the dual space \mathcal{A}^* .

Then, $(\mathcal{A}, \mathcal{A}^*, R^*, L^*, R^*_{\circ}, L^*_{\circ})$ is a matched pair of anticenter-symmetric algebras if and only if for any $x, y \in \mathcal{A}, a \in \mathcal{A}^*$,

$$R_{\circ}^{*}(a)(x \cdot y) + L_{\circ}^{*}(a)(y \cdot x) + L_{\circ}^{*}(R_{\cdot}^{*}(x)a)y + y \cdot (L_{\circ}^{*}(a)x) + R_{\circ}^{*}(L_{\cdot}^{*}(x)a)y + (R_{\circ}^{*}(a)x) \cdot y = 0, \quad (3.3)$$

$$y \cdot (R_{\circ}^{*}(a)x) + x \cdot (R_{\circ}^{*}(a)y) + (L_{\circ}^{*}(a)x) \cdot y + (L_{\circ}^{*}(a)y) \cdot x + L_{\circ}^{*}(L_{\cdot}^{*}(x)a)y + R_{\circ}^{*}(R_{\cdot}^{*}(y)a)x + R_{\circ}^{*}(R_{\cdot}^{*}(x)a)y + L_{\circ}^{*}(L_{\cdot}^{*}(y)a)x = 0.$$
(3.4)

Proof: Obviously, Eq. (3.3) is exactly Eq. (2.6) and Eq. (3.4) is exactly Eq. (2.8) in the case $l_A = R^*, r_A = L^*, l_B = l_{A^*} = R^*_{\circ}, r_B = r_{A^*} = L^*_{\circ}$. For any $x, y \in A, a, b \in A^*$, we have:

$$\begin{split} \langle R^{*}_{\circ}(a)(x \cdot y), b \rangle &= \langle x \cdot y, R_{\circ}(a)b \rangle = \langle x \cdot y, b \circ a \rangle = \langle L.(x)y, b \circ a \rangle = \langle y, L^{*}_{\cdot}(x)(b \circ a) \rangle \, ; \\ \langle L^{*}_{\circ}(a)(y \cdot x), b \rangle &= \langle y \cdot x, L_{\circ}(a)b \rangle = \langle y \cdot x, a \circ b \rangle = \langle R.(x)y, a \circ b \rangle = \langle y, R^{*}_{\cdot}(x)(a \circ b) \rangle \, ; \\ \langle L^{*}_{\circ}(R^{*}_{\cdot}(x)a)y, b \rangle &= \langle y, L_{\circ}(R^{*}_{\cdot}(x)a)b \rangle = \langle y, (R^{*}_{\cdot}(x)a) \circ b \rangle \, ; \\ \langle y \cdot (L^{*}_{\circ}(a)x), b \rangle &= \langle R.(L^{*}_{\circ}(a)x)y, b \rangle = \langle y, R^{*}_{\cdot}(L^{*}_{\circ}(a)x)b \rangle \, ; \\ \langle R^{*}_{\circ}(L^{*}_{\cdot}(x)a)y, b \rangle &= \langle y, R_{\circ}(L^{*}_{\cdot}(x)a)b \rangle = \langle y, b \circ (L^{*}_{\cdot}(x)a) \rangle \, ; \\ \langle (R^{*}_{\circ}(a)x) \cdot y, b \rangle &= \langle L.(R^{*}_{\circ}(a)x)y, b \rangle = \langle y, L^{*}_{\cdot}(R^{*}_{\circ}(a)x)b \rangle \, . \end{split}$$

Then Eq. (2.5) holds if and only if Eq. (2.6) holds. Similarly, Eq. (2.7) holds if and only if Eq. (2.8) holds. Therefore the conclusion holds. \Box

Let V be a vector space. Let $\sigma: V \otimes V \to V \otimes V$ be the *flip* defined as

$$\sigma(x \otimes y) = y \otimes x, \quad \forall x, y \in V.$$
(3.5)

Theorem 3.5 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. Suppose there is an anticentersymmetric algebra structure " \circ " on its dual space \mathcal{A}^* given by a linear map $\Delta^* : \mathcal{A}^* \otimes \mathcal{A}^* \to \mathcal{A}^*$. Then $(\mathcal{A}, \mathcal{A}^*, \mathbb{R}^*, L^*, \mathbb{R}^*_\circ, \mathbb{L}^*_\circ)$ is a matched pair of anticenter-symmetric algebras if and only if $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ satisfies the following two conditions:

$$\Delta(x \cdot y) + \sigma \Delta(y \cdot x) = -(\sigma(\operatorname{id} \otimes L_{\cdot}(y)) + R_{\cdot}(y) \otimes \operatorname{id})\Delta(x) - (\sigma(R_{\cdot}(x) \otimes \operatorname{id}) + \operatorname{id} \otimes L_{\cdot}(x))\Delta(y), \quad (3.6)$$

$$(\sigma(\operatorname{id} \otimes R_{\cdot}(y)) + \operatorname{id} \otimes R_{\cdot}(y) + \sigma(L_{\cdot}(y) \otimes \operatorname{id}) + L_{\cdot}(y) \otimes \operatorname{id})\Delta(x) =$$

$$(-\sigma(\operatorname{id} \otimes R_{\cdot}(x)) - \operatorname{id} \otimes R_{\cdot}(x) - \sigma(L_{\cdot}(x) \otimes \operatorname{id}) - L_{\cdot}(x) \otimes \operatorname{id})\Delta(y), \quad (3.7)$$

for any $x, y \in \mathcal{A}$.

Proof: For any $x, y \in \mathcal{A}$ and any $a, b \in \mathcal{A}^*$, we have

$$\begin{split} &\langle \Delta(x \cdot y), a \otimes b \rangle = \langle x \cdot y, a \cdot b \rangle, = \langle L^*_{\circ}(a)(x \cdot y), b \rangle, \\ &\langle \sigma \Delta(y \cdot x), a \otimes b \rangle = \langle y \cdot x, b \circ a \rangle = \langle R^*_{\circ}(a)(y \cdot x), b \rangle, \\ &\langle \sigma(\operatorname{id} \otimes L.(y)) \Delta(x), a \otimes b \rangle = \langle x, b \circ (L^*_{\cdot}(y)a) \rangle = \langle R^*_{\circ}(L^*_{\cdot}(y)a)x, b \rangle, \\ &\langle (R.(y) \otimes \operatorname{id}) \Delta(x), a \otimes b \rangle = \langle x, (R^*_{\cdot}(y)a) \circ b \rangle = \langle L^*_{\circ}(R^*_{\cdot}(y)a)x, b \rangle, \\ &\langle \sigma(R.(x) \otimes \operatorname{id}) \Delta(y), a \otimes b \rangle = \langle y, (R^*_{\cdot}(x)b) \circ a \rangle = \langle (R^*_{\circ}(a)y) \cdot x, b \rangle, \\ &\langle (\operatorname{id} \otimes L.(x)) \Delta(y), a \otimes b \rangle = \langle y, a \circ (L^*_{\cdot}(x)b) \rangle = \langle x \cdot (L^*_{\circ}(a)y), b \rangle. \end{split}$$

Then Eq. (3.3) is equivalent to Eq. (3.6). Moreover, we have

 $\begin{aligned} &\langle \sigma(\operatorname{id} \otimes R_{\cdot}(y))\Delta(x), a \otimes b \rangle = \langle x, b \circ (R_{\cdot}^{*}(y)a) \rangle = \langle R_{\circ}^{*}(R_{\cdot}^{*}(y)a)x, b \rangle, \\ &\langle (\operatorname{id} \otimes R_{\cdot}(y))\Delta(x), a \otimes b \rangle = \langle x, a \circ (R_{\cdot}^{*}(y)b) \rangle = \langle (L_{\circ}^{*}(a)x) \cdot y, b \rangle, \\ &\langle \sigma(L_{\cdot}(y) \otimes \operatorname{id})\Delta(x), a \otimes b \rangle = \langle x, (L_{\cdot}^{*}(y)b) \circ a \rangle = \langle y \cdot (R_{\circ}^{*}(a)x), b \rangle, \\ &\langle (L_{\cdot}(y) \otimes \operatorname{id})\Delta(x), a \otimes b \rangle = \langle x, (L_{\cdot}^{*}(y)a) \circ b \rangle = \langle L_{\circ}^{*}(L_{\cdot}^{*}(y)a)x, b \rangle. \end{aligned}$

Then Eq. (3.4) is equivalent to Eq. (3.7). Hence the conclusion holds.

Remark 3.6 From the symmetry of the anticenter-symmetric algebras (\mathcal{A}, \cdot) and (\mathcal{A}^*, \circ) in the standard Manin triple of anticenter-symmetric algebras associated to \mathfrak{B}_d , we also can consider a linear map $\gamma : \mathcal{A}^* \to \mathcal{A}^* \otimes \mathcal{A}^*$ such that $\gamma^* : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ gives the anticenter-symmetric algebra structure "·" on \mathcal{A} . It is straightforward to show that Δ satisfies Eqs. (3.6) and (3.7) if and only if γ satisfies

$$\gamma(a \circ b) + \sigma\gamma(b \circ a) = (\sigma(\mathrm{id} \otimes L_{\circ}(b)) + R_{\circ}(b) \otimes \mathrm{id})\gamma(a) + (\sigma(R_{\circ}(a) \otimes \mathrm{id}) + \mathrm{id} \otimes L_{\circ}(a))\gamma(b), \quad (3.8)$$

$$(\sigma(\operatorname{id} \otimes R_{\circ}(b)) + \operatorname{id} \otimes R_{\circ}(b) + \sigma(L_{\circ}(b) \otimes \operatorname{id}) + (L_{\circ}(b) \otimes \operatorname{id}))\gamma(a) + (L_{\circ}(a) \otimes \operatorname{id}) + \sigma(L_{\circ}(a) \otimes \operatorname{id}) + \sigma(\operatorname{id} \otimes R_{\circ}(a)) + (\operatorname{id} \otimes R_{\circ}(a)))\gamma(b) = 0,$$

$$(3.9)$$

for any $a, b \in \mathcal{A}^*$.

Definition 3.7 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. An anticenter-symmetric bialgebra structure on \mathcal{A} is a linear map $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ such that

- 1. $\Delta^* : \mathcal{A}^* \otimes \mathcal{A}^* \to \mathcal{A}^*$ defines an anticenter-symmetric algebra structure on \mathcal{A}^* ;
- 2. Δ satisfies Eqs. (3.6) and (3.7).

We denote it by (\mathcal{A}, Δ) or $(\mathcal{A}, \mathcal{A}^*)$.

Example 3.8 Let (\mathcal{A}, Δ) be an anticenter-symmetric bialgebra on an anticenter-symmetric algebra \mathcal{A} . Then (\mathcal{A}^*, γ) is an anticenter-symmetric bialgebra on the anticenter-symmetric algebra \mathcal{A}^* , where γ is given in Remark 3.6.

Combining Proposition 3.4 and Theorem 3.5 together, we have the following conclusion.

Theorem 3.9 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. Suppose that there is an anticentersymmetric algebra structure on its dual space \mathcal{A}^* denoted " \circ " which is defined by a linear map $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$. Then the following conditions are equivalent.

- 1. $(\mathcal{A} \oplus \mathcal{A}^*, \mathcal{A}, \mathcal{A}^*)$ is a standard Manin triple of anticenter-symmetric algebras associated to \mathfrak{B}_d defined by Eq. (3.1).
- 2. $(\mathcal{A}, \mathcal{A}^*, R^*, L^*, R^*_{\circ}, L^*_{\circ})$ is a matched pair of anticenter-symmetric algebras.
- 3. (\mathcal{A}, Δ) is an anticenter-symmetric bialgebra.

Recall a Mock Lie bialgebra structure on a Mock Lie algebra \mathcal{G} is a linear map $\delta : \mathcal{G} \to \mathcal{G} \otimes \mathcal{G}$ such that $\delta^* : \mathcal{G}^* \otimes \mathcal{G}^* \to \mathcal{G}^*$ defines a Mock Lie algebra structure on \mathcal{G}^* and δ satisfies

$$\delta[x,y] = -(\mathrm{ad}(x) \otimes \mathrm{id} + \mathrm{id} \otimes \mathrm{ad}(x))\delta(y) - (\mathrm{ad}(y) \otimes \mathrm{id} + \mathrm{id} \otimes \mathrm{ad}(y))\delta(x), \quad \forall x, y \in \mathcal{G},$$
(3.10)

where $\operatorname{ad}(x)(y) = [x, y]$ for any $x, y \in \mathcal{G}$. We denoted it by (\mathcal{G}, δ) .

Proposition 3.10 Let (\mathcal{A}, Δ) be an anticenter-symmetric bialgebra. Then $(\mathcal{G}(\mathcal{A}), \delta)$ is a Mock Lie bialgebra, where $\delta = \Delta + \sigma \Delta$.

Proof: It is straightforward.

4 A special class of anticenter-symmetric bialgebras

In this section, we consider a special class of anticenter-symmetric bialgebras, that is, the anticentersymmetric bialgebra (\mathcal{A}, Δ) on an anti-flexible algebra (\mathcal{A}, \cdot) , with the linear map Δ defined by

$$\Delta(x) = -(\mathrm{id} \otimes L(x))\mathbf{r} - (R(x) \otimes \mathrm{id})\sigma\mathbf{r}, \quad \forall x \in \mathcal{A},$$
(4.1)

where $r \in \mathcal{A} \otimes \mathcal{A}$.

Proposition 4.1 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$. Let $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ be a linear map defined by Eq. (4.1). Eq. (3.6) holds if and only if

$$(L_{\cdot}(y) \otimes R_{\cdot}(x) + R_{\cdot}(y) \otimes L_{\cdot}(x))(\mathbf{r} + \sigma \mathbf{r}) = 0, \quad \forall x, y \in \mathcal{A}.$$

$$(4.2)$$

Proof: Let $\mathbf{r} = \sum_{i} u_i \otimes v_i \in \mathcal{A} \otimes \mathcal{A}$. Then, Eq. (4.1) becomes

$$\Delta(x) = \sum_{i} (-u_i \otimes xv_i - v_i x \otimes u_i),$$

and

$$\sigma\Delta(x) = \sum_{i} (-xv_i \otimes u_i - u_i \otimes v_i x).$$

We have:

$$\mathbf{A} = \Delta(xy) + \sigma \Delta(yx) = \sum_{i} \left(-u_i \otimes (xy)v_i - v_i(xy) \otimes u_i - (yx)v_i \otimes u_i - u_i \otimes v_i(yx) \right);$$

and

$$\begin{split} \mathbf{B} &= -\left(\sigma(\mathrm{id}\otimes L_{\cdot}(y)) + R_{\cdot}(y)\otimes\mathrm{id}\right)\Delta(x) - \left(\sigma(R_{\cdot}(x)\otimes\mathrm{id}) + \mathrm{id}\otimes L_{\cdot}(x)\right)\Delta(y) \\ &= \sum_{i} \left[-\left(\sigma(\mathrm{id}\otimes L_{\cdot}(y)) + R_{\cdot}(y)\otimes\mathrm{id}\right)(-u_{i}\otimes xv_{i} - v_{i}x\otimes u_{i}) \\ &- \left(\sigma(R_{\cdot}(x)\otimes\mathrm{id}) + \mathrm{id}\otimes L_{\cdot}(x)\right)(-u_{i}\otimes yv_{i} - v_{i}y\otimes u_{i}) \right] \\ &= \mathbf{A} + \sum_{i} \left(yu_{i}\otimes v_{i}x + u_{i}y\otimes xv_{i} + yv_{i}\otimes u_{i}x + v_{i}y\otimes xu_{i}\right) \\ &= \mathbf{A} + \left(L_{\cdot}(y)\otimes R_{\cdot}(x) + R_{\cdot}(y)\otimes L_{\cdot}(x)\right)(\mathbf{r} + \sigma\mathbf{r}). \end{split}$$

By setting $\mathbf{B} = \mathbf{A}$, Eq. (4.2) is established.

Proposition 4.2 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$. Let $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ be a linear map defined by Eq. (4.1). Eq. (3.7) holds if and only if

$$(R_{\cdot}(x) \otimes R_{\cdot}(y) + R_{\cdot}(y) \otimes R_{\cdot}(x) + L_{\cdot}(x) \otimes L_{\cdot}(y) + L_{\cdot}(y) \otimes L_{\cdot}(x))(\mathbf{r} + \sigma \mathbf{r}) = 0, \quad \forall x, y \in A.$$
(4.3)

Proof: In this proof, for simplicity, we take $r = u_i \otimes v_i \in \mathcal{A} \otimes \mathcal{A}$. On the one hand, the left-hand side of Eq. (3.7) is given by:

$$\mathbf{A} = (\sigma(\mathrm{id} \otimes R.(y)) + \mathrm{id} \otimes R.(y) + \sigma(L.(y) \otimes \mathrm{id}) + L.(y) \otimes \mathrm{id})\Delta(x)$$

= $-(xv_i)y \otimes u_i - u_iy \otimes v_ix - u_i \otimes (xv_i)y - v_ix \otimes u_iy - xv_i \otimes yu_i$
 $- u_i \otimes y(v_ix) - yu_i \otimes xv_i - y(v_ix) \otimes u_i.$

On the other hand, the right-hand side of Eq. (3.7) is:

$$\mathbf{B} = (-\sigma(\mathrm{id} \otimes R.(x)) - \mathrm{id} \otimes R.(x) - \sigma(L.(x) \otimes \mathrm{id}) - L.(x) \otimes \mathrm{id})\Delta(y)$$

= $(yv_i)x \otimes u_i + u_ix \otimes v_iy + u_i \otimes (yv_i)x + v_iy \otimes u_ix + yv_i \otimes xu_i$
+ $u_i \otimes x(v_iy) + xu_i \otimes yv_i + x(v_iy) \otimes u_i.$

By setting $\mathbf{A} = \mathbf{B}$, we obtain:

 $u_i y \otimes v_i x + v_i x \otimes u_i y + x v_i \otimes y u_i + y u_i \otimes x v_i$ $+ u_i x \otimes v_i y + v_i y \otimes u_i x + y v_i \otimes x u_i + x u_i \otimes y v_i = 0.$

This establishes Eq. (4.3).

Lemma 4.3 Let \mathcal{A} be a vector space and $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ be a linear map. Then the dual map $\Delta^* : \mathcal{A}^* \otimes \mathcal{A}^* \to \mathcal{A}^*$ defines an anticenyer-symmetryic algebra structure on \mathcal{A}^* if and only if $H_{\Delta} = 0$, where

$$H_{\Delta} = (\Delta \otimes \mathrm{id})\Delta + (\mathrm{id} \otimes \Delta)\Delta + ((\sigma \Delta) \otimes \mathrm{id})(\sigma \Delta) + (\mathrm{id} \otimes (\sigma \Delta))(\sigma \Delta).$$

$$(4.4)$$

Proof: Denote by \circ the product on \mathcal{A}^* defined by Δ^* . Specifically,

$$\langle a \circ b, x \rangle = \langle \Delta^*(a \otimes b), x \rangle = \langle a \otimes b, \Delta(x) \rangle, \quad \forall x \in \mathcal{A}, \ a, b \in \mathcal{A}^*.$$

For all $a, b, c \in \mathcal{A}^*$ and $x \in \mathcal{A}$, we have:

$$\langle (a, b, c), x \rangle = \langle (a \circ b) \circ c + a \circ (b \circ c), x \rangle$$

$$= \langle (\Delta^* (\Delta^* \otimes \mathrm{id}) + \Delta^* (\mathrm{id} \otimes \Delta^*)) (a \otimes b \otimes c), x \rangle$$

$$= \langle ((\Delta \otimes \mathrm{id})\Delta + (\mathrm{id} \otimes \Delta)\Delta)(x), a \otimes b \otimes c \rangle;$$

$$\langle -(c, b, a), x \rangle = \langle -(c \circ b) \circ a - c \circ (b \circ a), x \rangle$$

$$= \langle (-\Delta^* (\Delta^* \otimes \mathrm{id}) - \Delta^* (\mathrm{id} \otimes \Delta^*)) (c \otimes b \otimes a), x \rangle$$

$$= \langle (-(\Delta^* \sigma^*)((\Delta^* \sigma^*) \otimes \mathrm{id}) - (\Delta^* \sigma^*)(\mathrm{id} \otimes (\Delta^* \sigma^*))) (a \otimes b \otimes c), x \rangle$$

$$= \langle (-((\sigma \Delta) \otimes \mathrm{id})(\sigma \Delta) - (\mathrm{id} \otimes (\sigma \Delta))(\sigma \Delta))(x), a \otimes b \otimes c \rangle.$$

Thus, (\mathcal{A}^*, \circ) is an anticenter-symmetric algebra if and only if $H_{\Delta} = 0$. Now, let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and let

$$\mathbf{r} = \sum_{i} u_i \otimes v_i \in \mathcal{A} \otimes \mathcal{A}.$$

Define:

$$\begin{aligned} \mathbf{r}_{12} &= \sum_{i} u_i \otimes v_i \otimes 1, \quad \mathbf{r}_{13} = \sum_{i} u_i \otimes 1 \otimes v_i, \quad \mathbf{r}_{23} = \sum_{i} 1 \otimes u_i \otimes v_i, \\ \mathbf{r}_{21} &= \sum_{i} v_i \otimes u_i \otimes 1, \quad \mathbf{r}_{31} = \sum_{i} v_i \otimes 1 \otimes u_i, \quad \mathbf{r}_{32} = \sum_{i} 1 \otimes v_i \otimes u_i, \end{aligned}$$

where 1 denotes the unit if (\mathcal{A}, \cdot) has a unit. Otherwise, it is a symbol that serves a similar role to a unit. The operation between two rs is then defined in an obvious manner. For example,

$$\mathbf{r}_{12}\mathbf{r}_{13} = \sum_{i,j} u_i \cdot u_j \otimes v_i \otimes v_j, \ \mathbf{r}_{13}\mathbf{r}_{23} = \sum_{i,j} u_i \otimes u_j \otimes v_i \cdot v_j, \ \mathbf{r}_{23}\mathbf{r}_{12} = \sum_{i,j} u_j \otimes u_i \cdot v_j \otimes v_i, \quad (4.5)$$

and so on.

Theorem 4.4 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$. Let $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ be a linear map defined by Eq. (4.1). Then, Δ^* defines an anticenter-symmetric algebra structure on \mathcal{A}^* if and only if, for any $x \in \mathcal{A}$, the following holds:

$$(\mathrm{id} \otimes \mathrm{id} \otimes L.(x))(M(\mathbf{r})) + (\mathrm{id} \otimes \mathrm{id} \otimes R.(x))(P(\mathbf{r})) + (L.(x) \otimes \mathrm{id} \otimes \mathrm{id})(-N(\mathbf{r})) + (R.(x) \otimes \mathrm{id} \otimes \mathrm{id})(-Q(\mathbf{r})) = 0,$$

$$(4.6)$$

where:

$$M(\mathbf{r}) = \mathbf{r}_{23}\mathbf{r}_{12} + \mathbf{r}_{21}\mathbf{r}_{13} - \mathbf{r}_{13}\mathbf{r}_{23}, \quad N(\mathbf{r}) = \mathbf{r}_{31}\mathbf{r}_{21} - \mathbf{r}_{21}\mathbf{r}_{32} - \mathbf{r}_{23}\mathbf{r}_{31},$$

$$P(\mathbf{r}) = \mathbf{r}_{13}\mathbf{r}_{21} + \mathbf{r}_{12}\mathbf{r}_{23} - \mathbf{r}_{23}\mathbf{r}_{13}, \quad Q(\mathbf{r}) = \mathbf{r}_{21}\mathbf{r}_{31} - \mathbf{r}_{31}\mathbf{r}_{23} - \mathbf{r}_{32}\mathbf{r}_{21}.$$

Proof. Let $\mathbf{r} = \sum_{i} u_i \otimes v_i \in \mathcal{A} \otimes \mathcal{A}$. Then:

$$\begin{split} & \left((\Delta \otimes \mathrm{id}) \Delta + (\mathrm{id} \otimes \Delta) \Delta \right)(x) \\ &= \sum_{i,j} \left(u_j \otimes u_i v_j \otimes x v_i + v_j u_i \otimes u_j \otimes x v_i + u_j \otimes (v_i x) v_j \otimes u_i + v_j (v_i x) \otimes u_j \otimes u_i \right) \\ &+ u_i \otimes u_j \otimes (x v_i) v_j + u_i \otimes v_j (x v_i) \otimes u_j + v_i x \otimes u_j \otimes u_i v_j + v_i x \otimes v_j u_i \otimes u_j \right) \\ &= (\mathrm{id} \otimes \mathrm{id} \otimes L.(x))(\mathbf{r}_{23}\mathbf{r}_{12}) + (\mathrm{id} \otimes \mathrm{id} \otimes L.(x))(\mathbf{r}_{21}\mathbf{r}_{13}) - (R.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{21}\mathbf{r}_{31}) \\ &- (\mathrm{id} \otimes \mathrm{id} \otimes L.(x))(\mathbf{r}_{13}\mathbf{r}_{23}) + (R.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{31}\mathbf{r}_{23}) + (R.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{32}\mathbf{r}_{21}) \\ &+ \sum_{i,j} \left(u_j \otimes (v_i x) v_j \otimes u_i + u_i \otimes v_j (x v_i) \otimes u_j \right). \end{split}$$

Similarly:

$$\begin{split} & \big(((\sigma\Delta) \otimes \mathrm{id})(\sigma\Delta) + (\mathrm{id} \otimes (\sigma\Delta))(\sigma\Delta) \big)(x) \\ &= \sum_{i,j} \big((xv_i)v_j \otimes u_j \otimes u_i + u_j \otimes v_j(xv_i) \otimes u_i + u_iv_j \otimes u_j \otimes v_ix + u_j \otimes v_ju_i \otimes v_ix \\ &+ xv_i \otimes u_iv_j \otimes u_j + xv_i \otimes u_j \otimes v_ju_i + u_i \otimes (v_ix)v_j \otimes u_j + u_i \otimes u_j \otimes v_j(v_ix) \big) \\ &= -(L.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{31}\mathbf{r}_{21}) - (\mathrm{id} \otimes \mathrm{id} \otimes R.(x))(\mathbf{r}_{23}\mathbf{r}_{13}) + (\mathrm{id} \otimes \mathrm{id} \otimes R.(x))(\mathbf{r}_{13}\mathbf{r}_{21}) \\ &+ (\mathrm{id} \otimes \mathrm{id} \otimes R.(x))(\mathbf{r}_{12}\mathbf{r}_{23}) + (L.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{21}\mathbf{r}_{32}) + (L.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{23}\mathbf{r}_{31}) \\ &+ \sum_{i,j} \big(u_j \otimes v_j(xv_i) \otimes u_i + u_i \otimes (v_ix)v_j \otimes u_j \big). \end{split}$$

By exchanging the indices i and j, we obtain:

$$\sum_{i,j} \left(u_j \otimes (v_i x) v_j \otimes u_i + u_i \otimes v_j (xv_i) \otimes u_j \right) + \sum_{i,j} \left(u_j \otimes v_j (xv_i) \otimes u_i + u_i \otimes (v_i x) v_j \otimes u_j \right) = 0.$$

Thus, it follows that:

$$\begin{aligned} (L.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{21}\mathbf{r}_{32} + \mathbf{r}_{23}\mathbf{r}_{31} - \mathbf{r}_{31}\mathbf{r}_{21}) \\ &+ (\mathrm{id} \otimes \mathrm{id} \otimes L.(x))(\mathbf{r}_{23}\mathbf{r}_{12} + \mathbf{r}_{21}\mathbf{r}_{13} - \mathbf{r}_{13}\mathbf{r}_{23}) \\ &+ (R.(x) \otimes \mathrm{id} \otimes \mathrm{id})(\mathbf{r}_{31}\mathbf{r}_{23} + \mathbf{r}_{32}\mathbf{r}_{21} - \mathbf{r}_{21}\mathbf{r}_{31}) \\ &+ (\mathrm{id} \otimes \mathrm{id} \otimes R.(x))(\mathbf{r}_{13}\mathbf{r}_{21} + \mathbf{r}_{12}\mathbf{r}_{23} - \mathbf{r}_{23}\mathbf{r}_{13}) = 0. \end{aligned}$$

This establishes Eq. (4.6).

Remark 4.5 [8] For any $r \in A \otimes A$, the following holds:

$$N(\mathbf{r}) = -\sigma_{13}M(\mathbf{r}), \quad P(\mathbf{r}) = \sigma_{12}M(\mathbf{r}), \quad Q(\mathbf{r}) = -\sigma_{12}\sigma_{13}M(\mathbf{r}),$$

where $\sigma_{12}(x \otimes y \otimes z) = y \otimes x \otimes z$ and $\sigma_{13}(x \otimes y \otimes z) = z \otimes y \otimes x$, for any $x, y, z \in A$.

Combining Proposition 4.1, Proposition 4.2, Theorem 4.4, and Remark 4.5, we arrive at the following result.

Theorem 4.6 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $r \in \mathcal{A} \otimes \mathcal{A}$. Let $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ be a linear map defined by Eq. (4.1). Then (\mathcal{A}, Δ) is an anticenter-symmetric bialgebra if and only if r satisfies Eqs. (4.2), (4.3), and

$$((\mathrm{id} \otimes \mathrm{id} \otimes L.(x)) + (R.(x) \otimes \mathrm{id} \otimes \mathrm{id})\sigma_{12}\sigma_{13} + ((\mathrm{id} \otimes \mathrm{id} \otimes R.(x))\sigma_{12} + (L.(x) \otimes \mathrm{id} \otimes \mathrm{id})\sigma_{13}))(M(\mathbf{r})) = 0,$$

$$(4.7)$$

where $M(\mathbf{r}) = \mathbf{r}_{23}\mathbf{r}_{12} + \mathbf{r}_{21}\mathbf{r}_{13} - \mathbf{r}_{13}\mathbf{r}_{23}$.

As a direct consequence of Theorem 4.6, we have the following corollary.

Corollary 4.7 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$. Let $\Delta : \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ be a linear map defined by Eq. (4.1). If, in addition, \mathbf{r} is skew-symmetric and satisfies

$$\mathbf{r}_{12}\mathbf{r}_{13} - \mathbf{r}_{23}\mathbf{r}_{12} + \mathbf{r}_{13}\mathbf{r}_{23} = 0, \tag{4.8}$$

then (\mathcal{A}, Δ) is an anticenter-symmetric bialgebra.

Definition 4.8 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$. Eq. (4.8) is called the anticenter-symmetric Yang-Baxter equation (ACSYBE) in (\mathcal{A}, \cdot) .

Remark 4.9 The term "anticenter-symmetric Yang-Baxter equation" reflects its analogy with the classical Yang-Baxter equation in a Mock Lie algebra (see [5]). Notably, the anticenter-symmetric Yang-Baxter equation in an anticenter-symmetric algebra, the anti-flexible Yang-Baxter equation in an anti-flexible algebra, and the associative Yang-Baxter equation (see [3, 8]) in an associative algebra all share the same form as Eq. (4.8). Thus, these three equations exhibit common properties.

At the end of this section, we highlight two properties of the anticenter-symmetric Yang-Baxter equation. The proofs are omitted since they mirror the proofs in the case of the associative Yang-Baxter equation.

Let \mathcal{A} be a vector space. For any $r \in \mathcal{A} \otimes \mathcal{A}$, r can be regarded as a linear map from \mathcal{A}^* to \mathcal{A} as follows:

$$\langle \mathbf{r}, u^* \otimes v^* \rangle = \langle \mathbf{r}(u^*), v^* \rangle, \quad \forall u^*, v^* \in \mathcal{A}^*.$$
 (4.9)

Proposition 4.10 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$ be skew-symmetric. Then \mathbf{r} is a solution of the anticenter-symmetric Yang-Baxter equation if and only if \mathbf{r} satisfies

$$\mathbf{r}(a) \cdot \mathbf{r}(b) = \mathbf{r}(R^*(\mathbf{r}(a))b + L^*(\mathbf{r}(b))a), \quad \forall a, b \in \mathcal{A}^*.$$

$$(4.10)$$

Theorem 4.11 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$. Suppose that \mathbf{r} is antisymmetric and nondegenerate. Then \mathbf{r} is a solution of the anticenter-symmetric Yang-Baxter equation in (\mathcal{A}, \cdot) if and only if the inverse of the isomorphism $\mathcal{A}^* \to \mathcal{A}$ induced by \mathbf{r} , regarded as a bilinear form ω on \mathcal{A} (i.e., $\omega(x, y) = \langle \mathbf{r}^{-1}x, y \rangle$ for any $x, y \in \mathcal{A}$), satisfies

$$\omega(x \cdot y, z) + \omega(y \cdot z, x) + \omega(z \cdot x, y) = 0, \quad \forall x, y, z \in \mathcal{A}.$$
(4.11)

5 *O*-operators of anticenter-symmetric algebras and preanticenter-symmetric algebras

In this section, we introduce the notions of \mathcal{O} -operators for anticenter-symmetric algebras and pre-anticenter-symmetric algebras, which are used to construct skew-symmetric solutions of the anticenter-symmetric Yang-Baxter equation and, consequently, to construct anticenter-symmetric bialgebras.

Definition 5.1 Let (l, r, V) be a bimodule of an anticenter-symmetric algebra (\mathcal{A}, \cdot) . A linear map $T: V \to \mathcal{A}$ is called an \mathcal{O} -operator associated with (l, r, V) if T satisfies

$$T(u) \cdot T(v) = T(l(T(u))v + r(T(v))u), \quad \forall u, v \in V.$$

Example 5.2 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. An \mathcal{O} -operator R_B associated with the regular bimodule (L, R, \mathcal{A}) is called a **Rota-Baxter operator of weight zero**. In this case, R_B satisfies

$$R_B(x) \cdot R_B(y) = R_B(R_B(x) \cdot y + x \cdot R_B(y)), \quad \forall x, y \in \mathcal{A}.$$

Example 5.3 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra, and let $\mathbf{r} \in \mathcal{A} \otimes \mathcal{A}$. If \mathbf{r} is skewsymmetric, then by Proposition 4.10, \mathbf{r} is a solution of the anticenter-symmetric Yang-Baxter equation if and only if \mathbf{r} , regarded as a linear map from \mathcal{A}^* to \mathcal{A} , is an \mathcal{O} -operator associated with the bimodule $(\mathbb{R}^*, \mathbb{L}^*, \mathcal{A}^*)$.

There is the following construction of (skew-symmetric) solutions of anticenter-symmetric Yang-Baxter equation in a semi-direct product anticenter-symmetric algebra from an \mathcal{O} -operator of an anticenter-symmetric algebra which is similar as for associative algebras ([3, Theorem 2.5.5], hence the proof is omitted).

Theorem 5.4 Let (l, r, V) be a bimodule of an anticenter-symmetric algebra (\mathcal{A}, \cdot) , and let $T : V \to \mathcal{A}$ be a linear map. Identifying T as an element in $(\mathcal{A} \ltimes_{r^*, l^*} V^*) \oplus (\mathcal{A} \ltimes_{r^*, l^*} V^*)$, $\mathbf{r} = T - \sigma(T)$ is a skew-symmetric solution of the anticenter-symmetric Yang-Baxter equation in $\mathcal{A} \ltimes_{r^*, l^*} V^*$ if and only if T is an \mathcal{O} -operator associated with the bimodule (l, r, V).

Definition 5.5 Let \mathcal{A} be a vector space with two bilinear products $\prec, \succ : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$. The pair $(\mathcal{A}, \prec, \succ)$ is called a **pre-anticenter-symmetric algebra** if, for any $x, y, z \in \mathcal{A}$, the following conditions hold:

$$(x, y, z)_m = -(z, y, x)_m,$$

 $(x, y, z)_l = -(z, y, x)_r,$

where:

$$(x, y, z)_m := (x \succ y) \prec z + x \succ (y \prec z),$$

$$(x, y, z)_l := (x \ast y) \succ z + x \succ (y \succ z),$$

$$(x, y, z)_r := (x \prec y) \prec z + x \prec (y \ast z),$$

and $x * y = x \prec y + x \succ y$.

Proposition 5.6 Let $(\mathcal{A}, \prec, \succ)$ be a pre-anticenter-symmetric algebra. Define a bilinear product $* : \mathcal{A} \otimes \mathcal{A} \to \mathcal{A}$ by

$$x * y = x \prec y + x \succ y, \ \forall x, y \in \mathcal{A}.$$
(5.1)

Then $(\mathcal{A}, *)$ is an anticenter-symmetric algebra, referred to as the **associated anticenter-symmetric** algebra of $(\mathcal{A}, \prec, \succ)$.

Proof: Set $(x, y, z)_* = (x * y) * z + x * (y * z)$. For any $x, y, z \in \mathcal{A}$, we have:

$$(x, y, z)_* = (x, y, z)_m + (x, y, z)_l + (x, y, z)_r = -(z, y, x)_m - (z, y, x)_r - (z, y, x)_l = -(z, y, x)_*.$$

Hence, $(\mathcal{A}, *)$ is an anticenter-symmetric algebra.

Let $(\mathcal{A}, \prec, \succ)$ be a pre-anticenter-symmetric algebra. For any $x \in \mathcal{A}$, let $L_{\succ}(x), R_{\prec}(x)$ denote the left multiplication operator of (\mathcal{A}, \prec) and the right multiplication operator of (\mathcal{A}, \succ) respectively, that is, $L_{\succ}(x)(y) = x \succ y$, $R_{\prec}(x)(y) = y \prec x$, $\forall x, y \in \mathcal{A}$. Moreover, let $L_{\succ}, R_{\prec} : \mathcal{A} \to \mathfrak{gl}(\mathcal{A})$ be two linear maps with $x \to L_{\succ}(x)$ and $x \to R_{\prec}(x)$ respectively.

Proposition 5.7 Let $(\mathcal{A}, \prec, \succ)$ be a pre-anticenter-symmetric algebra. Then $(L_{\succ}, R_{\prec}, A)$ is a bimodule of the associated anti-flexible algebra $(\mathcal{A}, *)$, where * is defined by Eq. (5.1).

Proof: For any $x, y, z \in \mathcal{A}$, we have

$$\begin{aligned} (L_{\succ}(x\ast y) + L_{\succ}(x)L_{\succ}(y))(z) &= (x\ast y) \succ z + x \succ (y \succ z) = (x, y, z)_{\iota}, \\ (-R_{\prec}(x)R_{\prec}(y) - R_{\prec}(y\ast x))(z) &= -(z \prec y) \prec x - z \prec (y\ast x) = -(z, y, x)_{r}, \\ (L_{\succ}(x)R_{\prec}(y) + R_{\prec}(y)L_{\succ}(x))(z) &= x \succ (z \prec y) + (x \succ z) \prec y = (x, z, y)_{m}, \\ (-L_{\succ}(y)R_{\prec}(x) - R_{\prec}(x)L_{\succ}(y))(z) &= -y \succ (z \prec x) - (y \succ z) \prec x = -(y, z, x)_{m}. \end{aligned}$$

Hence $(L_{\succ}, R_{\prec}, \mathcal{A})$ is a bimodule of $(\mathcal{A}, *)$.

 \square

Corollary 5.8 Let $(\mathcal{A}, \prec, \succ)$ be a pre-anticenter-symmetric algebra. Then the identity map id is an \mathcal{O} -operator of the associated anticenter-symmetric algebra $(\mathcal{A}, *)$ associated with the bimodule $(L_{\succ}, R_{\prec}, \mathcal{A})$.

Theorem 5.9 Let (l, r, V) be a bimodule of an anticenter-symmetric algebra (\mathcal{A}, \cdot) . Let $T : V \to \mathcal{A}$ be an \mathcal{O} -operator associated with (l, r, V). Then, there exists a pre-anticenter-symmetric algebra structure on V given by

$$u \succ v = l(T(u))v, \quad u \prec v = r(T(v))u, \quad \forall u, v \in V.$$

$$(5.2)$$

Consequently, there is an associated anticenter-symmetric algebra structure on V given by Eq. (5.1), and T is a homomorphism of anticenter-symmetric algebras. Moreover, $T(V) = \{T(v) \mid v \in V\} \subset A$ is an anticenter-symmetric subalgebra of (A, \cdot) , and there is an induced pre-anticenter-symmetric algebra structure on T(V) given by

$$T(u) \succ T(v) = T(u \succ v), \quad T(u) \prec T(v) = T(u \prec v), \quad \forall u, v \in V.$$

The corresponding associated anticenter-symmetric algebra structure on T(V), as given by Eq. (5.1), is precisely the anticenter-symmetric subalgebra structure of (\mathcal{A}, \cdot) , and T is a homomorphism of pre-anticenter-symmetric algebras.

Proof: For all $u, v, w \in V$, we have

$$\begin{array}{rcl} (u,v,w)_m &=& (u\succ v)\prec w+u\succ (v\prec w)=r(T(w))l(T(u))v+l(T(u))r(T(w))v\\ &=& -r(T(u))l(T(w))v-l(T(u))r(T(w))v=-(w,v,u)_m,\\ (u,v,w)_l &=& (u\succ v+u\prec v)\succ w+u\succ (v\succ w)\\ &=& (l(T(l(T(u))v+r(T(v))u))+l(T(u))l(T(v)))w\\ &=& (l(T(u)\cdot T(v))+l(T(u))l(T(v)))w=-(r(T(u))r(T(v))-r(T(v)\cdot T(u))w\\ &=& -(r(T(u))r(T(v))-r(T(u\succ v+u\prec v)))w\\ &=& -(w\prec v)\prec u-w\prec (u\succ v+u\prec v)\\ &=& -(w,v,u)_r \end{array}$$

Therefore, (V, \prec, \succ) is a pre-anticenter-symmetric algebra. For T(V), we have

$$T(u) * T(v) = T(u \succ v + u \prec v) = T(u * v) = T(u) \cdot T(v), \ \forall u, v \in V.$$

The rest is straightforward.

Corollary 5.10 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra. Then there exists a pre-anticenter-symmetric algebra structure on \mathcal{A} such that its associated anticenter-symmetric algebra is (\mathcal{A}, \cdot) if and only if there exists an invertible \mathcal{O} -operator.

Proof: Suppose that there exists an invertible \mathcal{O} -operator $T: V \to \mathcal{A}$ associated to a bimodule (l, r, V). Then the products " \succ, \prec " given by Eq. (5.2) defines a pre-anticenter-symmetric algebra structure on V. Moreover, there is a pre-anticenter-symmetric algebra structure on $T(V) = \mathcal{A}$, that is,

$$x \succ y = T(l(x)T^{-1}(y)), \quad x \prec y = T(r(y)T^{-1}(x)), \quad \forall x, y \in \mathcal{A}.$$

Moreover, for any $x, y \in \mathcal{A}$, we have

$$x \succ y + x \prec y = T(l(x)T^{-1}(y) + r(y)T^{-1}(x)) = T(T^{-1}(x)) \cdot T(T^{-1}(y)) = x \cdot y.$$

Hence the associated anticenter-symmetric algebra of $(\mathcal{A}, \succ, \prec)$ is (\mathcal{A}, \cdot) .

Conversely, let $(\mathcal{A}, \succ, \prec)$ be pre-center-symmetric algebra such that its associated anticentersymmetric is (\mathcal{A}, \cdot) . Then by Corollary 5.8, the identity map id is an \mathcal{O} -operator of (\mathcal{A}, \cdot) associated to the bimodule $(L_{\succ}, R_{\prec}, \mathcal{A})$.

Corollary 5.11 Let (\mathcal{A}, \cdot) be an anticenter-symmetric algebra and ω be a nondegenerate skewsymmetric bilinear form satisfying Eq. (4.11). Then there exists a pre-anticenter-symmetric algebra structure \succ, \prec on \mathcal{A} given by

$$\omega(x \succ y, z) = \omega(y, z \cdot x), \quad \omega(x \prec y, z) = \omega(x, y \cdot z), \quad \forall x, y, z \in \mathcal{A},$$
(5.3)

such that the associated anticenter-symmetric algebra is (\mathcal{A}, \cdot) .

Proof: Define a linear map $T : \mathcal{A} \to \mathcal{A}^*$ by

$$\langle T(x), y \rangle = \omega(x, y), \ \forall x, y \in \mathcal{A}.$$

Then T is invertible and T^{-1} is an \mathcal{O} -operator of the anticenter-symmetric algebra (\mathcal{A}, \cdot) associated to the bimodule (R^*, L^*, A^*) . By Corollary 5.10, there is a pre-anticenter-symmetric algebra structure \succ, \prec on $(\mathcal{A}, *)$ given by

$$x \succ y = T^{-1}R^*(x)T(y), \quad x \prec y = T^{-1}L^*(y)T(x), \quad \forall x, y \in \mathcal{A},$$

which gives exactly Eq. (5.3) such that the associated anticenter-symmetric algebra is (\mathcal{A}, \cdot) .

Finally we give the following construction of skew-symmetric solutions of anticenter-symmetric Yang-Baxter equation (hence anticenter-symmetric bialgebras) from a pre-anticenter-symmetric algebra.

Proposition 5.12 Let $(\mathcal{A}, \succ, \prec)$ be a pre-anticenter-symmetric algebra. Then

$$\mathbf{r} = \sum_{i}^{n} (e_i \otimes e_i^* - e_i^* \otimes e_i) \tag{5.4}$$

is a solution of anticenter-symmetric Yang-Baxter equation in $\mathcal{A} \ltimes_{R_{\prec}^*, L_{\succ}^*} \mathcal{A}^*$, where $\{e_1, \dots, e_n\}$ is a basis of \mathcal{A} and $\{e_1^*, \dots, e_n^*\}$ is its dual basis.

Proof: Note that the identity map id = $\sum_{i=1}^{n} e_i \otimes e_i^*$. Hence the conclusion follows from Theorem 5.4 and Corollary 5.8.

6 Concluding remarks

We established a bialgebra theory for anticenter-symmetric algebras, introducing the notion of an anticenter-symmetric bialgebra and its equivalence to a Manin triple of anticenter-symmetric algebras. A key result is the formulation of the anticenter-symmetric Yang-Baxter equation in anticenter-symmetric algebras, an analogue to the classical Yang-Baxter equation in Mock Lie algebras and the associative Yang-Baxter equation, with the unexpected finding that they share the same formal structure.

We showed that skew-symmetric solutions to this equation define anticenter-symmetric bialgebras. Additionally, the notions of \mathcal{O} -operators and pre-anticenter-symmetric algebras were introduced as tools to construct such solutions, providing a foundation for further exploration of anticenter-symmetric algebraic structures.

References

- A.L. Agore, G. Militaru On a type of commutative algebras Linear Algebra Appl., 485 (2015), pp. 222-249
- [2] C. Bai, Left-symmetric bialgebras and an analogue of the classicalYang-Baxter equation. Commun. Contemp. Math. 10 (2008), 221–260.

- [3] C. Bai, Double constructions of Frobenius algebras, Connes cocycle and their duality. J. Noncommut. Geom. 4 (2010), pp. 475 - 530.
- [4] A. Baklouti, S. Benayadi, A. Makhlouf, and S. Mansour, Cohomology and deformations of Jacobi-Jordan algebras. ArXiv: 2109.12364v1[math.RA] (2021), 23 pp.
- [5] K. Bena li, T. Chtioui, A. Hajjaji and S. Mabrouk Bialgebras, the Yang-Baxter equation and Manin triples for Mock-Lie algebras, ACTA ET COMMENTATIONES UNIVER-SITATIS TARTUENSIS DE MATHEMATICA, Volume 27, Number 2, December 2023, Available online at https://ojs.utlib.ee/index.php/ACUTM
- [6] D. Burde, A. Fialowski Jacobi-Jordan algebras Linear Algebra Appl., 459 (2014), pp. 586-594
- [7] M. Camacho, Ivan Kaygorodov, Victor Lopatkin and Mohamed A. Salim, The variety of dual mock-Lie algebras, Communications in Mathematics 28(2):161-178. https://doi.org/10.2478/cm-2020-0019.
- [8] M. L. Dassoundo, C. Bai and M. N. Hounkonnou, Anti-flexible bialgebras, J. Algebra Appl. 21 (2022), 2250212.
- [9] E. Getzler, M. Kapranov Cyclic operads and cyclic homology S.-T. Yau (Ed.), Geometry, Topology and Physics for Raoul Bott, International Press (1995), pp. 167-201
- [10] C. E. Haliya and G. D. Houndedji, A double construction of quadratic anticentersymmetric Jacobi-Jordan algebras, Quasigroups and Related Systems 31 (2023), 25–52. https://doi.org/10.56415/qrs.v31.03
- [11] S. Okubo and N. Kamiya, Jordan-Lie super algebra and Jordan-Lie triple system, J. Algebra 198 (1997), 388.
- [12] K.A. Zhevlakov Solvability and nilpotence of Jordan rings Algebra Logika, 5 (3) (1966), pp. 37-58 (in Russian).
- [13] K.A. Zhevlakov, A.M. Slin'ko, I.P. Shestakov, A.I. Shirshov Rings That Are Nearly Associative Nauka, Moscow (1978) (in Russian); Academic Press (1982) (English translation)
- [14] P. Zusmanovich, Special and exceptional mock-Lie algebras, Linear Algebra and its Applications (2017), 518, 79-96.