
Abstract

This paper develops a bialgebra theory for anticenter-symmetric algebras by introducing
the concept of an anticenter-symmetric bialgebra, equivalent to a Manin triple of anticenter-
symmetric algebras. A study of this framework leads to the anticenter-symmetric Yang-Baxter
equation in anticenter-symmetric algebras, analogous to the classical Yang-Baxter equation
in Mock Lie algebras and the associative Yang-Baxter equation.

An unexpected finding is that the anticenter-symmetric and associative Yang-Baxter
equations share the same form. Additionally, skew-symmetric solutions to the anticenter-
symmetric Yang-Baxter equation define anticenter-symmetric bialgebras. To advance the
theory, the paper introduces O-operators and pre-anticenter-symmetric algebras, which facil-
itate the construction of these solutions and provide a foundation for further exploration.

Keywords. Anticenter-Symmetric Algebras, Pre-Anticenter-Symmetric Al-
gebras, Matched Pairs, Manin Triples, Bialgebras, Yang-Baxter Equation and
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1 Introduction

Mock-Lie algebras are commutative algebras characterized by their adherence to the Jacobi iden-
tity, with significant contributions to their study made by P. Zusmanovich in [14]. These algebras
have appeared under various names, reflecting diverse mathematical perspectives.

Their earliest mention was in [12], where an infinite-dimensional solvable but non-nilpotent
example was introduced, later reproduced in [13]. They are also referred to as “Jordan algebras
of nil index 3” in Jordan-algebraic literature, “Lie–Jordan algebras” in [11], and “Jacobi–Jordan
algebras” in recent studies [6] and [1]. The term “mock-Lie” originates from [9], where the operad
appears in a classification of quadratic cyclic operads. They possess two particularly noteworthy
features:

(a) Algebras associated with the Koszul dual of the Mock-Lie operad can be equivalently char-
acterized in three distinct ways, as detailed in [14] and [7].

(b) As observed in [11], Mock-Lie algebras can also be constructed from antiassociative alge-
bras, paralleling their derivation from associative algebras. This underscores a profound
relationship between Mock-Lie and antiassociative algebras.

Significant progress has been made in understanding the cohomology and deformation theories
of Mock-Lie algebras. A notable development is the introduction of a cohomology framework
based on two operators, referred to as zigzag cohomology, which was explored in [4] alongside a
detailed examination of low-degree cohomology spaces. Furthermore, [5] investigated Mock-Lie
bialgebras, the Yang-Baxter equation, and Manin triples, broadening the algebraic and structural
insights into these algebras. The study of Lie-admissible algebras has been of great significance,
particularly the bialgebraic exploration of left-symmetric algebras as detailed in [2]. More recently,
anti-flexible algebras, also known as center-symmetric algebras, have emerged as another class of
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Lie-admissible algebras, with their bialgebraic properties investigated by [8]. In addition, we have
recently introduced the concept of anticenter-symmetric Jacobi-Jordan algebras, which we refer
to more succinctly as anticenter-symmetric algebras [10]. These algebras belong to the category
of Mock-Lie admissible algebras.

The primary aim of our paper is to undertake an algebraic study of these structures; we
establishe a bialgebra theory for anti-center-symmetric algebras by defining the concept of an
anticenter-symmetric bialgebra, linked to a Manin triple of such algebras. This framework intro-
duces the anticenter-symmetric Yang-Baxter equation, paralleling the classical Yang-Baxter equa-
tion in Mock Lie algebras and the associative Yang-Baxter equation. Remarkably, the anticenter-
symmetric and associative Yang-Baxter equations share the same form. Skew-symmetric solutions
to the former directly define anticenter-symmetric bialgebras. To support this theory, we introduce
O-operators and pre-anticenter-symmetric algebras, providing tools for constructing solutions.

The paper begins in Section 2 with a review of the bimodules and matched pairs of anti-center-
symmetric algebras. Section 3 then focuses on the Manin triple of anti-center-symmetric algebras,
providing a deeper understanding of their bialgebraic structural aspects. Section 4 explores a
special class of anticenter-symmetric bialgebras, this leads to anticenter-symmetric Yang-Baxter
equation.

Section 5 develops the theory ofO-operators of anticenter-symmetric algebras and pre-anticenter-
symmetric algebras. Finally, Section 6 concludes the paper with reflective remarks that summarize
the findings.

2 Bimodules and matched pairs of anticenter-symmetric al-
gebras

Definition 2.1 [10] (A, ·), is said to be an anticenter-symmetric algebra if ∀x, y, z ∈ A, the
antiassociator of the bilinear product · defined by ( x, y, z )−1 := ( x · y ) · z + x · ( y · z ), is
symmetric in x and z, i.e.,

( x, y, z )−1 = −( z, y, x )−1. (2.1)

As matter of notation simplification, we will denote x · y by xy if not any confusion.

Definition 2.2 [10] Let A be an anticenter-symmetric algebra, V be a vector space. Suppose
l, r : A → gl(V ) be two linear maps satisfying: for all x, y ∈ A,

[lx, ry] = − [ly, rx] (2.2)

lxy + lxly = −ryx − rxry. (2.3)

Then, (l, r, V ) (or simply (l, r)) is called bimodule of the anticenter-symmetric algebra A.

Let (A, ·) be an anticenter-symmetric algebra. For any x, y ∈ A, let Lx and Rx denote the
left and right multiplication operators respectively, that is, Lx(y) = xy and Rx(y) = yx. Let
L,R : A → End(A) be two linear maps with x → Lx and x → Rx for any x ∈ A respectively.

Example 2.3 Let (A, ·) be an antisymmetric algebra. Then (L,R,A) is a bimodule of (A, ·),
which is called the regular bimodule of (A, ·).

Proposition 2.4 Let (A, ·) be an anticenter-symmetric algebra and V be a vector space over K.
Consider two linear maps, l, r : A → gl(V ). Then, (l, r, V ) is a bimodule of A if and only if, the
semi-direct sum A⊕V of vector spaces is turned into an anticenter-symmetric algebra by defining
the multiplication in A⊕ V by ∀x1, x2 ∈ A, v1, v2 ∈ V ,

(x1 + v1) ∗ (x2 + v2) = x1 · x2 + (lx1v2 + rx2v1),

We denote it by A⋉−1
l,r V or simply A⋉−1 V.
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It is known that an anticenter-symmetric algebra is a Mock Lie-admissible algebra ( [10]).

Proposition 2.5 Let (A, ·) be an anticenter-symmetric algebra. Define the anticommutator by

[x, y] = x · y + y · x, ∀x, y ∈ A. (2.4)

Then it is a Mock Lie algebra and we denote it by (G(A), [ , ]) or simply G(A), which is called
the the sub-adjacent Mock Lie algebra of (A, ·).

Corollary 2.6 Let (A, ·) be an anticenter-symmetric algebra and V be a vector space over K.
Consider two linear maps, l, r : A → gl(V ), such that (l, r, V ) is a bimodule of A. Then, the map:
l + r : A −→ gl(V ) x 7−→ lx + rx, is a linear representation of the sub-adjacent Mock Lie algebra
of A.

Proof: Let (l, r, V ) be a bimodule of the anticenter-symmetric algebra A. Then, ∀x, y ∈ A
[lx, ry] = −[ly, rx]; lxy + lxly = −rxry − ryx. Besides, it is a matter of straightforward computation
to show that l + r is a linear map on A. Then, we have:

[(l + r)(x), (l + r)(y)] = [lx + rx, ly + ry]

= [lx, ly] + [lx, ry] + [rx, ly] + [rx, ry]

= [lx, ly] + [rx, ry]

= lxly + lylx + rxry + ryrx

= {lxly + rxry}+ {lylx + ryrx}
= {lxy + ryx}+ {lyx + rxy}
= (l + r)xy + (l + r)yx = (l + r)[x,r].

Therefore, (l, r, V ) is a bimodule of A implies that l+ r is a representation of the linear represen-
tation of the sub-adjacent Mock Lie algebra of A. □

Theorem 2.7 [10] Let (A, ·) and (B, ◦) be two anticenter-symmetric algebras. Suppose that
(lA, rA,B) and (lB, rB,A) are bimodules of A and B, respectively, obeying the relations:

rA(x)(a ◦ b) + rA(lB(b)x)a+ a ◦ (rA(x)b)
+lA(rB(b)x)a+ (lA(x)b) ◦ a+ lA(x)(b ◦ a) = 0, (2.5)

rB(a)(x · y) + rB(lA(y)a)x+ x · (rB(a)y)
+lB(rA(y)a)x+ (lB(a)y) · x+ lB(a)(y · x) = 0, (2.6)

a ◦ (lA(x)b) + (rA(x)b) ◦ a+ (rA(x)a) ◦ b+ lA(lB(a)x)b
+rA(rB(b)x)a+ lA(lB(b)x)a+ b ◦ (lA(x)a) + rA(rB(a)x)b = 0, (2.7)

x · (lB(a)y) + (rB(a)y) · x+ (rB(a)x) · y + lB(lA(x)a)y
+rB(rA(y)a)x+ lB(lA(y)a)x+ y · (lB(a)x) + rB(rA(x)a)y = 0, (2.8)

for all x, y ∈ A and a, b ∈ B. Then, there is an anticenter-symmetric algebra structure on A⊕ B
given by:

(x+ a) ∗ (y + b) = (x · y + lB(a)y + rB(b)x)

+ (a ◦ b+ lA(x)b+ rA(y)a). (2.9)

We denote this anticenter-symmetric algebra by A ▷◁−1,lA,rA
lB,rB

B, or simply by A ▷◁−1 B.
Then (A,B, lA, rA, lB, rB) satisfying the above conditions is called matched pair of the anticenter-
symmetric algebras A and B.
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Definition 2.8 Let (l, r, V ) be a bimodule of an anticenter-symmetric algebra A, where V is a fi-
nite dimensional vector space. The dual maps l∗, r∗ of the linear maps l, r, are defined, respectively,
as: l∗, r∗ : A → gl(V ∗) such that: for all x ∈ A, u∗ ∈ V ∗, v ∈ V,

l∗ : A −→ gl(V ∗)

x 7−→ l∗x :
V ∗ −→ V ∗

u∗ 7−→ l∗xu
∗ :

V −→ K
v 7−→ ⟨l∗xu∗, v⟩ := ⟨u∗, lxv⟩ ,

(2.10)

r∗ : A −→ gl(V ∗)

x 7−→ r∗x :
V ∗ −→ V ∗

u∗ 7−→ r∗xu
∗ :

V −→ K
v 7−→ ⟨r∗xu∗, v⟩ := ⟨u∗, rxv⟩ .

(2.11)

Proposition 2.9 Let (A, ·) be an anticenter-symmetric algebra and l, r : A → gl(V ) be two linear
maps, where V is a finite dimensional vector space. The following conditions are equivalent:

1. (l, r, V ) is a bimodule of A.

2. (r∗, l∗, V ∗) is a bimodule of A.

Proof:

(1)⇒(2) Suppose that (l, r, V ) is a bimodule of (A, ·) and show that (r∗, l∗, V ∗) is also a bimodule of
(A, ·). We have:

• 〈
(r∗xy + r∗xr

∗
y)u

∗, v
〉

=
〈
r∗xyu

∗, v
〉
+
〈
(r∗xr

∗
y)u

∗, v
〉
= ⟨rxy(v), u∗⟩+ ⟨ry(rx(v)), u∗⟩

= ⟨(rxy + ryrx)(v), u
∗⟩ = ⟨−(lyx + lylx)(v), u

∗⟩
= −⟨lyx(v), u∗⟩ − ⟨(lylx)(v), u∗⟩
= −

〈
l∗yxu

∗, v
〉
−
〈
(l∗xl

∗
y)u

∗, v
〉

=
〈
−(l∗yx + l∗xl

∗
y)u

∗, v
〉
.

Therefore,

l∗yx + l∗xl
∗
y = −r∗xy − r∗xr

∗
y, ∀ x, y A (2.12)

• 〈
[l∗x, r

∗
y]u

∗, v
〉

=
〈
l∗x(r

∗
y)u

∗, v
〉
+
〈
r∗y(l

∗
x)u

∗, v
〉
=

〈
lx(v), r

∗
yu

∗〉+ ⟨ryv, l∗xu∗⟩
= ⟨ry(lx(v)), u∗⟩+ ⟨lx(ry(v)), u∗⟩ = ⟨[ry, lx]v, u∗⟩
= ⟨−[rx, ly]v, u

∗⟩ = ⟨−(rx(ly) + ly(rx))v, u
∗⟩

=
〈
−(l∗yr

∗
x + r∗xl

∗
y)u

∗, v
〉
=

〈
−[l∗y, r

∗
x]u

∗, v
〉

Therefore

[l∗x, r
∗
y] = −[l∗y, r

∗
x], ∀ x, y ∈ A. (2.13)

By considering the relations (2.12) and (2.13), we conclude that
(r∗, l∗, V ) is a bimodule of (A, ·).

(2)⇒(1) The converse, (i.e., by supposing that (r∗, l∗, V ) is a bimodule of (A, ·) then (l, r, V ) is also
a bimodule of (A, ·)), can be proved by direct calculations by using similar relations as for
the first part of the proof.

□
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3 Manin triple of anticenter-symmetric algebras

In this section, we first give the definition of Manin triple of an anticenter-symmetric algebra and
investigate its main properties.

Definition 3.1 A Manin triple of anticenter-symmetric algebras is a triple (A,A+,A−) equipped
with a nondegenerate symmetric bilinear form B ( , ) on A which is invariant, i.e., ∀x, y, z ∈ A,
B(x ∗ y, z) = B(x, y ∗ z), satisfying:

1. A = A+ ⊕A− as K-vector space;

2. A+ and A− are anticenter-symmetric subalgebras of A;

3. A+ and A− are isotropic with respect to B(, ), that is B(A+;A+) = B(A−;A−) = 0.

Definition 3.2 Two Manin triples (A1,A+
1 ,A

−
1 ,B1) and (A2,A+

2 ,A
−
2 ,B2) of anticenter-symmetric

algebras A1 and A2 are homomorphic (isomorphic) if there is a homomorphism (isomorphism)
φ : A1 → A2 such that: φ(A+

1 ) ⊂ A+
2 , φ(A

−
1 ) ⊂ A−

2 , B1(x, y) = B2(φ(x), φ(y)).

In particular, if (A, ·) is an anticenter-symmetric algebra, and if there exists an anticenter-
symmetric algebra structure on its dual space A∗ denoted (A∗, ◦), then there is a anticenter-
symmetric algebra structure on the direct sum of the underlying vector spaces of A and A∗ (see
Theorem 2.7 ) such that (A⊕A∗,A,A∗) is the associated Manin triple with the invariant bilinear
symmetric form given by

Bd(x+ a∗, y + b∗) =< x, b∗ > + < y, a∗ >, ∀x, y ∈ A; a∗, b∗ ∈ A∗, (3.1)

called the standard Manin triple of the anticenter-symmetric algebra A.

Theorem 3.3 Let (A, ·) and (A∗, ◦) be two anticenter-symmetric algebras. Then,
the sixtuple (A,A∗, R∗

· , L
∗
· ;R

∗
◦, L

∗
◦) is a matched pair of anticenter-symmetric algebras A and

A∗ if and only if (A⊕A∗,A,A∗) is their standard Manin triple.

Proof:
By considering that (A,A∗, R∗

· , L
∗
· ;R

∗
◦, L

∗
◦) is a matched pair of anticenter-symmetric algebras,

it follows that the bilinear product ∗ defined in the Theorem 2.7 is anticenter-symmetric on the
direct sum of underlying vectors spaces, A⊕A∗.

We have ∀x, y, z ∈ A; a, b, c ∈ A∗.

Bd((x+ a) ∗ (y + b), z + c) = ⟨xy +R∗
◦(a)y + L∗

◦(b)x, c⟩+ ⟨z, a ◦ b+R∗
· (x)b+ L∗

· (y)a⟩
= ⟨xy, c⟩+ ⟨R∗

◦(a)y, c⟩+ ⟨L∗
◦(b)x, c⟩+ ⟨z, a ◦ b⟩+ ⟨z,R∗

· (x)b⟩
+ ⟨z, L∗

· (y)a⟩ = ⟨xy, c⟩+ ⟨y,Ra(c)⟩+ ⟨x, Lb(c)⟩+ ⟨z, a ◦ b⟩
+ ⟨Rx(z), b⟩+ ⟨Ly(z), a⟩ = ⟨xy, c⟩+ ⟨y, c ◦ a⟩
+ ⟨x, b ◦ c⟩+ ⟨z, a ◦ b⟩+ ⟨zx, b⟩+ ⟨yz, a⟩ .

Bd ((x+ a), (y + b) ∗ (z + c)) = ⟨x, b ◦ c+R∗
· (y)c+ L∗

· (z)b⟩+ < yz +R∗
◦(b)z

+ L∗
◦(c)y, a > + ⟨x, b ◦ c⟩+ ⟨x,R∗

· (y)c⟩+ ⟨x, L∗
· (z)b⟩

+ ⟨yz, a⟩+ ⟨R∗
◦(b)z, a⟩+ ⟨L∗

◦(c)y, a⟩
= ⟨x, b ◦ c⟩+ ⟨Ry(x), c⟩+ ⟨Lz(x), b⟩
+ ⟨yz, a⟩+ ⟨z,Rb(a)⟩+ ⟨y, Lc(a)⟩
= ⟨x, b ◦ c⟩+ ⟨xy, c⟩+ ⟨zx, b⟩+ ⟨yz, a⟩
+ ⟨z, a ◦ b⟩+ ⟨y, c ◦ a⟩ .

Therefore, the following relation

Bd((x+ a) ∗ (y + b), (z + c)) = Bd ((x+ a), (y + b) ∗ (z + c)) (3.2)

holds, which expresses the invariance of the standard bilinear form on A ⊕ A∗. Therefore, (A ⊕
A∗,A,A∗) is the standard Manin triple of the anticenter-symmetric algebras A and A∗. □
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Proposition 3.4 Let (A, ·) be an anticenter-symmetric algebra. Suppose that there exists an
anticenter-symmetric algebra structure “ ◦ ” on the dual space A∗.
Then, (A,A∗, R∗

· , L
∗
· , R

∗
◦, L

∗
◦) is a matched pair of anticenter-symmetric algebras if and only if for

any x, y ∈ A, a ∈ A∗,

R∗
◦(a)(x · y) +L∗

◦(a)(y · x) +L∗
◦(R

∗
· (x)a)y + y · (L∗

◦(a)x) +R∗
◦(L

∗
· (x)a)y + (R∗

◦(a)x) · y = 0, (3.3)

y · (R∗
◦(a)x) + x · (R∗

◦(a)y) + (L∗
◦(a)x) · y + (L∗

◦(a)y) · x
+L∗

◦(L
∗
· (x)a)y +R∗

◦(R
∗
· (y)a)x+R∗

◦(R
∗
· (x)a)y + L∗

◦(L
∗
· (y)a)x = 0.

(3.4)

Proof: Obviously, Eq. (3.3) is exactly Eq. (2.6) and Eq. (3.4) is exactly Eq. (2.8) in the case
lA = R∗

· , rA = L∗
· , lB = lA∗ = R∗

◦, rB = rA∗ = L∗
◦. For any x, y ∈ A, a, b ∈ A∗, we have:

⟨R∗
◦(a)(x · y), b⟩ = ⟨x · y,R◦(a)b⟩ = ⟨x · y, b ◦ a⟩ = ⟨L·(x)y, b ◦ a⟩ = ⟨y, L∗

· (x)(b ◦ a)⟩ ;
⟨L∗

◦(a)(y · x), b⟩ = ⟨y · x, L◦(a)b⟩ = ⟨y · x, a ◦ b⟩ = ⟨R·(x)y, a ◦ b⟩ = ⟨y,R∗
· (x)(a ◦ b)⟩ ;

⟨L∗
◦(R

∗
· (x)a)y, b⟩ = ⟨y, L◦(R

∗
· (x)a)b⟩ = ⟨y, (R∗

· (x)a) ◦ b⟩ ;
⟨y · (L∗

◦(a)x), b⟩ = ⟨R·(L
∗
◦(a)x)y, b⟩ = ⟨y,R∗

· (L
∗
◦(a)x)b⟩ ;

⟨R∗
◦(L

∗
· (x)a)y, b⟩ = ⟨y,R◦(L

∗
· (x)a)b⟩ = ⟨y, b ◦ (L∗

· (x)a)⟩ ;
⟨(R∗

◦(a)x) · y, b⟩ = ⟨L·(R
∗
◦(a)x)y, b⟩ = ⟨y, L∗

· (R
∗
◦(a)x)b⟩ .

Then Eq. (2.5) holds if and only if Eq. (2.6) holds. Similarly, Eq. (2.7) holds if and only if Eq. (2.8)
holds. Therefore the conclusion holds. □

Let V be a vector space. Let σ : V ⊗ V → V ⊗ V be the flip defined as

σ(x⊗ y) = y ⊗ x, ∀x, y ∈ V. (3.5)

Theorem 3.5 Let (A, ·) be an anticenter-symmetric algebra. Suppose there is an anticenter-
symmetric algebra structure “ ◦ ” on its dual space A∗ given by a linear map ∆∗ : A∗ ⊗A∗ → A∗.
Then (A,A∗, R∗

· , L
∗
· , R

∗
◦, L

∗
◦) is a matched pair of anticenter-symmetric algebras if and only if

∆ : A → A⊗A satisfies the following two conditions:

∆(x · y)+σ∆(y ·x) = −(σ(id⊗L·(y))+R·(y)⊗ id)∆(x)− (σ(R·(x)⊗ id)+ id⊗L·(x))∆(y), (3.6)

(σ(id⊗R·(y)) + id⊗R·(y) + σ(L·(y)⊗ id) + L·(y)⊗ id)∆(x) =
(−σ(id⊗R·(x))− id⊗R·(x)− σ(L·(x)⊗ id)− L·(x)⊗ id)∆(y),

(3.7)

for any x, y ∈ A.

Proof: For any x, y ∈ A and any a, b ∈ A∗, we have

⟨∆(x · y), a⊗ b⟩ = ⟨x · y, a · b⟩,= ⟨L∗
◦(a)(x · y), b⟩,

⟨σ∆(y · x), a⊗ b⟩ = ⟨y · x, b ◦ a⟩ = ⟨R∗
◦(a)(y · x), b⟩,

⟨σ(id⊗L·(y))∆(x), a⊗ b⟩ = ⟨x, b ◦ (L∗
· (y)a)⟩ = ⟨R∗

◦(L
∗
· (y)a)x, b⟩,

⟨(R·(y)⊗ id)∆(x), a⊗ b⟩ = ⟨x, (R∗
· (y)a) ◦ b⟩ = ⟨L∗

◦(R
∗
· (y)a)x, b⟩,

⟨σ(R·(x)⊗ id)∆(y), a⊗ b⟩ = ⟨y, (R∗
· (x)b) ◦ a⟩ = ⟨(R∗

◦(a)y) · x, b⟩,
⟨(id⊗L·(x))∆(y), a⊗ b⟩ = ⟨y, a ◦ (L∗

· (x)b)⟩ = ⟨x · (L∗
◦(a)y), b⟩.

Then Eq. (3.3) is equivalent to Eq. (3.6). Moreover, we have

⟨σ(id⊗R·(y))∆(x), a⊗ b⟩ = ⟨x, b ◦ (R∗
· (y)a)⟩ = ⟨R∗

◦(R
∗
· (y)a)x, b⟩,

⟨(id⊗R·(y))∆(x), a⊗ b⟩ = ⟨x, a ◦ (R∗
· (y)b)⟩ = ⟨(L∗

◦(a)x) · y, b⟩,
⟨σ(L·(y)⊗ id)∆(x), a⊗ b⟩ = ⟨x, (L∗

· (y)b) ◦ a⟩ = ⟨y · (R∗
◦(a)x), b⟩,

⟨(L·(y)⊗ id)∆(x), a⊗ b⟩ = ⟨x, (L∗
· (y)a) ◦ b⟩ = ⟨L∗

◦(L
∗
· (y)a)x, b⟩.

Then Eq. (3.4) is equivalent to Eq. (3.7). Hence the conclusion holds. □
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Remark 3.6 From the symmetry of the anticenter-symmetric algebras (A, ·) and (A∗, ◦) in the
standard Manin triple of anticenter-symmetric algebras associated to Bd, we also can consider a
linear map γ : A∗ → A∗ ⊗ A∗ such that γ∗ : A ⊗ A → A gives the anticenter-symmetric algebra
structure “·” on A. It is straightforward to show that ∆ satisfies Eqs. (3.6) and (3.7) if and only
if γ satisfies

γ(a ◦ b) + σγ(b ◦ a) = (σ(id⊗L◦(b)) +R◦(b)⊗ id)γ(a) + (σ(R◦(a)⊗ id) + id⊗L◦(a))γ(b), (3.8)

(σ(id⊗R◦(b)) + id⊗R◦(b) + σ(L◦(b)⊗ id) + (L◦(b)⊗ id))γ(a)+
((L◦(a)⊗ id) + σ(L◦(a)⊗ id) + σ(id⊗R◦(a)) + (id⊗R◦(a)))γ(b) = 0,

(3.9)

for any a, b ∈ A∗.

Definition 3.7 Let (A, ·) be an anticenter-symmetric algebra. An anticenter-symmetric bial-
gebra structure on A is a linear map ∆ : A → A⊗A such that

1. ∆∗ : A∗ ⊗A∗ → A∗ defines an anticenter-symmetric algebra structure on A∗;

2. ∆ satisfies Eqs. (3.6) and (3.7).

We denote it by (A,∆) or (A,A∗).

Example 3.8 Let (A,∆) be an anticenter-symmetric bialgebra on an antcenter-symmetric algebra
A. Then (A∗, γ) is an anticenter-symmetric bialgebra on the anticenter-symmetric algebra A∗,
where γ is given in Remark 3.6.

Combining Proposition 3.4 and Theorem 3.5 together, we have the following conclusion.

Theorem 3.9 Let (A, ·) be an anticenter-symmetric algebra. Suppose that there is an anticenter-
symmetric algebra structure on its dual space A∗ denoted “◦” which is defined by a linear map
∆ : A → A⊗A. Then the following conditions are equivalent.

1. (A ⊕ A∗,A,A∗) is a standard Manin triple of anticenter-symmetric algebras associated to
Bd defined by Eq. (3.1).

2. (A,A∗, R∗
· , L

∗
· , R

∗
◦, L

∗
◦) is a matched pair of anticenter-symmetric algebras.

3. (A,∆) is an anticenter-symmetric bialgebra.

Recall a Mock Lie bialgebra structure on a Mock Lie algebra G is a linear map δ : G → G ⊗ G
such that δ∗ : G∗ ⊗ G∗ → G∗ defines a Mock Lie algebra structure on G∗ and δ satisfies

δ[x, y] = −(ad(x)⊗ id + id⊗ ad(x))δ(y)− (ad(y)⊗ id + id⊗ ad(y))δ(x), ∀x, y ∈ G, (3.10)

where ad(x)(y) = [x, y] for any x, y ∈ G. We denoted it by (G, δ).

Proposition 3.10 Let (A,∆) be an anticenter-symmetric bialgebra. Then (G(A), δ) is a Mock
Lie bialgebra, where δ = ∆+ σ∆.

Proof: It is straightforward. □

4 A special class of anticenter-symmetric bialgebras

In this section, we consider a special class of anticenter-symmetric bialgebras, that is, the anticenter-
symmetric bialgebra (A,∆) on an anti-flexible algebra (A, ·), with the linear map ∆ defined by

∆(x) = −(id⊗L·(x))r− (R·(x)⊗ id)σr, ∀x ∈ A, (4.1)

where r ∈ A⊗A.
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Proposition 4.1 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A⊗A. Let ∆ : A → A⊗A
be a linear map defined by Eq. (4.1). Eq. (3.6) holds if and only if

(L·(y)⊗R·(x) +R·(y)⊗ L·(x))(r + σr) = 0, ∀x, y ∈ A. (4.2)

Proof: Let r =
∑

i ui ⊗ vi ∈ A⊗A. Then, Eq. (4.1) becomes

∆(x) =
∑
i

(−ui ⊗ xvi − vix⊗ ui),

and
σ∆(x) =

∑
i

(−xvi ⊗ ui − ui ⊗ vix).

We have:

A = ∆(xy) + σ∆(yx) =
∑
i

(
− ui ⊗ (xy)vi − vi(xy)⊗ ui − (yx)vi ⊗ ui − ui ⊗ vi(yx)

)
;

and

B = −
(
σ(id⊗ L·(y)) +R·(y)⊗ id

)
∆(x)−

(
σ(R·(x)⊗ id) + id⊗ L·(x)

)
∆(y)

=
∑
i

[
−
(
σ(id⊗ L·(y)) +R·(y)⊗ id

)
(−ui ⊗ xvi − vix⊗ ui)

−
(
σ(R·(x)⊗ id) + id⊗ L·(x)

)
(−ui ⊗ yvi − viy ⊗ ui)

]
= A+

∑
i

(
yui ⊗ vix+ uiy ⊗ xvi + yvi ⊗ uix+ viy ⊗ xui

)
= A+

(
L·(y)⊗R·(x) +R·(y)⊗ L·(x)

)
(r + σr).

By setting B = A, Eq. (4.2) is established. □

Proposition 4.2 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A⊗A. Let ∆ : A → A⊗A
be a linear map defined by Eq. (4.1). Eq. (3.7) holds if and only if

(R·(x)⊗R·(y) +R·(y)⊗R·(x) + L·(x)⊗ L·(y) + L·(y)⊗ L·(x))(r + σr) = 0, ∀x, y ∈ A. (4.3)

Proof: In this proof, for simplicity, we take r = ui ⊗ vi ∈ A⊗A.
On the one hand, the left-hand side of Eq. (3.7) is given by:

A = (σ(id⊗R·(y)) + id⊗R·(y) + σ(L·(y)⊗ id) + L·(y)⊗ id)∆(x)

= −(xvi)y ⊗ ui − uiy ⊗ vix− ui ⊗ (xvi)y − vix⊗ uiy − xvi ⊗ yui

− ui ⊗ y(vix)− yui ⊗ xvi − y(vix)⊗ ui.

On the other hand, the right-hand side of Eq. (3.7) is:

B = (−σ(id⊗R·(x))− id⊗R·(x)− σ(L·(x)⊗ id)− L·(x)⊗ id)∆(y)

= (yvi)x⊗ ui + uix⊗ viy + ui ⊗ (yvi)x+ viy ⊗ uix+ yvi ⊗ xui

+ ui ⊗ x(viy) + xui ⊗ yvi + x(viy)⊗ ui.

By setting A = B, we obtain:

uiy ⊗ vix+ vix⊗ uiy + xvi ⊗ yui + yui ⊗ xvi

+uix⊗ viy + viy ⊗ uix+ yvi ⊗ xui + xui ⊗ yvi = 0.

This establishes Eq. (4.3). □
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Lemma 4.3 Let A be a vector space and ∆ : A → A ⊗ A be a linear map. Then the dual map
∆∗ : A∗ ⊗ A∗ → A∗ defines an anticenyer-symmetyric algebra structure on A∗ if and only if
H∆ = 0, where

H∆ = (∆⊗ id)∆ + (id⊗∆)∆+ ((σ∆)⊗ id)(σ∆) + (id⊗(σ∆))(σ∆). (4.4)

Proof: Denote by ◦ the product on A∗ defined by ∆∗. Specifically,

⟨a ◦ b, x⟩ = ⟨∆∗(a⊗ b), x⟩ = ⟨a⊗ b,∆(x)⟩, ∀x ∈ A, a, b ∈ A∗.

For all a, b, c ∈ A∗ and x ∈ A, we have:

⟨(a, b, c), x⟩ = ⟨(a ◦ b) ◦ c+ a ◦ (b ◦ c), x⟩
= ⟨

(
∆∗(∆∗ ⊗ id) + ∆∗(id⊗∆∗)

)
(a⊗ b⊗ c), x⟩

= ⟨
(
(∆⊗ id)∆ + (id⊗∆)∆

)
(x), a⊗ b⊗ c⟩;

⟨−(c, b, a), x⟩ = ⟨−(c ◦ b) ◦ a− c ◦ (b ◦ a), x⟩
= ⟨

(
−∆∗(∆∗ ⊗ id)−∆∗(id⊗∆∗)

)
(c⊗ b⊗ a), x⟩

= ⟨
(
− (∆∗σ∗)((∆∗σ∗)⊗ id)− (∆∗σ∗)(id⊗ (∆∗σ∗))

)
(a⊗ b⊗ c), x⟩

= ⟨
(
− ((σ∆)⊗ id)(σ∆)− (id⊗ (σ∆))(σ∆)

)
(x), a⊗ b⊗ c⟩.

Thus, (A∗, ◦) is an anticenter-symmetric algebra if and only if H∆ = 0. □
Now, let (A, ·) be an anticenter-symmetric algebra and let

r =
∑
i

ui ⊗ vi ∈ A⊗A.

Define:
r12 =

∑
i

ui ⊗ vi ⊗ 1, r13 =
∑
i

ui ⊗ 1⊗ vi, r23 =
∑
i

1⊗ ui ⊗ vi,

r21 =
∑
i

vi ⊗ ui ⊗ 1, r31 =
∑
i

vi ⊗ 1⊗ ui, r32 =
∑
i

1⊗ vi ⊗ ui,

where 1 denotes the unit if (A, ·) has a unit. Otherwise, it is a symbol that serves a similar role
to a unit. The operation between two rs is then defined in an obvious manner. For example,

r12r13 =
∑
i,j

ui · uj ⊗ vi ⊗ vj , r13r23 =
∑
i,j

ui ⊗ uj ⊗ vi · vj , r23r12 =
∑
i,j

uj ⊗ ui · vj ⊗ vi, (4.5)

and so on.

Theorem 4.4 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A⊗A. Let ∆ : A → A⊗A
be a linear map defined by Eq. (4.1). Then, ∆∗ defines an anticenter-symmetric algebra structure
on A∗ if and only if, for any x ∈ A, the following holds:

(id⊗ id⊗ L·(x))(M(r)) + (id⊗ id⊗R·(x))(P (r))

+ (L·(x)⊗ id⊗ id)(−N(r)) + (R·(x)⊗ id⊗ id)(−Q(r)) = 0, (4.6)

where:

M(r) = r23r12 + r21r13 − r13r23, N(r) = r31r21 − r21r32 − r23r31,

P (r) = r13r21 + r12r23 − r23r13, Q(r) = r21r31 − r31r23 − r32r21.
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Proof. Let r =
∑

i ui ⊗ vi ∈ A⊗A. Then:(
(∆⊗ id)∆ + (id⊗∆)∆

)
(x)

=
∑
i,j

(
uj ⊗ uivj ⊗ xvi + vjui ⊗ uj ⊗ xvi + uj ⊗ (vix)vj ⊗ ui + vj(vix)⊗ uj ⊗ ui

+ ui ⊗ uj ⊗ (xvi)vj + ui ⊗ vj(xvi)⊗ uj + vix⊗ uj ⊗ uivj + vix⊗ vjui ⊗ uj

)
= (id⊗ id⊗ L·(x))(r23r12) + (id⊗ id⊗ L·(x))(r21r13)− (R·(x)⊗ id⊗ id)(r21r31)

− (id⊗ id⊗ L·(x))(r13r23) + (R·(x)⊗ id⊗ id)(r31r23) + (R·(x)⊗ id⊗ id)(r32r21)

+
∑
i,j

(
uj ⊗ (vix)vj ⊗ ui + ui ⊗ vj(xvi)⊗ uj

)
.

Similarly:(
((σ∆)⊗ id)(σ∆) + (id⊗ (σ∆))(σ∆)

)
(x)

=
∑
i,j

(
(xvi)vj ⊗ uj ⊗ ui + uj ⊗ vj(xvi)⊗ ui + uivj ⊗ uj ⊗ vix+ uj ⊗ vjui ⊗ vix

+ xvi ⊗ uivj ⊗ uj + xvi ⊗ uj ⊗ vjui + ui ⊗ (vix)vj ⊗ uj + ui ⊗ uj ⊗ vj(vix)
)

= −(L·(x)⊗ id⊗ id)(r31r21)− (id⊗ id⊗R·(x))(r23r13) + (id⊗ id⊗R·(x))(r13r21)

+ (id⊗ id⊗R·(x))(r12r23) + (L·(x)⊗ id⊗ id)(r21r32) + (L·(x)⊗ id⊗ id)(r23r31)

+
∑
i,j

(
uj ⊗ vj(xvi)⊗ ui + ui ⊗ (vix)vj ⊗ uj

)
.

By exchanging the indices i and j, we obtain:∑
i,j

(
uj ⊗ (vix)vj ⊗ ui + ui ⊗ vj(xvi)⊗ uj

)
+
∑
i,j

(
uj ⊗ vj(xvi)⊗ ui + ui ⊗ (vix)vj ⊗ uj

)
= 0.

Thus, it follows that:

(L·(x)⊗ id⊗ id)(r21r32 + r23r31 − r31r21)

+ (id⊗ id⊗ L·(x))(r23r12 + r21r13 − r13r23)

+ (R·(x)⊗ id⊗ id)(r31r23 + r32r21 − r21r31)

+ (id⊗ id⊗R·(x))(r13r21 + r12r23 − r23r13) = 0.

This establishes Eq. (4.6). □

Remark 4.5 [8] For any r ∈ A⊗A, the following holds:

N(r) = −σ13M(r), P (r) = σ12M(r), Q(r) = −σ12σ13M(r),

where σ12(x⊗ y ⊗ z) = y ⊗ x⊗ z and σ13(x⊗ y ⊗ z) = z ⊗ y ⊗ x, for any x, y, z ∈ A.

Combining Proposition 4.1, Proposition 4.2, Theorem 4.4, and Remark 4.5, we arrive at the
following result.

Theorem 4.6 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A⊗A. Let ∆ : A → A⊗A
be a linear map defined by Eq. (4.1). Then (A,∆) is an anticenter-symmetric bialgebra if and only
if r satisfies Eqs. (4.2), (4.3), and(

(id⊗ id⊗ L·(x)) + (R·(x)⊗ id⊗ id)σ12σ13

+ ((id⊗ id⊗R·(x))σ12 + (L·(x)⊗ id⊗ id)σ13)
)
(M(r)) = 0,

(4.7)

where M(r) = r23r12 + r21r13 − r13r23.

11

UNDER PEER REVIEW



As a direct consequence of Theorem 4.6, we have the following corollary.

Corollary 4.7 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A⊗A. Let ∆ : A → A⊗A
be a linear map defined by Eq. (4.1). If, in addition, r is skew-symmetric and satisfies

r12r13 − r23r12 + r13r23 = 0, (4.8)

then (A,∆) is an anticenter-symmetric bialgebra.

Definition 4.8 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A ⊗A. Eq. (4.8) is called
the anticenter-symmetric Yang-Baxter equation (ACSYBE) in (A, ·).

Remark 4.9 The term ”anticenter-symmetric Yang-Baxter equation” reflects its analogy with the
classical Yang-Baxter equation in a Mock Lie algebra (see [5]). Notably, the anticenter-symmetric
Yang-Baxter equation in an anticenter-symmetric algebra, the anti-flexible Yang-Baxter equation
in an anti-flexible algebra, and the associative Yang-Baxter equation (see [3, 8]) in an associa-
tive algebra all share the same form as Eq. (4.8). Thus, these three equations exhibit common
properties.

At the end of this section, we highlight two properties of the anticenter-symmetric Yang-Baxter
equation. The proofs are omitted since they mirror the proofs in the case of the associative Yang-
Baxter equation.

Let A be a vector space. For any r ∈ A ⊗A, r can be regarded as a linear map from A∗ to A
as follows:

⟨r, u∗ ⊗ v∗⟩ = ⟨r(u∗), v∗⟩, ∀u∗, v∗ ∈ A∗. (4.9)

Proposition 4.10 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A⊗A be skew-symmetric.
Then r is a solution of the anticenter-symmetric Yang-Baxter equation if and only if r satisfies

r(a) · r(b) = r(R∗
· (r(a))b+ L∗

· (r(b))a), ∀a, b ∈ A∗. (4.10)

Theorem 4.11 Let (A, ·) be an anticenter-symmetric algebra and r ∈ A ⊗ A. Suppose that r is
antisymmetric and nondegenerate. Then r is a solution of the anticenter-symmetric Yang-Baxter
equation in (A, ·) if and only if the inverse of the isomorphism A∗ → A induced by r, regarded as
a bilinear form ω on A (i.e., ω(x, y) = ⟨r−1x, y⟩ for any x, y ∈ A), satisfies

ω(x · y, z) + ω(y · z, x) + ω(z · x, y) = 0, ∀x, y, z ∈ A. (4.11)

5 O-operators of anticenter-symmetric algebras and pre-
anticenter-symmetric algebras

In this section, we introduce the notions of O-operators for anticenter-symmetric algebras and
pre-anticenter-symmetric algebras, which are used to construct skew-symmetric solutions of the
anticenter-symmetric Yang-Baxter equation and, consequently, to construct anticenter-symmetric
bialgebras.

Definition 5.1 Let (l, r, V ) be a bimodule of an anticenter-symmetric algebra (A, ·). A linear
map T : V → A is called an O-operator associated with (l, r, V ) if T satisfies

T (u) · T (v) = T (l(T (u))v + r(T (v))u), ∀u, v ∈ V.

Example 5.2 Let (A, ·) be an anticenter-symmetric algebra. An O-operator RB associated with
the regular bimodule (L,R,A) is called a Rota-Baxter operator of weight zero. In this case,
RB satisfies

RB(x) ·RB(y) = RB(RB(x) · y + x ·RB(y)), ∀x, y ∈ A.
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Example 5.3 Let (A, ·) be an anticenter-symmetric algebra, and let r ∈ A ⊗ A. If r is skew-
symmetric, then by Proposition 4.10, r is a solution of the anticenter-symmetric Yang-Baxter
equation if and only if r, regarded as a linear map from A∗ to A, is an O-operator associated with
the bimodule (R∗

· , L
∗
· ,A∗).

There is the following construction of (skew-symmetric) solutions of anticenter-symmetric Yang-
Baxter equation in a semi-direct product anticenter-symmetric algebra from an O-operator of
an anticenter-symmetric algebra which is similar as for associative algebras ( [3, Theorem 2.5.5],
hence the proof is omitted).

Theorem 5.4 Let (l, r, V ) be a bimodule of an anticenter-symmetric algebra (A, ·), and let T :
V → A be a linear map. Identifying T as an element in (A⋉r∗,l∗ V

∗)⊕(A⋉r∗,l∗ V
∗), r = T−σ(T )

is a skew-symmetric solution of the anticenter-symmetric Yang-Baxter equation in A⋉r∗,l∗ V
∗ if

and only if T is an O-operator associated with the bimodule (l, r, V ).

Definition 5.5 Let A be a vector space with two bilinear products ≺,≻: A ⊗ A → A. The pair
(A,≺,≻) is called a pre-anticenter-symmetric algebra if, for any x, y, z ∈ A, the following
conditions hold:

(x, y, z)m = −(z, y, x)m,

(x, y, z)l = −(z, y, x)r,

where:
(x, y, z)m := (x ≻ y) ≺ z + x ≻ (y ≺ z),

(x, y, z)l := (x ∗ y) ≻ z + x ≻ (y ≻ z),

(x, y, z)r := (x ≺ y) ≺ z + x ≺ (y ∗ z),

and x ∗ y = x ≺ y + x ≻ y.

Proposition 5.6 Let (A,≺,≻) be a pre-anticenter-symmetric algebra. Define a bilinear product
∗ : A⊗A → A by

x ∗ y = x ≺ y + x ≻ y, ∀x, y ∈ A. (5.1)

Then (A, ∗) is an anticenter-symmetric algebra, referred to as the associated anticenter-symmetric
algebra of (A,≺,≻).

Proof: Set (x, y, z)∗ = (x ∗ y) ∗ z + x ∗ (y ∗ z). For any x, y, z ∈ A, we have:

(x, y, z)∗ = (x, y, z)m + (x, y, z)l + (x, y, z)r = −(z, y, x)m − (z, y, x)r − (z, y, x)l = −(z, y, x)∗.

Hence, (A, ∗) is an anticenter-symmetric algebra. □
Let (A,≺,≻) be a pre-anticenter-symmetric algebra. For any x ∈ A, let L≻(x), R≺(x) de-

note the left multiplication operator of (A,≺) and the right multiplication operator of (A,≻)
respectively, that is, L≻(x)(y) = x ≻ y, R≺(x)(y) = y ≺ x, ∀ x, y ∈ A. Moreover, let
L≻, R≺ : A → gl(A) be two linear maps with x → L≻(x) and x → R≺(x) respectively.

Proposition 5.7 Let (A,≺,≻) be a pre-anticenter-symmetric algebra. Then (L≻ , R≺ , A) is a
bimodule of the associated anti-flexible algebra (A, ∗), where ∗ is defined by Eq. (5.1).

Proof: For any x, y, z ∈ A, we have

(L≻(x ∗ y) + L≻(x)L≻(y))(z) = (x ∗ y) ≻ z + x ≻ (y ≻ z) = (x, y, z)
l
,

(−R≺(x)R≺(y)−R≺(y ∗ x))(z) = −(z ≺ y) ≺ x− z ≺ (y ∗ x) = −(z, y, x)r,

(L≻(x)R≺(y) +R≺(y)L≻(x))(z) = x ≻ (z ≺ y) + (x ≻ z) ≺ y = (x, z, y)m,

(−L≻(y)R≺(x)−R≺(x)L≻(y))(z) = −y ≻ (z ≺ x)− (y ≻ z) ≺ x = −(y, z, x)m.

Hence (L≻ , R≺ ,A) is a bimodule of (A, ∗). □
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Corollary 5.8 Let (A,≺,≻) be a pre-anticenter-symmetric algebra. Then the identity map id is
an O-operator of the associated anticenter-symmetric algebra (A, ∗) associated with the bimodule
(L≻, R≺,A).

Theorem 5.9 Let (l, r, V ) be a bimodule of an anticenter-symmetric algebra (A, ·). Let T : V →
A be an O-operator associated with (l, r, V ). Then, there exists a pre-anticenter-symmetric algebra
structure on V given by

u ≻ v = l(T (u))v, u ≺ v = r(T (v))u, ∀u, v ∈ V. (5.2)

Consequently, there is an associated anticenter-symmetric algebra structure on V given by Eq. (5.1),
and T is a homomorphism of anticenter-symmetric algebras. Moreover, T (V ) = {T (v) | v ∈ V } ⊂
A is an anticenter-symmetric subalgebra of (A, ·), and there is an induced pre-anticenter-symmetric
algebra structure on T (V ) given by

T (u) ≻ T (v) = T (u ≻ v), T (u) ≺ T (v) = T (u ≺ v), ∀u, v ∈ V.

The corresponding associated anticenter-symmetric algebra structure on T (V ), as given by Eq. (5.1),
is precisely the anticenter-symmetric subalgebra structure of (A, ·), and T is a homomorphism of
pre-anticenter-symmetric algebras.

Proof: For all u, v, w ∈ V , we have

(u, v, w)m = (u ≻ v) ≺ w + u ≻ (v ≺ w) = r(T (w))l(T (u))v + l(T (u))r(T (w))v
= −r(T (u))l(T (w))v − l(T (u))r(T (w))v = −(w, v, u)m ,

(u, v, w)l = (u ≻ v + u ≺ v) ≻ w + u ≻ (v ≻ w)
= (l(T (l(T (u))v + r(T (v))u)) + l(T (u))l(T (v)))w
= (l(T (u) · T (v)) + l(T (u))l(T (v)))w = −(r(T (u))r(T (v))− r(T (v) · T (u))w
= −(r(T (u))r(T (v))− r(T (u ≻ v + u ≺ v)))w
= −(w ≺ v) ≺ u− w ≺ (u ≻ v + u ≺ v)
= −(w, v, u)r

Therefore, (V,≺,≻) is a pre-anticenter-symmetric algebra. For T (V ), we have

T (u) ∗ T (v) = T (u ≻ v + u ≺ v) = T (u ∗ v) = T (u) · T (v), ∀u, v ∈ V.

The rest is straightforward. □

Corollary 5.10 Let (A, ·) be an anticenter-symmetric algebra. Then there exists a pre-anticenter-
symmetric algebras structure on A such that its associated anticenter-symmetric algebra is (A, ·)
if and only if there exists an invertible O-operator.

Proof: Suppose that there exists an invertible O-operator T : V → A associated to a bimodule
(l, r, V ). Then the products “≻,≺” given by Eq. (5.2) defines a pre-anticenter-symmetric algebra
structure on V . Moreover, there is a pre-anticenter-symmetric algebra structure on T (V ) = A,
that is,

x ≻ y = T (l(x)T−1(y)), x ≺ y = T (r(y)T−1(x)), ∀x, y ∈ A.

Moreover, for any x, y ∈ A, we have

x ≻ y + x ≺ y = T (l(x)T−1(y) + r(y)T−1(x)) = T (T−1(x)) · T (T−1(y)) = x · y.

Hence the associated anticenter-symmetric algebra of (A,≻,≺) is (A, ·).
Conversely, let (A,≻,≺) be pre-center-symmetric algebra such that its associated anticenter-

symmetric is (A, ·). Then by Corollary 5.8, the identity map id is an O-operator of (A, ·) associated
to the bimodule (L≻, R≺,A). □
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Corollary 5.11 Let (A, ·) be an anticenter-symmetric algebra and ω be a nondegenerate skew-
symmetric bilinear form satisfying Eq. (4.11). Then there exists a pre-anticenter-symmetric alge-
bra structure ≻,≺ on A given by

ω(x ≻ y, z) = ω(y, z · x), ω(x ≺ y, z) = ω(x, y · z), ∀x, y, z ∈ A, (5.3)

such that the associated anticenter-symmetric algebra is (A, ·).

Proof: Define a linear map T : A → A∗ by

⟨T (x), y⟩ = ω(x, y), ∀x, y ∈ A.

Then T is invertible and T−1 is an O-operator of the anticenter-symmetric algebra (A, ·) associated
to the bimodule (R∗

· , L
∗
· , A

∗). By Corollary 5.10, there is a pre-anticenter-symmetric algebra
structure ≻,≺ on (A, ∗) given by

x ≻ y = T−1R∗(x)T (y), x ≺ y = T−1L∗(y)T (x), ∀x, y ∈ A,

which gives exactly Eq. (5.3) such that the associated anticenter-symmetric algebra is (A, ·). □
Finally we give the following construction of skew-symmetric solutions of anticenter-symmetric

Yang-Baxter equation (hence anticenter-symmetric bialgebras) from a pre-anticenter-symmetric
algebra.

Proposition 5.12 Let (A,≻,≺) be a pre-anticenter-symmetric algebra. Then

r =

n∑
i

(ei ⊗ e∗i − e∗i ⊗ ei) (5.4)

is a solution of anticenter-symmetric Yang-Baxter equation in A ⋉R∗
≺,L∗

≻
A∗, where {e1, · · · , en}

is a basis of A and {e∗1, · · · , e∗n} is its dual basis.

Proof: Note that the identity map id =
n∑

i=1

ei ⊗ e∗i . Hence the conclusion follows from

Theorem 5.4 and Corollary 5.8. □

6 Concluding remarks

We established a bialgebra theory for anticenter-symmetric algebras, introducing the notion of
an anticenter-symmetric bialgebra and its equivalence to a Manin triple of anticenter-symmetric
algebras. A key result is the formulation of the anticenter-symmetric Yang-Baxter equation in
anticenter-symmetric algebras, an analogue to the classical Yang-Baxter equation in Mock Lie
algebras and the associative Yang-Baxter equation, with the unexpected finding that they share
the same formal structure.

We showed that skew-symmetric solutions to this equation define anticenter-symmetric bial-
gebras. Additionally, the notions of O-operators and pre-anticenter-symmetric algebras were in-
troduced as tools to construct such solutions, providing a foundation for further exploration of
anticenter-symmetric algebraic structures.
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