


HYBRID MACHINE LEARNING TECHNIQUES FOR FORECASTING ESTIMATION IN REAL-TIME


ABSTRACT
In real-time forecasting, estimation is the most crucial measurement for atmospheric observations by time and area. Present-day weather conditions observations are most important for many things, like agriculture, and different types of calamities that are unexpected in normal life.     Machine learning techniques are used for weather forecasting. Among machine learning regression techniques play a key role in this problem. It monitors continuously from time to time. Temperature predictions also include weather forecasting by using regression techniques. Multiple regression techniques were used in our research. We measure the MSE rate for every technique. Multiple variety of metrics were tested. We consider short MSE to indicate for best forecasting outcome. 
Keywords: Weather forecasting, Regression Techniques, Prediction, MSE

1. INTRODUCTION

Weather forecasting to forecasting the state of the atmosphere by location and time. But in the past, this procedure was measured manually based on pressure and weather conditions. New computer technologies were introduced to measure weather conditions based on multiple factors [1].  The linear relationship was established between the input to output attributes. It is different from nonlinear predictions of weather attribute relations. Generally, weather predictions are based on past trends, these past data are connected to present situations of the atmosphere. New technologies to predict weather situations analysis are most valuable for farmers, industry, and the general community for security [2]. From 2018 onwards, machine learning-based weather forecasting started. Different types of machine learning algorithms are used for weather forecasting. They predict the different types of results they predict for weather conditions in research, this research plays a vital role in different research domains [3].
 
Ensemble learning-based weather prediction provides primary knowledge for predicting better quality [4]. These technologies take less time and fewer possessions in a single effort. Emerging technologies provide better predictions for weather forecasting the world [5]. This procedure of training, testing, and authentication of data monitors endlessly predicts the precise outcome of weather situations. Accurate predictions are the most significant for the real-life [6]. 	Comment by M S Upamanyu: Better quality of what?
[image: ]
Figure 1:   operative weather conditions [5]
Figure 1 demonstrates the arrangement for the weather prediction investigation of information from the external atmosphere. Dissimilar arenas associated with weather forecasting effectively perform their work at appropriate times without any loss.

2. PROPOSED SYSTEMS AND ARCHITECTURE STYLE

Our proposed approach mainly focuses on regression techniques of machine learning for continuous monitoring of weather conditions [7].  It's based on numerical concepts for predictions. Multiple algorithms used to predict weather conditions refer to class issues [8]. This paper provides weather forecasting predictions and temperature predictions every time using machine learning techniques (Regression Techniques). Here MSE measures for every method. The succeeding figure 2 demonstrates the planned manner. Figure 2 shows the architecture of proposed machine learning model.


Cataloguing (Classification)
Atmosphere
Weather Radars
Model Development







Weather States








Figure 2: Architecture of projected system [9]
3. STATISTICAL RESULTS AND INVESTIGATION
3.1   Dataset Report
We focus on 1461 records in our dataset with six attributes.  This is a sample dataset, but the actual dataset size is very high. The dataset was collected from the Kaggle dataset. Multiple weather forecasting datasets are available on Kaggle. Because different types of weather are available throughout the world.
                                                         Table 1: Sample Dataset [10]
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3.2 Data Preprocessing
Data preprocessing to predict the pure data from raw data. This approach is crucial for predicting accurate results [11]. If not pre-processed, targeted results are not predicted. Global temperatures are generally warmer near the equator and cooler towards the poles, with significant variations influenced by factors like latitude, altitude, proximity to water, and prevailing winds. 	Comment by M S Upamanyu: Why aren’t these used in dataset
3.3 Data Picturing
[image: ]
Figure 3: Data Picturing for temperature
weather, the state of the atmosphere at a particular place during a short period of time. It involves such atmospheric phenomena as temperature, humidity, precipitation (type and amount), air pressure, wind, and cloud cover. The succeeding figures 3 and 4 demonstrate the information about temperature at the least and extreme. [12]
[image: ]
Figure 4: Data picturing the lowest infection rate of temperature
From 2017 to 2023, global temperatures continued a warming trend, with 2023 being the warmest year on record, exceeding previous records like 2016 and 2020. The resulting Figure 5 epitomizes the extreme temperatures in every month from 2019 to 2023.
[image: ]
Figure 5: Data picturing each month in every year over temperature
From 2019 to 2023, global temperatures continued to rise, with 2023 being the warmest year on record, surpassing previous records by a wide margin, and every month from June to December was record warm for the respective month. The resulting Figure 6 denotes the lowest temperature in every month in every year from 2019 to 2023.	Comment by M S Upamanyu: The sentence is repeated multiple times
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Figure 6: Data picturing min temperature 
From 2019 to 2023, global temperatures showed a clear warming trend, with 2023 setting a new record for the warmest year, and every month of 2023 ranking among the warmest for that month, especially in the second half of the year. Figure 7 expresses the overall rain in a piece month in a separate year. 
[image: ]
Figure 7: Sleet in each month of year
 [image: ]
From 2019 to 2023, global temperatures continued to rise, with 2023 being the warmest year on record, surpassing previous records by a wide margin, and every month from June to December was record warm for the respective month. 	Comment by M S Upamanyu: Repeated multiple times.
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Figure 8: Representation of (wind speed)
Figure 8 displays the data imagining of dissimilar weather environments like fog, snow, rain, and sun. Figure 9 illustrates the data for the delivery of weather types in percentage.

[image: ]
Figure 9: Data picturing of dissimilar weather situations

Dissimilar weather situations can include a wide range of conditions, from sunny and clear to rainy, stormy, or snowy, and even extreme events like heat waves, cold snaps, and droughts. Deserts are expanding, while heat waves and wildfires are becoming more common. Amplified warming in the Arctic has contributed to thawing permafrost, retreat of glaciers and sea ice decline.
[image: ]
Figure 10: Data picturing of dissimilar weather situations
3.4 Regression Analysis of the Dataset
In machine learning, Regression analysis is used to study the relationships between dependent and independent variables. Regression analysis is a statistical method used to model the relationship between a dependent variable and one or more independent variables, allowing for predictions and understanding of the strength and direction of these relationships. 
[image: ]
3.5 Ordinary Least Squares Regression 
The following method provides 1.07 as MSE, 0.83 as MAE, and 0.24 as MSLE. Max error is 3.28, MAE is 0.67, and Huber loss is 0.44.
3.6 Logistic Regression
MSE-1.40, MAE-0.46, MSLE-0.15, Max Error- is 3.9, MAE-0, and Huber Loss-0.37.
 [image: ]
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Figure 11: Actual vs Target Values over Logistic Regression

3.7 Multivariate Adaptive Regression Splines (MARS)
MSE-1.99, MAE-0.75, MSLE-0.11, Max Error-3.26, MAE-0.59 and Huber loss-0.4.	Comment by M S Upamanyu: The figure displays different value!
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Figure 12: MARS outcomes for actual vs target values
3.8 Locally Estimated Scatterplot Smoothing (LOESS)
The MSE - 1.25, MAE - 0.98, MSLE - 0.12, R squared - 0.12, Variance - 0.12, Maximum error - 3.01, MAE- 0.94, and Huber loss - 0.54.
[image: ]
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Figure 13: LOESS outcome for actual vs target values
LOESS (Locally Estimated Scatterplot Smoothing) is a non-parametric method for smoothing data by fitting simple regression models to localized subsets of data, resulting in a smooth curve that adapts to the underlying structure when comparing actual vs. target values. Among all models, Logistic Regression gets the lowest error rate. 	Comment by M S Upamanyu: Giving a comparative analysis would be beneficial 

4. CONCLUSION
Machine learning techniques are used for weather forecasting. Among machine learning regression techniques play a key role in this problem, it monitors continuously from time to time. Temperature predictions also include weather forecasting by using regression techniques. Multiple regression techniques were used in our research. We measure the MSE rate for every technique. Multiple variety of metrics were tested in this research. Logistic regression gets 0.45 for the MAE value. This is less compared to other models. 	Comment by M S Upamanyu: Weather forecasting includes temperature prediction and not vice-verse
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image8.png
g = sns.FacetGrid(df, col='year', col wrap=4, height=5)
g.map(sns.scatterplot, 'month', 'wind')
g.set_axis_labels(Month', 'Wind speed')
g.set_titles(col_template="{col_name}")

plt.shou()
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<class 'pandas.core.frame.DataFrame’>
RangeIndex: 1461 entries, © to 1460

Data columns (total 6 columns):

#  Column Non-Null Count Dtype

o date 1461 non-null  datetime64[ns]
1 precipitation 1461 non-null  floated
2 temp_max 1461 non-null ~ floated
3 temp_min 1461 non-null  floated
4 wind 1461 non-null ~ floated
5 weather 1461 non-null  object

dtypes: datetime64[ns](1), float64(4), object(1)
memory usage: 68.6+ KB

def huber_loss(y_true, y_pred, delta=1.0):
error = y_true - y_pred
is_small_error = np.abs(error) <= delta

squared_loss = 8.5 * error**2
linear_loss = delta * (np.abs(error) - 0.5 * delta)
return np.where(is_small_error, squared_loss, linear_loss)

from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

df['weather' ]=le.fit_transform(df[ ‘weather'])

x = df[['temp_min', ‘temp_max', 'precipitation’, ‘wind'l]
y=df[‘weather']
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