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Review Article

EFFECT OF AQUATIC POLLUTION ON EMBRYONIC AND LARVAL DEVELOPMENT OF FISH: A REVIEW


ABSTRACT
	Aquatic pollution stemming from industrial, agricultural, and urban activities exerts a profound impact on ecosystems, notably affecting fish reproduction, development, and overall well-being, leading to significant ecological and economic repercussions. The contamination of heavy metals such as copper, zinc, and cadmium severely impact fish embryos, causing delayed hatching, disruptions in development, and heightened mortality rates. These metals disrupt physiological processes, jeopardizing embryonic survival and resulting in organogenesis defects, metabolic imbalances, and altered enzyme activity. Similarly, pesticides, particularly herbicides like Thiobencarb, persist in the environment, perturbing hormonal functions and inducing developmental, behavioural and reproductive alterations in fish, with younger stages being more susceptible than older ones. Microplastics have arisen as a persistent environmental menace, disturbing aquatic ecosystems by affecting fish larvae and embryos. Ingestion of microplastics leads to growth retardation, diminished survival rates, and developmental abnormalities primarily due to metabolic disruptions, oxidative stress, and alterations in gut microbiomes. These consequences underscore plastic pollution's significant ecological and health hazards, disrupting nutrient absorption and impairing long-term survival. Oil spills, which expose organisms to polycyclic aromatic hydrocarbons (PAHs), trigger developmental anomalies, particularly in species like Atlantic cod, resulting in malformations, anaemia, and organ edema. These pollutants notably impact fish embryonic development, causing deformities, delays in development, and increased mortality rates, consequently exacerbating ecosystem well-being. Furthermore, exposure to toxicants disrupts fish behaviour, affecting feeding habits, visual reflexes, and predator avoidance mechanisms through neurotoxic effects and sensory system disturbances. 
Conclusion: aquatic pollution poses significant risks to fish health, reproduction, and survival, with widespread implications for aquatic ecosystems.
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1. INTRODUCTION
Aquatic environments are significant recipients of contaminants that might lead to detrimental effects on aquatic organisms over time. Aquatic pollution contaminates water bodies, including rivers, lakes, oceans, and groundwater, by deleterious compounds resulting from human activity. This pollution can adversely impact aquatic ecosystems, marine life, and human well-being. These implications become apparent only after changes occur in the community, ecology, or population; at this point, it may be impossible to reverse the change. Over the past few years, this has become a significant worry because various contaminants poison water bodies. The primary causes of aquatic pollution are rapid industrialization, heavy metal discharge from commercial and domestic wastes, farming operations, chemical and physical weathering of rocks, soil erosion, waste disposal, and atmospheric deposition, which heavily contaminate natural aquatic systems. Innovative agricultural methods have improved crop yields but have exacerbated pollution in aquatic ecosystems. The increase in river pollution and contamination of other water bodies has emerged as a significant concern in recent years, attributed to the direct discharge of industrial effluents and urban sewage with minimal or no treatment. Despite being non-target creatures, fish have fallen prey to water pollution through the accumulation of poisons. The accumulation of toxicants negatively impacts the human population through fish eating (Ansari et al., 2004). 
Aquatic pollution has the potential to biologically influence biota by affecting their metabolic, respiratory, and immunological capabilities, as well as causing changes in population structure and development and structural anomalies. The existence of pollutants directly or indirectly in aquatic systems produces measurable environmental and financial impacts. The measures of the ecological consequences are the pollutant buildup in biota, the considerable rise in pollution-related reproduction, developmental anomalies, and other essential modifications in biochemical or physiological processes in fish and invertebrates (Arukwe, 2001). 
To identify early indicators of these effects, it is essential to pick sensitive measures to detect tiny environmental disruptions. Embryos and larvae of fish have been employed for decades in toxicity testing because these phases of development are well-documented and very susceptible to toxicants (Rosenthal and Alderdice, 1976; Westernhagen, 1988). This has been applied to monitoring the sublethal biological impacts of pollution on the marine environment throughout the last decade. The incidence of morphological deformities and chromosomal aberrations in developing fish embryos has been utilized successfully to detect pollution effects in vast sections of the North Atlantic (Longwell and Hughes, 1980; Chang and Longwell, 1984; Westernhagen et al., 1988). It is believed that lipophilic organic contaminants, including organochlorines (DDT, DDE, dieldrin, PCBs, etc.) and specific heavy metals that concentrate in the livers of parent fish and subsequently migrate to reproductive tissues, are the cause of these detrimental effects on the fish reproductive process. This has been demonstrated through fish tests that were conducted under laboratory circumstances (Westernhagen, 1988). Furthermore, there are indications of strong negative relationships between levels of chlorinated hydrocarbons in tissues of wild marine fish and the quality and survivability of their eggs (Westernhagen et al., 1981, 1989; Hansen et al., 1985; Spies and Rice, 1988). Additionally, water pollutants are believed to directly impact spawned eggs, particularly in the concentration zone at the sea-surface microlayer (Westernhagen et al., 1987; Cameron et al., 1992).

2. CONTAMINANTS IN AN AQUATIC ENVIRONMENT AND THEIR EFFECT 
2.1 Heavy metal
Heavy metal pollution of water impacts fish development and reproduction, among other physiological functions. According to Jezierska and Witeska (2001), the effects of waterborne metals on fish are linked to their absorption and storage by the organism, which causes metal-induced disruptions in the structure and function of different tissues and organs. Fish embryos are especially vulnerable to poisoning during their early development, including when the eggshell shields them.
Metals in water may have an impact on spawners, which could lead to disruptions in embryonic development. Fish exposed to metals frequently exhibit higher gonad metal levels. Szarek-Gwiazda (1999) found that the ovaries of Noemacheilus barbatulus had elevated levels of zinc, lead, and cadmium. Inhibition of embryonic development may occur at several developmental stages. According to Perry et al. (1988), methylmercury prolonged the early stages of Fundulus heteroclitus embryonic development by delaying it.
On the head, the embryos grow what are known as hatching glands before hatching. Chorionase, required for the dissolution of the eggshell during hatching, is produced by the glands. Waterborne metals may alter the growth and functioning of these glands. Metal-induced disruptions of transcription and translation resulting in lower synthesis of proteins, including chorionase, were found by Kapur and Yadav (1982). Norrgren and Degerman (1993) discovered that the chorion of non- or incompletely formed Salmo salar eggs developed at low pH and in an Al-rich environment maintained intact inner surfaces.
In contrast, regularly hatched eggs had a considerably looser structure. This possibly developed from decreased activity of chorionase. The hatching glands of Cyprinus carpio embryos treated with zinc or copper exhibited intracellular granules and smaller surfaces than the controls (Mis and Bigaj, 1997). These alterations resulted in reduced chorionase production. 
The provided findings demonstrate that the commencement of hatching is often delayed, which is probably connected to the functioning of hatching glands. However, the entire process may be slowed down or expedited. Delayed hatching of Salvelinus fontinalis treated to aluminum at low pH was found by Cleveland et al. (1986). Dave and Xiu (1991) observed delayed hatching in metal-treated Brachydanio rerio. Their studies reveal that copper and nickel are the biggest hatching inhibitors. Even at low doses that do not result in larval death, copper impacts hatching. 
Woodworth and Pascoe (1982) reported that Oncorhynchus mykiss embryos exposed to 0.1 mg dm-3 of Cd hatched 50–60 hours earlier than the control. Similar results were achieved by Somasundaram et al. (1984). Brungs (1969) found premature hatching of Pimephales promelas subjected to zinc; however, the hatching process was protracted. Klein-MacPhee et al. (1984) found that Pseudopleuronectes americanus treated with silver exhibited a similar response.
During embryonic development, heavy metal intoxication decreases embryo survival and, consequently, hatching success. Most malformed embryos and some usually developed ones perish during embryonic development. The highest mortality of embryos occurred within the first 24 hours following fertilization, and roughly 20% of embryos die even under control conditions (Słomin'ska, 1998). During the blastula development stage, the highest embryonic mortality rate (>15%) was recorded (Ługowska, 2005). Metal exposure during this stage strongly influences the survival of the embryos. According to Słomin'ska (1998), at concentrations more than 1 mg dm-3, lead significantly increased mortality compared to the controls, copper at concentrations greater than 0.3 mg dm-3. According to Jezierska and Słomin´ska's (1997) findings, 100% mortality occurred at 0.3 mg dm-3, and the survival of Cu-exposed embryos (0.1 mg dm-3) 24 hours after fertilization was significantly lower than that of controls. According to Ługowska (2005), embryos primarily died during the blastula (>25%) and body segmentation (>15%) stages following exposure to highly toxic copper.

2.2 Pesticide
A class of chemical substances known as pesticides is designed to eradicate pests, such as bacteria, fungi, and weeds. Based on their target organism, Pesticides are divided into herbicides, insecticides, nematicides, molluscicides, piscicides, avicides, rodenticides, bactericides, and fungicides. According to Jayaraj et al. (2016), these compounds are increasingly utilized in domestic animals, livestock, agriculture, and home goods. The persistence of certain pesticides in the environment is one of their characteristics. They have lengthy half-lives, are highly lipophilic, bioaccumulate in the trophic chain, and are non-biodegradable. Their effects can be detected even several years after their application. (Jayaraj et al., 2016; Mhadhbi and Beiras, 2012) 
Worldwide, the overuse and abuse of pesticides are accountable for harmful effects on the ecosystem's health, impacting numerous terrestrial and aquatic species. However, the negative impacts on microbes, invertebrates, plants, fish, and amphibians can be severe in aquatic ecosystems. (Jayaraj et al., 2016; Corcellas et al., 2017) Various pesticides and related chemical substances can alter hormone control, chemical messengers, and metabolic pathways. In the early stages of embryo development, hormones play a vital role in cell and tissue differentiation. Hence, exposure to these endocrine-disrupting drugs can lead to a change in the expected growth of the embryo. Endocrine-disrupting drugs can influence both the embryo and the adult. It may take until later in the embryos' development to notice the impacts of pesticide exposure, which include behavioral, reproductive, and disease-susceptibility changes. (Ahmad et al., 2010; McAloose and Newton, 2009) 
Since fishes exist solely in aquatic environments, they are outstanding bioindicators of environmental pollution. The contact with excessive quantities of pesticides and related compounds is generally lethal. However, prolonged exposure to low levels significantly impacts individuals over the medium and long term. They can produce minor changes in behavior, physiology, development, longevity, and reproduction due to metabolic abnormalities and enzyme inhibition. Zebrafish (Danio rerio) embryos are one of the most prevalent species in toxicology essays. However, the effects of pesticides have been explored in other fish species (Khan and Law, 2005).

2.3 Herbicide
Herbicides represent the most significant share of pesticides used in agriculture. In 2007, Herbicides accounted for 40% (950 million kg) of the projected 2.4 billion kilograms of pesticides globally (USEPA, 2012a). Although agricultural applications dominate the market, herbicides are also used in forestry and other applications, such as controlling vegetation on rights-of-way, industrial, and urban sites. 
	[image: ]

	Figure 1. Graphical presentation of the fate of herbicides in surface waters



In aquatic environments, herbicides can be administered directly to surface water to suppress aquatic weeds or carried to surface water by various paths (Figure 1). Direct overspray deposition or spray drift from adjacent areas is one possible exposure pathway. Fish exposure is more likely when weeds are purposefully added to water to eliminate aquatic nuisances or weeds in rice paddies.
Fish in their earlier phases are often considered more sensitive to toxins than those in their older stages. A few studies have examined fish's sensitivity to herbicides at different developmental stages. Similar findings were found in a study on the toxicity of the herbicide thiobencarb in Atlantic silverside (Menida menida), Tidewater silverside (Menida peninsulae), and California grunion (Leuresthes tenuis) (Borthwick et al., 1985). The sensitivity of younger fish (0–7 days post-hatch) was higher than that of older fish (28 days post-hatch), and the species' sensitivity differences varied from two to three times. According to a study on developmental end-points in medaka (Oryzias latipes) using the same herbicide, thiobencarb was more hazardous to stage 10 blastulas (EC50 of 3600 mg/L) than to stage 23 fish (EC50 of 4100 mg/L), which were the beating heart (Villalobos et al., 2000).

2.4 Plastic and microplastic
Plastic pollution, particularly in the form of microplastics (particles smaller than 5 millimeters), has become a pervasive environmental issue, infiltrating ecosystems worldwide. The contamination of aquatic environments by plastic waste, ranging from large debris to microscopic particles, poses significant threats to water quality, biodiversity, and the overall health of ecosystems. Microplastics are especially concerning due to their durability, low production cost, and strong resistance to degradation, allowing them to persist and spread globally. These particles are found in oceans, rivers, soil, and even groundwater systems, making them a ubiquitous pollutant in the biosphere.
Over 8 million tons of microplastics are estimated to enter the oceans annually from land-based sources, while the total amount of microplastic waste in land soils and surface waters remains uncertain (Jambeck et al., 2015; Zhang et al., 2020). The widespread distribution of microplastics is driven by their lightweight nature, ease of transport, and ability to be fixed in various environments. Some microplastics remain in the soil, while others are washed into water bodies through runoff (Bergmann et al., 2019; Raven Hurt et al., 2020). Additionally, microplastics are increasingly recognized as a pollutant in freshwater ecosystems and even the atmosphere (Wong et al., 2020; Wang et al., 2020).
Microplastics are pervasive across all environmental compartments. They have been detected in surface waters, midwater columns, deep-sea sediments, and even remote regions like polar ice (Obbard et al., 2014). Environmental factors such as wind, water currents, and temperature influence their distribution. For example, denser polymers like polyvinyl chloride tend to sink to the ocean floor, while less dense materials like polyethylene and polypropylene float, often concentrating in gyres and coastal zones (Eriksen et al., 2014). Plastic and microplastic contamination of aquatic ecosystems disrupts various ecological processes and poses significant risks to aquatic organisms. These contaminants affect ecosystems in multifaceted ways, ranging from physical blockages and ingestion to chemical toxicity and habitat disruption.
Microplastics in aquatic environments have been shown to disrupt the expected growth of fish larvae and embryos. Microplastics can physically obstruct feeding, block the digestive tract, and alter the energy allocation in developing organisms. In fish larvae, the ingestion of microplastics can lead to reduced food intake and digestive efficiency, diverting energy away from growth and development to deal with the physical stress caused by the presence of foreign particles in the gastrointestinal tract. For instance, fish larvae exposed to MPs have exhibited reduced growth rates and developmental delays (Limonta et al., 2019). In a study on zebrafish (Danio rerio), exposure to polystyrene microplastics resulted in delayed growth due to the accumulation of nanoparticles in vital organs like the liver and brain, which induced cellular stress responses.
Similarly, MPs have been linked to slower development and reduced survival rates in species like bighead carp (Aristichthys nobilis) and hybrid snakehead (Channa argus × C. maculata). The sensitivity to microplastic contamination varies across species. For instance, bighead carp, more sensitive to water quality deterioration, showed significant developmental delays and reduced survival rates when exposed to MPs (Zhang et al., 2021.). In hybrid snakehead, a carnivorous species, MPs did not accumulate as heavily in the digestive tract as in filter-feeding fish. However, chronic exposure still led to oxidative stress and mild metabolic disturbances. The reduced growth observed in these species can be attributed to the diversion of metabolic resources from developmental processes to detoxification and stress responses, thus impairing proper organ and tissue formation during early life stages. This disruption can lead to physical deformities, increased susceptibility to disease, and reduced overall fitness, all indicative of impaired growth and development.

2.5 Oils and hydrocarbon
In instances of oil spills in the marine environment, oil endures several weathering procedures altering the physical and chemical nature of the oil. One of the most essential processes in weathering is the creation of oil-in-water dispersions, as this enhances the surface-to-volume ratio of the oil. Formations of oil droplets will naturally arise when oil is liberated from the seabed during blowouts and when surfaced oil is spread into the water column by wave energy during heavy weather. Even though oil is denser than water, micro-sized droplets may stay in the water column due to relatively low surface velocity. Each droplet's bulk oil matrix and the surrounding water will equilibrate oil components like polycyclic aromatic hydrocarbons (PAH) in proportions dictated mainly by the droplet surface-to-volume ratio and their water solubility. Physical factors, including temperature, pressure, light, currents, the type of oil, time, location, and depth of the leak, may further affect this (NRC, 2005).
On the other hand, oil droplets contain most of the oil components found in an oil dispersion, with only a tiny fraction dispersed. It is well established that there is a high association between aberrant fish embryonic development and pollution load in the natural environment (Westernhagen et al., 1988). There have been reports of developmental abnormalities in fish embryos exposed to PAHs concerning surface oil spills at sea (Incardona et al., 2012) and unintentional oil spills after train derailments (Debruyn et al., 2007). According to laboratory studies, fish embryos and larvae exposed to PAHs and crude oil have developmental effects such as failed swim bladder inflation, anemia, pericardial and yolk sac edema (Incardona et al., 2004), dorsal curvature (Li et al., 2011), and malformations of the craniofacial skeleton (de Soysa et al., 2012; Shi et al., 2012). 
The Atlantic cod (Gadus morhua L.) embryo is one the most susceptible species to exposure to hydrocarbons, and the first phases of fish embryo formation are generally more vulnerable than the late embryonic stage (Kjørsvik, 1986). The embryo stage of G. morhua spans roughly 18–20 days at 5–6 °C (Geffen et al., 2006; Hall et al., 2004; Kjørsvik et al., 1984).

3. EFFECT OF POLLUTANTS ON HATCHING, EMBRYONIC DEVELOPMENT AND SURVIVAL OF FISH
Various developmental processes of the early stages of fish are hindered or affected by the pollutants, as the early stages are sensitive to water pollution. The accumulative ability of pollutants adversely affects gamete production and may exhibit direct toxic effects upon early developing embryos, reducing the offspring's quality and quantity. Accumulation of metals like Zn, Pb, and Cd has been found in the gonads of Noemacheilus barbatulus (Szarek-Gwiazda, 1999). Oreochromis aureus, upon exposure to Cd and Pb, Allen (1995) observed metal accumulation in testes and ovaries, mainly of Cd. It resulted in the contamination of sperm and eggs, adversely affecting fish fertility and embryonic development. Some documents show that metal pollutants may affect the spermatozoa motility time, an essential parameter for successful fertilization. Jezierska et al. (1995) observed that Cu, Pb, and Cd reduced the mobility of spermatozoa in Cyprinus carpio. The eggshell is ineffective in protecting the embryo from penetrating pollutants/metals, mainly during the swelling phase, leading to the accumulation of contaminants in the egg. These entered metal ions change the chorion structure and permeability. Reports stated that Pb binds mucopolysaccharides to the membrane, altering the permeability, which results in ion exchange disturbance between the perivitelline fluid and the external environment (Stouthart et al., 1994). The level of swelling alters the entire embryonic development process. The embryo changes its position in usually swollen eggs or shows movement every five to ten seconds.
In contrast, eggs that do not swell adequately enough are too small, providing less space than required and may result in abnormal larvae hatching (Korwin-Kossakowski, 1996). Stouthart et al. (1996) observed that Cu may be disturbed by selective membrane permeability, resulting in a disturbance in the cation exchange between perivitelline fluid and water. Along with affecting the various developmental processes, these pollutants also affect the early embryo's development rate, and the results depend on the concentration of these pollutants. 
Post fertilization, the early stages are susceptible to pollutants, mainly metal intoxication, where most deformities and heavy mortalities occur. These waterborne metal pollutions promote developmental abnormalities, mainly body malformations during organogenesis. Many developmental processes are hindered by these metal pollutants, such as the hatching process, deformities, premature hatching, and even mortality of newly hatched larvae. Ługowska (2005) observed that when embryos of Cyprinus carpio were exposed to Cu and Pb (0.2 and 2 mg dm-3), respectively exhibited first developmental retardation at the eye pigmentation stage. Distinct abnormalities during cleavage were observed when eggs of Cyprinus carpio were treated with lead, copper, and cadmium (Jezierska, 2009). Also observed were uneven and irregularly distributed blastomeres, and the whole blastula was deformed. As stated earlier, most of the metals also affect the organogenesis stage. Some common malformations observed are shortening of vertebrae, craniofacial anomalies, curvature, yolk sac, and cardiac malformations. Damage to the blood vessels and hemorrhages were also observed by many authors by metals (Jezierska and Słominska, 1997; Jezierska and Gorzynska, 1998; Słominska, 1998) and mutagenic and teratogenic effects on embryos were also observed. Speranza et al. (1977) observed abnormal protoplasmic protrusions in Brachydanio rerio eggs on exposure to Zn, which showed several cases of a crenated disc on top of the yolk. Mercury-exposed fish (Fundulus heteroclitus) embryos exhibited three main malformations: i) Cardiovascular disturbances (underdeveloped heart, poor heartbeat, abnormal heart division, and sometimes no cardiac muscle was observed), ii) Skeletal malformations, and iii) Cranial malformations (eye fusion, partial/underdeveloped skull, and brain (acephalia)) (Weis et al. 1982).
The organisms' uptake and accumulation of metals results in disturbances in the function and structure of various organs and tissues (Jezierska and Witeska, 2001). Most of the metal toxicity paths of fish described for larvae and adults also apply to the embryos as they share similar metabolic processes of juvenile and adult fish. The toxic action of metal pollutants is mainly related to osmotic disturbances and changes in the synthesis and activity of enzymes. For instance, calcium update is disturbed by reduced Ca2+-ATPase activity in the presence of Cd (Reddy et al., 1988; Wong and Wong, 2000), resulting in calcium reduction in the organism. Similarly, Cd affects sodium and Chloride concentrations and kinetics by altering Na+/K+-ATPase activity, resulting in osmoregulatory failure (Grosell et al., 2004). Cadmium ions also bind to sulfur groups containing proteins like cysteine and glutathione, inhibiting the function of these molecules. Behra (1993) noted that cadmium and lead bind to a free calcium sensor protein called calmodulin, affecting various cellular functions. Pb ions also may occupy calcium-binding sites of many calcium-dependent proteins. Cd has reduced the activity of multiple enzymes like citrate synthase, an enzyme of oxidative metabolism, and other related enzymes succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PDH) (Gargiulo et al., 1996), lactate dehydrogenase (LDH) (Hilmy et al., 1985). The metal Pb also decreased the activity of G6PDH, LDH, and pyruvate kinase (PK) (Osman et al., 2007). Caldwell and Phillips (1998) observed that hemoglobin synthesis had been disturbed by inhibiting two essential enzymes, ferrochelatase and gamma levulinic acid dehydrogenase (ALA-D), respectively. The heavy metals have also documented endocrine disruptions. For instance, thyroid hormone levels were reduced by Cd (Hontela et al., 1996). Similarly, Cd inhibits estrogen receptors (Le Guevel et al., 2000) and disrupts growth hormone expression (Jones et al., 2005). 
Many authors stated that the increase in developmental time and developmental retardation occurred by the activity of the metals (Cleveland et al., 1986; Perry et al., 1988; Yulin et al., 1990; Ellenberger et al., 1994). In Fundulus heteroclitus, embryonic development was retarded by methylmercury, extending the early stages, and the authors stated that this may be due to the effect of metal on the mitotic divisions (Perry et al., 1988). Similarly, embryogenesis was suppressed at the stage of gastrulation or complete organogenesis by certain metals in Cyprinus carpio (Kapur and Yadav, 1982). The embryos that are ready to hatch develop hatching glands over the head. These glands secrete an enzyme called chorionase, which helps disintegrate the shell during hatching. The gland's development and function may be affected by these waterborne metals. Kapur and Yadav (1982) noticed that transcription and translation are disturbed by metals, resulting in reduced synthesis of many proteins, including chorionase. Thus, various most critical metabolic processes are adversely affected by heavy metals resulting in morphological and functional abnormalities, growth and developmental retardation, or even mortality of the sensitive larvae. Additionally, detoxification is an energy-consuming process, which is activated by heavy metals, resulting in less growth.
Embryos intoxicated with metals resulted in deformities and underdeveloped young ones, and most of them died during embryonic development. Significant mortalities occur within 24 hours after fertilization. Significant mortalities of embryos were observed by Ługowska (2005) at the stage of blastula formation, and lower mortality rates were observed during organogenesis. Similar data was obtained by many authors on various fish species Oncorhynchus tshawytscha (Hazel and Meith, 1970), Oncorhynchus mykiss (Lewis, 1976), Salmo salar (Craik and Harvey, 1988), Cyprinus carpio (Bieniarz et al., 1997).

4. EFFECTS OF POLLUTANTS ON BEHAVIOURAL CHANGES IN LARVAE
In contrast to conventional physiological and morphological biomarkers, behavioural responses can be sensitive indicators of toxicant exposure (Beitinger, 1990). Through various studies, some authors suggested that embryonic stages are more susceptible to waterborne toxicants than fish larvae (Takimoto et al., 1984). Disruption to spontaneous activity in response to a toxicant indicates the ability to avoid predators and catch food. Still, these complex behaviours are not limited to these behaviours. In early life stages, toxic substances can disrupt visual function and inherent visual reflexes, as observed through monitoring the optomotor response (OMR). F. heteroclitus was deprived of Artemia sp. in clear water after embryonic exposure to MeHg (Zhou et al., 1996). Dietary contaminants can be introduced to early life through parental care strategies. The larvae of cichlids Symphysodon spp. can be exposed to nutritional contaminants when they feed on parental mucus at first feeding, as demonstrated by Maunder et al. (2011). Besides exposure to waterborne and dietary contaminants, maternal contaminants can also be transmitted to offspring through egg-protected eggs (Latif et al., 2001; Peake et al., 2004). The expected behaviour of fish is interrupted by the high quantity of water pollutants, either directly or indirectly. Fish behaviour changes brought on by pollution may raise exposure levels even further and create positive feedback loops that suggest pollution has a detrimental effect on fish health.
Neurotoxic chemicals can cause behavioural changes and alterations of specific behaviours, affecting an organism's ability to deal with the environment. The expected behaviour is critical for survival as larvae exhibit significant mortality due to predation and starvation. Behaviour changes in larvae can be induced even by a lower level of chemicals required to cause anatomical abnormalities. Fish larvae's behaviour patterns evolve in tandem with their sensory and locomotor systems. The authors' explanations for the MeHg (methyl mercury) transient effects were either due to a delay in neurological development or depression in neurochemical processes (Weis and Weis, 1995b; Zhou et al., 1996). In D. rerio, MeHg has been found to have comparable effects on feeding behaviour (Samson et al., 2001). According to Miller et al. (1993), the behaviour and histological measures of visual ability were studied, which revealed that larvae's reaction to prey was slower than suggested by anatomical measures. This indicates that behavioural limitations are more likely to be behavioral rather than anatomical. Schooling behavior in fish usually develops at the larval stage, which is considered a defense mechanism against predators (Neill and Cullen 1974) and a hydrodynamic aid (Weihs 1975). Larvae of F. heteroclitus, upon exposure to MeHg as embryos, exhibited a higher frequency of collisions with each other than control larvae (Ososkov and Weis, 1996).
Egan et al. (2009) subjected D. rerio to a stressor (anxiolytic drugs) in a pretreatment container before being moved to a unique trapezoidal container for behavioral assessments. The author observed that it increased anxiety manifested as staying in the lower section of the tank. The behavioral parameters evaluated encompassed the time taken to reach the upper section, the duration spent in the upper region, the frequency of transitions to the upper part, occurrences of erratic movements, instances of freezing, and the duration of freezing bouts.
Various research studies examining the impact of pollutants on the sense of smell have concentrated on the juvenile and adult phases. Disruption of fish olfaction can impede predator evasion (Scott et al., 2003), social interactions (Sloman et al., 2003), and reproductive activities (Moore and Waring, 2001). Exposure during development to chemical signals influences gene regulation in the olfactory system (Harden et al., 2006), facilitating olfactory imprinting crucial for future successful migrations and adaptive behaviours. Exposure to toxic substances can potentially change gene expression within the olfactory region of fish brains, which could result in behavioural alterations. Exposure to cadmium has been associated with inducing cell death in the olfactory epithelium and affecting the ciliated sensory cells present in the olfactory pits, a phenomenon that Matz and Krone (2007) correlated with changes in aversion behaviours exhibited by D. rerio larvae.

5. PHYSIOLOGICAL IMPACTS ON GROWTH AND METABOLISM
Aquatic contaminants can affect the normal physiological processes of fish eggs and larvae. There may be alterations in respiratory, metabolic, and enzyme activity that impact growing fish's general well-being and development. Delays in development and stunted growth can affect fish populations' size and age distribution, affecting their reproduction ability. Fish embryos and larvae exhibit high metabolic rates during their development, driven by rapid cell division, organ formation, and the establishment of various physiological systems. The energy required for these processes is primarily sourced from the yolk during early stages and from exogenous feeding as the larvae mature. Microplastics, however, can disrupt the efficient utilization of this energy in several ways.
One of the most significant metabolic disruptions caused by MPs is oxidative stress. The ingestion of microplastics often produces reactive oxygen species (ROS), which can damage cellular structures, including lipids, proteins, and DNA. Exposure to MPs combined with pesticides like imidacloprid in zebrafish increased lipid peroxidation and altered glycolipid metabolism, leading to further metabolic disturbances and inflammation. These disruptions not only affect the immediate health of the larvae but also have long-term consequences for their growth and survival.
Furthermore, microplastics are known to alter the gut microbiome in fish, a key regulator of metabolic functions. The gut microbiome plays an essential role in nutrient absorption and digestion, and any alteration in its composition can lead to reduced metabolic efficiency. Wan et al. (2019) found that MPs in the gut lumen of fish altered microbial composition, leading to decreased nutrient absorption and reduced metabolic efficiency. This effect was particularly noticeable in omnivorous species, where MPs persisted longer in the gastrointestinal tract compared to carnivorous or filter-feeding species (Zhang et al., 2019; Wang et al., 2020).

6. CONCLUSION 
In conclusion, the effect of aquatic pollution on the embryonic and larval development of fish is a complex and multifaceted issue with far-reaching ecological consequences. Aquatic ecosystems are heavily contaminated by pollutants, which can harm aquatic organisms over time. Fish have fallen prey to water contamination through the accumulation of chemicals, negatively influencing the human population through fish eating.
Aquatic pollution has the potential to biologically influence biota by changing their metabolic, respiratory, and immunological capabilities, as well as producing changes in population structure and development and structural anomalies. The presence of pollutants directly or indirectly in aquatic systems generates measurable environmental and financial repercussions. The ecological effects include pollutant buildup in biota, a significant rise in pollution-related reproduction, developmental defects, and other crucial alterations in biochemical or physiological processes in fish and invertebrates. 
Embryos and larvae of fish have been exploited for decades in toxicity testing because of their susceptibility to toxicants. Lipophilic organic pollutants, particularly organochlorines, and certain heavy metals, are likely to cause these adverse effects on the fish reproductive process. Heavy metal water pollution affects fish development and reproduction, among other physiological activities. Fish exposed to metals often exhibit elevated gonad metal levels, leading to abnormalities in embryonic development. Heavy metal intoxication lowers embryo survival and hatching success, with most deformed embryos and some typically developed ones perishing during embryonic development. Pesticides have extended half-lives, are highly lipophilic, bioaccumulated in the trophic chain, and are non-biodegradable. Overusing and abusing pesticides can severely affect ecosystem health, harming terrestrial and aquatic organisms. Fish in their initial stages are frequently more vulnerable to pollutants than mature ones.
Microplastics are particularly problematic due to their longevity, low production cost, and remarkable resistance to degradation. Contamination of aquatic environments by plastics and microplastics disturbs biological processes and poses substantial dangers to aquatic animals. Microplastics can impair fish larvae and embryos' normal growth, resulting in lower food intake, digestive efficiency, and changed energy allocation. Ingestion of microplastics can contribute to lower growth rates and developmental delays in fish larvae. Moreover, microplastics can change the gut microbiome in fish, a crucial regulator of metabolic activities. This can contribute to reduced metabolic efficiency and decreased food absorption, particularly in omnivorous species where MPs stay longer in the gastrointestinal tract than carnivorous or filter-feeding species.
Oil spills in marine environments modify oil's physical and chemical character, leading to oil-in-water dispersions. Oil droplets comprise most of the oil components in an oil dispersion, with only a minute fraction scattered. Fish embryonic development is closely related to pollution load in the natural environment, with developmental defects in fish embryos exposed to polycyclic aromatic hydrocarbons (PAHs) and crude oil. The Atlantic cod embryo is one of the most susceptible species to exposure to hydrocarbons, with the earliest phases of fish embryo production being more vulnerable than the late embryonic stage. These pollutants can induce physical abnormalities, greater disease susceptibility, and diminished general fitness, all indicating impaired growth and development.
Pollutants in fish can dramatically impair hatching, embryonic growth, and survival. The early stages of fish are sensitive to water pollution, which can lead to the accumulation of metals like Zn, Pb, and Cd, which can severely influence gamete formation and embryonic development. These contaminants can also impact the spermatozoa motility time, which is crucial for successful fertilization. The harmful impact of metal pollution is mainly connected to osmotic disturbances and changes in the production and activity of enzymes. Methylmercury can slow embryonic development, lengthening the early stages and suppressing embryogenesis at the gastrulation stage or complete organogenesis. Overall, pollution has a deleterious influence on fish health and overall well-being. Top of Form
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