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Abstract

This study presents a novel framework for modeling and simulating the
price dynamics of Ethereum through the utilization of Poisson and Gaussian
processes. The method utilizes the distinctive traits of bitcoin price dynamics,
which frequently experience abrupt surges and persistent variations. We establish
a state-space model that incorporates a Poisson process to account for substantial
price fluctuations and a Gaussian process to represent the continuous price
dynamics. The model facilitates the derivation of essential statistical parameters,
such as the lambda rate of significant changes, mean returns, and volatility. We
substantiate our methodology by simulating future price trajectories derived
from historical data, illustrating its efficacy in encapsulating the intrinsic volatility
and patterns of Ethereum prices. The findings demonstrate that our approach
can provide significant insight for traders and analysts in making informed
judgments in the volatile cryptocurrency market.

Keywords: Ethereum, Poisson process, Gaussian process, price dynamics,
statistical modeling, and simulation.

1 Introduction

In recent years, there has been a notable increase in interest in cryptocurrencies,
with Ethereum becoming one of the most prominent entities in this unpredictable
industry. Ethereum, as a decentralized platform facilitating smart contracts and
decentralized applications (DApps), experiences price fluctuations driven by various
factors, including market sentiment, regulatory changes, and technological progress
(2). Comprehending these dynamics is essential for investors, traders, and policymakers
alike (3).

Modeling price dynamics in financial markets has conventionally depended on
stochastic processes, especially those derived from Brownian motion. Nonetheless,
the distinctive features of cryptocurrency markets—such as abrupt price fluctuations
and heavy-tailed distributions—frequently contravene the assumptions foundational
to these models (4). Thus, there is an increasing demand for advanced statistical
approaches capable of precisely elucidating the complexity of price behavior in
cryptocurrencies (5).



This research seeks to tackle these problems by formulating a statistical model
that integrates Poisson and Gaussian processes to examine Ethereum price movements.
The Poisson process is utilized to model substantial price swings or leaps, whereas
the Gaussian process represents the constant variations in pricing. This dual
methodology facilitates a more thorough comprehension of Ethereum’s price dynamics
over time.

The objectives of this study are as follows:

1. To present a full overview of Ethereum’s relevance in the cryptocurrency
industry and the importance of appropriately estimating its price movements.

2. To highlight the barriers involved in forecasting bitcoin valuations and underscore
the necessity for sophisticated statistical techniques.

3. To formulate and validate a statistical model employing Poisson and Gaussian
processes that accurately replicates Ethereum price movements.

The rest of this paper is structured as follows: Section 2 reviews existing research.
Section 3 explains the theory behind the Poisson and Gaussian processes in our
model. Section 4 describes how we collected and prepared the data, fitted the
model, and simulated price paths. In Section 5, we discuss the results of our
analysis, and Section 6 covers what our findings mean. Finally, Section 7 wraps
up with a summary of what we contributed and ideas for future research.

2 Literature Review

The modeling and forecasting of cryptocurrency price dynamics have garnered
considerable attention in the past decade owing to the spectacular growth and
volatility of digital assets like as Ethereum. In contrast to conventional financial
markets, cryptocurrencies display distinct characteristics including significant volatility,
large tails, return clustering, and sudden fluctuations, requiring advanced and hybrid
modeling techniques. Among the prevalent stochastic tools, Poisson and Gaussian
processes have become essential for elucidating the dual characteristics of continuous
and discrete market behaviors.

2.1 Gaussian Processes in Price Modeling

Gaussian processes (GPs) are well-established in financial modeling, especially for
representing the continuous and diffusive characteristics of asset price fluctuations.
Gaussian models are based on the classical Geometric Brownian Motion (GBM)
framework, which forms the foundation of the Black-Scholes model (14). General
practitioners presume normally distributed returns and continuous-time stochastic
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processes, rendering them appropriate for modeling the overarching trend and daily
variations of asset values.

The presumption of regularly distributed returns and stable volatility frequently
proves inadequate in the realm of bitcoin markets. Research, including (15), indicates
that cryptocurrencies, such as Ethereum, display non-Gaussian characteristics,
such as fat tails and volatility clustering; hence, questioning the adequacy of solely
Gaussian models. Notwithstanding these constraints, Gaussian processes continue
to be advantageous, particularly when used with non-linear kernels in Bayesian
machine learning for adaptable regression modeling (16).

2.2 Poisson Processes and Jump Dynamics

Researchers have integrated Poisson jump processes into financial models to account
for sudden and discontinuous fluctuations in asset prices, frequently instigated
by exogenous shocks like news events, regulatory actions, or substantial trades.
Poisson processes characterize the occurrence and consequences of infrequent or
distinct events and have been widely applied in jump-diffusion models, as demonstrated
in the research by (17) and subsequently expanded by (18). These models combine
continuous Brownian motion with a discrete Poisson process to represent both
typical market behavior and abrupt fluctuations.

In the realm of Ethereum, (19) and (20) employed jump-diffusion and compound
Poisson models to encapsulate the discontinuous price dynamics characteristic
of cryptocurrency marketplaces. Their findings endorse the utilization of hybrid
models that integrate the Gaussian foundation with Poisson jumps to more precisely
represent price fluctuations. This is especially pertinent for Ethereum because
of its susceptibility to protocol enhancements, decentralized application (DApp)
engagement, and fluctuations in speculative demand.

2.3 Hybrid Models and Simulation Approaches

Due to the insufficiency of either Gaussian or Poisson models, hybrid models that
integrate both have gained popularity. These models replicate Ethereum price
dynamics by include both the steady trend (Gaussian) and abrupt fluctuations (Poisson).
For instance, (21) employed GARCH-Jump models to simultaneously capture volatility
and jump dynamics. Their findings demonstrated that incorporating jump intensity
markedly enhances forecasting precision for cryptocurrencies.

Monte Carlo simulations are frequently utilized to examine the behavior of hybrid
stochastic models under diverse settings. Ametrano et al. (22) underscored that a
genuine modeling of cryptocurrency price dynamics must incorporate heteroskedasticity,
jump components, and mean-reverting behavior, particularly over brief time intervals.
Moreover, (23) examined the amalgamation of machine learning with stochastic
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simulations, demonstrating that these models surpass conventional static approaches
in the unpredictable cryptocurrency environment.

2.4 Ethereum-Specific Modeling Considerations

Ethereum possesses distinct attributes in contrast to other cryptocurrencies like
Bitcoin. It facilitates smart contracts, decentralized finance (DeFi) apps, and network-
based usage indicators, including gas fees and transaction throughput, all of which
affect its pricing. Research by (24) and (25) indicates that Ethereum has elevated
informational inefficiency and heightened responsiveness to network activity, hence
supporting the need for dynamic models capable of adapting to structural changes
and abrupt disturbances.

Recent studies by (26) utilized non-linear time series models to analyze Ethereum
price and volatility data, uncovering substantial dependencies on both external and
internal cryptocurrency market components. This corresponds effectively with the
application of compound stochastic processes that facilitate the modeling of such
structural complexities.

3 Theoretical Framework

This section outlines the theoretical foundations that support our methodology for
modeling Ethereum price movements through Poisson and Gaussian processes.
These processes are essential for capturing both the discrete transitions and continuous
variations inherent in cryptocurrency markets (6).

3.1 Poisson Process

The Poisson process (7) is a stochastic model that defines the occurrence of random
events across time, defined by its rate parameter λ, which signifies the average
number of occurrences occurring within a specified interval. The process demonstrates
essential characteristics like independence, where the count of events in non-overlapping
intervals is independent; stationarity, signifying that the likelihood of events relies
exclusively on the duration of the interval; and memorylessness, which denotes
that forthcoming events are unaffected by prior occurrences. The mathematical
expression for the chance of observing k occurrences within a time interval t is as
follows:

P (N(t) = k) =
(λt)ke−λt

k!
(3.1)

where N(t) represents the quantity of events occurring inside the time interval t.
In financial environments, substantial price fluctuations can frequently be represented
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by a Poisson process. This study employs this paradigm to identify abrupt fluctuations
in Ethereum prices, allowing us to measure both the frequency and intensity of
these notable variations.

3.2 Gaussian Process

A Gaussian process comprises a set of random variables, where every finite subset
adheres to a joint Gaussian distribution, defined by a mean function m(x) and a
covariance function k(x, x′). This framework facilitates the modeling of continuous
functions, rendering it especially effective for representing smooth price fluctuations
in financial data. The mathematical relationship between the mean and covariance
can be articulated as:

f(x) ∼ GP(m(x), k(x, x′)) (3.2)

where f(x) is the modeled function. Our study use Gaussian processes to
model the continuous variations in Ethereum prices, accurately reflecting underlying
patterns and volatility while accommodating the noise intrinsic to financial data
(8; 9).

The integration of Poisson and Gaussian processes offers a robust framework
for simulating Ethereum price movements. We employ the Poisson process to
represent discrete price fluctuations resulting from market events, whereas the
Gaussian process delineates the continuous progression of prices over time. This
dual methodology improves our capacity to assess and forecast price fluctuations
in a highly volatile market.

4 Methodology

This section outlines the methods utilized in this study to examine Ethereum price
movements through Poisson and Gaussian processes. The procedure encompasses
data acquisition, preprocessing, model testing and simulation of price trajectories.

4.1 Data Collection

The dataset utilized for this analysis comprises daily closing prices of Ethereum,
obtained from Kaggle (1). The data ranges from January 1, 2016, to January 11,
2021, encompassing over 1,800 observations. Each entry includes the date and the
corresponding closing price, facilitating a thorough examination of price fluctuations
over time (10).
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4.2 Data Preprocessing

Before analysis, we implemented multiple preprocessing measures to guarantee
the validity of data and suitability for modeling. Missing values were resolved via
forward-filling to ensure continuity (5). Daily returns were computed utilizing both
percentage change and logarithmic approaches:

Returns =
Pricet − Pricet−1

Pricet−1
(4.1)

Log Returns = ln

(
Pricet

Pricet−1

)
(4.2)

Substantial changes were identified as any return beyond an absolute threshold
of 5%, and these were annotated in the dataset for subsequent analysis. Furthermore,
we calculated the total number of significant changes and the interarrival intervals
between these occurrences to analyze their frequency (11).

4.3 Model Fitting

The subsequent stage entailed fitting both the Poisson and Gaussian processes to
the preprocessed data.

Fitting the Poisson Process: The rate parameter (λ) for the Poisson process
was determined from the number of significant changes seen across the entire
length of the dataset. This entailed computation:

λ =
Number of Events

Total Days
(4.3)

This parameter allows us to model the frequency of significant price jumps.
Fitting the Gaussian Process: A rolling window approach was used to estimate

the mean and standard deviation of daily returns over a specified period (default set
to 30 days). We derived the annualized volatility using the fitted parameters.

Annualized Volatility = σ ×
√
252 (4.4)

where σ is the standard deviation of daily returns.

4.4 Simulation of Price Paths

To simulate future price paths, we combined both processes:
1. Generating Daily Returns: Daily returns were generated using a normal

distribution characterized by the fitted mean (µ) and standard deviation (σ) obtained
from the Gaussian process fitting.
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2. Incorporating Poisson Jumps: We determined the number of jumps on
each simulated day using a Poisson random variable with a rate parameter λ. The
sizes of these jumps were drawn from a normal distribution with a specified mean
and standard deviation.

3. Calculating Price Paths: The price paths were computed iteratively by
applying the generated returns (both continuous and jump) to simulate future prices
over a specified number of days (thus, 252 trading days) (12).

This thorough methodology enables us to accurately estimate Ethereum’s price
movements, encompassing both discrete jumps and continuous oscillations characteristic
of cryptocurrency marketplaces.

5 Results

This section presents the results derived from fitting Poisson and Gaussian processes
to the Ethereum price data, along with the consequences of simulating future price
trajectories.

5.1 Model Parameters

The fitted parameters from both the Poisson and Gaussian processes provide insight
into the dynamics of Ethereum prices, as summarized in Table 1.

Parameter Value
Poisson Process Results
Lambda (events per day) λ = 0.2308

Average days between significant events 4.33

Gaussian Process Results
Mean daily return µ = 0.0041

Daily volatility σ = 0.0544
Annualized volatility σannualized = 0.8631

Table 1: Model parameters for the Poisson and Gaussian processes applied to
Ethereum price dynamics.

These parameters suggest that substantial price fluctuations transpire roughly
every 4.33 days, with an average return of approximately 0.41% per day, illustrating
the pronounced volatility inherent in the cryptocurrency market.

5.2 Simulation Outcomes

Utilizing the tested models, we projected future price trajectories for Ethereum over
a designated timeframe of 252 trading days. The simulation entailed producing
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daily returns utilizing the Gaussian process and integrating discontinuous jumps
represented by the Poisson process.

The simulated price trajectories demonstrated considerable volatility, indicative
of both ongoing oscillations and abrupt shifts characteristic of cryptocurrency markets.
For example, some simulated trajectories exhibited swift price escalations followed
by corrections, reflecting the actual patterns found in Ethereum’s historical price
data.

5.3 Visualizations

To facilitate understanding of our findings, we provide graphical representations of
the results:

- Analysis of Ethereum Price Dynamics:
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Figure 1: Analysis of Ethereum Price Dynamics

Figure 1 effectively demonstrates the suitability of integrating Gaussian and
Poisson processes to explain Ethereum price patterns. The Ethereum price history
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from 2017 to 2023 demonstrates significant volatility and prominent price surges,
particularly in 2021, suggesting speculative bubbles and market corrections. A
histogram showing returns, along with a normal distribution, has a shape that is
more peaked and has longer tails, which means that big price changes happen
more often than a typical bell curve would suggest. This observation underscores
the constraints of normality assumptions in accurately reflecting actual market behavior.
The graph showing the time between significant price changes closely matches an
exponential distribution, supporting the use of a Poisson process to model sudden
market events. The simulated price trajectories produced by the hybrid model
exhibit both continuous trends and sudden fluctuations, which are comparable to
actual Ethereum price dynamics. Together, these graphs support the idea that a
Poisson-Gaussian hybrid model is a better and more effective tool for predicting,
managing risks, and modeling different situations in cryptocurrency markets.

6 Discussion

This section interprets the conclusions derived from our modeling and simulation
of Ethereum price dynamics, compares our methodology with current models, and
addresses the limits identified throughout the study.

6.1 Interpretation of Results

The estimated parameters from both the Poisson and Gaussian processes yield
significant insights into Ethereum’s price dynamics. The predicted lambda rate of
0.2308 signifies that substantial price fluctuations transpire approximately every 4.33
days, underscoring the volatility inherent to cryptocurrencies. The average daily
return of 0.0041 indicates a slight rising trend; however, the annualized volatility of
0.8631 reflects the substantial risk involved in trading Ethereum.

The simulation results indicated that our model accurately represents both continuous
variations and abrupt changes in pricing. The simulated trajectories closely mirror
actual price fluctuations, affirming our selection of Poisson and Gaussian processes
as appropriate for simulating Ethereum’s behavior. This dual approach facilitates a
more sophisticated comprehension of market dynamics, especially during times of
increased volatility.

6.2 Comparison with Existing Models

Conventional financial models frequently utilize Brownian motion (13) to characterize
price dynamics, presupposing normally distributed returns and continuous trajectories.
This assumption neglects the substantial fluctuations and heavy-tailed distributions
evident in Bitcoin markets. By integrating Poisson processes to explain abrupt price
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movements with Gaussian processes for continuous variations, our methodology
offers a more precise depiction of Ethereum’s price dynamics.

Our method is more adaptable than current models that mainly use Brownian
motion or other standard random processes, allowing it to better capture the unique
features of bitcoin price changes. This advantage is especially pertinent in the
realm of algorithmic trading tactics that necessitate resilient models to guide decision-
making in volatile markets.

6.3 Limitations

Although our modeling approach has strengths, we must acknowledge several
limitations:

- Data Constraints: The analysis depends on past pricing data from a singular
source, potentially introducing biases or mistakes. Various exchanges may demonstrate
distinct price behaviors owing to variances in market depth and liquidity.

- Assumptions: Our model presupposes that the parameters are invariant over
time, which may not be valid in swiftly evolving market conditions. Future studies
may investigate time-varying parameters to improve model precision.

- Model Complexity: Although our dual-process methodology captures critical
dynamics, it concurrently elevates computational complexity. The necessity for
comprehensive simulations may restrict feasible implementations in real-time trading
contexts.

In conclusion, although our study effectively presents a unique framework for
simulating Ethereum price dynamics through Poisson and Gaussian processes,
additional research is required to overcome these limitations and enhance the
model’s usefulness in financial markets.

7 Conclusion

This study presents a statistical framework for estimating the price dynamics of
Ethereum through Poisson and Gaussian processes. Our analysis reveals that
substantial price fluctuations transpire at an average frequency of roughly 0.2308
events per day, accompanied by a mean daily return of 0.0041 and an annualized
volatility of 0.8631, underscoring the elevated risk associated with trading this cryptocurrency.
The dual-process approach effectively includes both sudden changes and steady
movements, providing a better understanding than traditional models based on
Brownian motion. The ramifications of this research transcend Ethereum, since
the framework can be modified for other cryptocurrencies and financial instruments
exhibiting the same tendencies. Subsequent research may improve model precision
by integrating time-varying factors and utilizing the methodology on high-frequency
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trading data. Our research enhances the literature on cryptocurrency price modeling
by presenting a strong framework that tackles the distinct issues of erratic markets.
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