

Original Research Article

A Dataset and A Dynamic Distributed Parallel Network for Identifying Divisors of Odd Composite Integers

Abstract: For a given odd integer N = pq , where p and q are prime factors satisfying 2 < p < q, we define a dataset that systematically accumulates multiples of p and q. This dataset is isomorphic to a rectangular lattice structure described in terms of rows and columns. We then design a dynamic distributed parallel network to search for a multiple of p or q, enabling the calculation of a divisor of N via the greatest common divisor (GCD) between the identified multiple and N. Experimental results demonstrate that the defined dataset provides a novel scenario for applying search algorithms to identify divisors of N and the designed dynamic distributed parallel network operates efficiently when paired with an appropriate search method.
Key words: Integer factorization, distributed parallel computing, randomized algorithm, lattice.

1. Introduction

The mathematical challenge of integer factorization has persisted as a fundamental research subject for centuries. Its cryptographic significance became particularly pronounced following the advent of the RSA cryptosystem, whose security framework is intrinsically predicated on the computational intractability of this problem. The theoretical foundation of RSA would be fundamentally compromised should an efficient polynomial-time factorization algorithm emerge for large integers. This critical dependency has driven sustained research efforts by cryptanalysts and number theorists to develop enhanced factorization methodologies.

As documented in foundational monographs [1-6] and comprehensive survey papers [7-17], the post-1970s era witnessed remarkable algorithmic evolution, yielding over a dozen distinct factorization approaches. These include: Pollard's rho method; Shanks' SQUFOF (SQUare FOrm Factorization); the Morrison-Brillhart CFRAC (Continued FRACtion method); Pomerance's Quadratic Sieve (QS); Lenstra's Elliptic Curve Method (ECM); the Number Field Sieve (NFS/GNFS); and quantum computing-based approaches. Despite this methodological proliferation, recent investigations [18-26] published within the past 5 years reveal persistent demands for improved factorization efficiency, particularly regarding cryptographically relevant integers, suggesting ongoing algorithmic innovation in this field.

A systematic review of factorization methodologies reveals that search mechanisms, randomization strategies, and parallel computation paradigms constitute three foundational pillars underlying both classical and modern integer factorization approaches.

The search component operates through systematic identification of integers sharing non-trivial divisors with the target composite number. This manifests through distinct implementations across algorithms: cycle detection in the Pollard-(method, square number exploration in SQUFOF, and elliptic curve point searching in ECM. Contemporary developments over the past two decades demonstrate accelerated integration of intelligent search heuristics, including Tabu search implementations (Sadiq A. T. [27], 2009; Candra A. [28], 2017), genetic algorithm-driven searches (Rutkowski E. [32], 2020; Mobin M. A. [33], 2024), Grover's algorithm of the quantum search (Dash A. [31], 2018), heuristic searches (Mishra M. [34], 2016; Fagin B.S. [35], 2021; Hittmeir M. [36], 2023), and Lévy flight-based divisor search and identification (Wang X. [37], 2024). Notably, the period 2015-2017 witnessed concentrated efforts in general search algorithm applications (Choudhury B. [29], 2015; Wang X. [30], 2017), highlighting sustained interest in search-space optimization techniques.

According to the Digital Library of Mathematical Functions (DLMF) assessment framework, randomized algorithms have revolutionized integer factorization research [38]. Classical factorization methods – including Pollard-(, SQUFOF, CFRAC, QS, ECM, and GNFS – fundamentally rely on randomization principles. Notably, even advanced intelligent search methodologies inherently incorporate stochastic components.

The evolution of parallel computing architectures has been instrumental in advancing factorization capabilities since R.P. Brent's seminal work [39]. Extensive adaptations of major algorithms (ECM, QS, SQUFOF, CFRAC, and GNFS) for parallel environments have been systematically demonstrated through [40–46], with subsequent extensions to distributed and grid computing paradigms [47,48]. Crucially, all successful factorizations of RSA numbers to date have leveraged parallel implementations. This establishes parallelism as an essential requirement for practical large integer factorization. An algorithm that lacks parallelizability would face substantial limitations in factoring large integers unless it exhibits exceptionally high speed.
It is evident that a high-quality dataset plays a crucial role in the application of search algorithms, regardless of whether the computing environment is sequential or parallel. Consequently, we have constructed an integer dataset focusing on multiples sharing divisors of a given composite odd integer, building upon our foundational research. This dataset is associated with a rectangular lattice region that can be easily searched using various algorithms in both sequential and parallel computing paradigms. We also propose a Distributed Dynamic Parallel Random Search (DDPRS) framework, which operates within this dataset as an example for identifying divisors of odd composite numbers. Our methodological innovations address the dual requirements of parallelizability and stochastic search efficiency, which are critical in addressing current factorization challenges.
This paper is organized as follows: Section 1 contextualizes the research landscape. Section 2 establishes formal definitions and notational conventions. Section 3 synthesizes relevant prior work from our research group. Section 4 details our technical contributions through theoretical analysis, algorithmic innovations, and empirical validation. Section 5 concludes with implications and future directions.
2. Terminologies, Symbols and Notations

This section contains the necessary symbols, notations, and definitions for further use.
Symbol
[image: image1.wmf]AB

Þ

 means conclusion B can be derived from condition A.
[image: image2.wmf]AB

Û

 means both
[image: image3.wmf]AB

Þ

 and
[image: image4.wmf]BA

Þ

. An integer interval
[image: image5.wmf][,]

ab

means the set of all the integers bounded with integers a and b with
[image: image6.wmf]ab

<

; for example, integer interval
[image: image7.wmf][5,9]{5,6,7,8,9}

=

. If d is a divisor of integer h, h is called a host number of d , or a number hosting d, or simply a host of d, denoted by symbol
[image: image8.wmf]d

h

. If an integer interval contains integer x, that integer interval is called a host interval of x. If a two-dimensioanl region (zone, area) contains integer point P, that region (zone, area) is called a host region (zone, area) of P. A finite set is called a computing cell if the set is used to compute something. A computational base, or simply a base, which originates from the concept of an artillery base, refers to the minimum number of computational tasks a processing unit is scheduled to complete within its designated time frame. The base of a multi-core computer is the multiplication of the number of its cores with the base of an individual core. A complete partition of a set S is to divide S into finite subsets, say
[image: image9.wmf]12

,

ss

,..., and
[image: image10.wmf]n

s

, such that
[image: image11.wmf]1

i

n

i

Ss

=

=È

and
[image: image12.wmf]ij

ss

Ç=Æ

 for
[image: image13.wmf]ij

¹

, where
[image: image14.wmf]1,

ijn

££

. For positive integers a and b, integer
[image: image15.wmf]||1

b

a

gab

=--

is called the gap between a and b. Symbol
[image: image16.wmf]x

G

 means a gap taking value x. Symbols
[image: image17.wmf]x

êú

ëû

 and
[image: image18.wmf]x

éù

êú

are respectively the floor and ceil functions such that
[image: image19.wmf]11

xxxxx

-<££<+

êúéù

ëûêú

or
[image: image20.wmf]{}1{}

xxxxx

=+=-+

êúéù

ëûêú

, where
[image: image21.wmf]{}

x

 is the fractional part of x.

For an odd composite integer N , 'a host of N's divisors' can sometimes be simply called 'a host' in the case that there is no misunderstanding, and likewise, 'the hosts of N's divisors' can be said to be 'the hosts'.
3. Our Previous Research Results
For an odd composite integer N=pq with
[image: image22.wmf]1

pq

<<

 as odd prime factors, the prime divisors p or q can be determined by computing the greatest common divisor (gcd) of N and any integer sharing a nontrivial factor with N. The central challenge lies in developing an efficient methodology for rapid identification of the hosts. Building upon this foundation, our prior investigations have systematically addressed four critical dimensions: distribution characteristics of the hosts, densification strategies for enhancing host integer concentration, optimized search protocols for host integer detection, and parallel computing architectures to accelerate the search process.

This section concisely summarizes these foundational results, which underpin the subsequent analytical developments presented in this work.
3.1. Distribution of the Hosts
Lemma 1[49]. Let q be a positive odd number,
[image: image23.wmf]{|}

i

SaiZ

+

=Î

 be a set composed of consecutive odd numbers; if
[image: image24.wmf]aS

a

Î

 is a host of q, then so it is with
[image: image25.wmf]q

aS

a

+

Î

.

Lemma 2[50]. Given an odd integer
[image: image26.wmf]Npq

=

with divisors p and q satisfying
[image: image27.wmf]2

pq

<<

; let
[image: image28.wmf]N

p

w

êú

=

êú

ëû

. Then the integer interval
[image: image29.wmf][,

N

IN

êú

=

ëû

[image: image30.wmf]1]

NN

êú

--

ëû

contains
[image: image31.wmf]21

pq

w

+--

 hosts of N's divisors if
[image: image32.wmf]|

pN

êú

ëû

; otherwise it contains
[image: image33.wmf]22

pq

w

+--

hosts of N's divisors.
Lemma 3[50]. Given an odd integer
[image: image34.wmf]Npq

=

with divisors p and q satisfying
[image: image35.wmf]2

pq

<<

; let
[image: image36.wmf]N

p

w

êú

=

êú

êú

ëû

. Assume
[image: image37.wmf],

N

pq

I

P

 is the probability of picking randomly a host of N's divisors in
[image: image38.wmf][,

N

IN

êú

=

ëû

[image: image39.wmf]1]

NN

êú

--

ëû

; then

[image: image40.wmf]2

,

2

22

,|

1(1)

221

,

1(1)

N

pq

I

pN

NN

P

pN

NN

w

w

ì

êú

-

ï

ëû

--

ï

>

í

+

ï

êú

-

ëû

ï

--

î

Œ

.

 Lemma 4[51]. Let
[image: image41.wmf]Npq

=

 be an odd integer and integer interval
[image: image42.wmf][3,1]

N

IN

=-

, where p and q are odd integers with
[image: image43.wmf]1

pq

<<

 and
[image: image44.wmf](,)1

pq

=

; then for each pair of
[image: image45.wmf]p

h

and
[image: image46.wmf]q

h

in
[image: image47.wmf]N

I

satisfying
[image: image48.wmf]1

1,

2

pq

N

hh

-

<<

, it holds

[image: image49.wmf]qq

pp

hNh

hNh

gg

-

-

=

,

and there exists a pair, still say
[image: image50.wmf]p

h

and
[image: image51.wmf]q

h

 satisfying
[image: image52.wmf]0

qq

pp

hNh

hNh

gg

-

-

==

.

Lemma 5[52]. Let p and q be odd integers with
[image: image53.wmf]1

pq

<<

; then there is not a host of q between
[image: image54.wmf]1

()

2

q

p

-

 and
[image: image55.wmf]1

()

2

q

p

+

. There are at least two hosts of p between
[image: image56.wmf]1

()

2

p

q

-

 and
[image: image57.wmf]1

()

2

p

q

+

; particularly,
[image: image58.wmf]1

()

2

q

p

-

 and
[image: image59.wmf]1

()

2

q

p

+

 are exact two hosts of p between
[image: image60.wmf]1

()

2

p

q

-

and
[image: image61.wmf]1

()

2

p

q

+

 if
[image: image62.wmf]12

q

p

<<

.
Lemma 6 [52] . Given an odd integer
[image: image63.wmf]Npq

=

, where p and q are odd integers such that
[image: image64.wmf](,)1

pq

=

 and
[image: image65.wmf](1)

pqp

ll

<<+

with
[image: image66.wmf]1

l

³

being an integer; let
[image: image67.wmf][1,1]

N

IN

=-

 be an integer interval. Then in
[image: image68.wmf]N

I

, each of
[image: image69.wmf]01

,,...

GG

, and
[image: image70.wmf]2

p

G

-

 symmetrically occurs twice between two adjacent hosts of N's divisors, whereas
[image: image71.wmf]1

p

G

-

 totally occurs
[image: image72.wmf]1

qp

--

 times across p distinct subintervals in a symmetric manner. Furthermore, there exist exactly
[image: image73.wmf]1

r

-

subintervals in each of which
[image: image74.wmf]1

p

G

-

 occurs
[image: image75.wmf]l

 times.

3.2. Distribution Trait of the Hosts In Their Hosting Interval
Let
[image: image76.wmf]Npq

=

 be an odd integer with divisors satisfying
[image: image77.wmf]2

pq

<<

; then from 1 to N(1 there are
[image: image78.wmf]1

p

-

 hosts of q and
[image: image79.wmf]1

q

-

 hosts of p, totally
[image: image80.wmf]2

pq

+-

 hosts in the integer interval
[image: image81.wmf][1,1]

N

IN

=-

. Let
[image: image82.wmf]N

host

I

P

be the probability to pick randomly a host in
[image: image83.wmf]N

I

; then

[image: image84.wmf]2

1

N

host

I

pq

P

N

+-

=

-

. (1)
 It surely follows

[image: image85.wmf]2111121

1

N

host

I

pqpq

P

NNpqNpN

+-+-

=<=+-<-

-

,

indicating one successful pick for a big p is like finding proverbial needle in the haystack.
3.3. Densification of the Hosts
Paper [53] proposed a method to make the hosts a denser distribution by Cartesian subtraction and obtained a sequence of the form

[image: image86.wmf]1,,1,

,,,1,,1,

1,,1,,,,1,,1

bb

gtimes

g

bb

N

gtimes

gtimes

bb

gtimesgtimes

gtimes

pp

eepp

T

NNeepp

++

ìü

ïï

ïï

ïï

ïï

++

ïï

=

íý

ïï

ïï

ïï

--++

ïï

ïï

îþ

L

144424443

LL

LLL

14243

144424443

LLLL

LLLLL

14442444314243

144424443

,

where
[image: image87.wmf]b

pp

<

is a lower bound of p, and g is the multiplicity of the terms.

By this means, a host accumulates together to g times every time it occurs and the its total number is increased by g times. Hence the densification increases the probability of a successful pick for a local search. Paper [54] investigated the case g=1 in detail. It demonstrated that taking
[image: image88.wmf]b

pN

êú

=

ëû

 and
[image: image89.wmf]1

u

pNN

êú

=--

ëû

led to a pq-band (that has a more concentrated distribution of the hosts, where (is given by

[image: image90.wmf]1,

2,1,

2,1,

2,1,

1,2,

,1,1,

,1,2,1,

1,2,1,

,1,2,1,

,1,2,1

b

bb

bb

bb

ub

uub

uubb

ubb

uubb

uubb

p

pp

pp

pp

pp

ppp

pppp

ppp

pppp

pppp

+

ìü

ïï

++

ïï

ïï

++

ïï

++

ïï

ïï

-+

ïï

X=

íý

-+

ïï

ïï

-++

ïï

-++

ïï

ïï

-++

ïï

ïï

-++

îþ

M

MM

MMO

MMO

MM

OMM

MM

MM

.

(is easily seen to have ridges (defined in paper [54]) each one identified with a unique integer in
[image: image91.wmf][1,]

bu

pp

+

. Therefore, (consists of host ridges and non-host ridges. Each term is a host on a host-ridge, whereas there is not a host on a non-host ridge. For example, with symbol 'o' to express a host and '.' to express a non-host, taking N=21 obtains the (-zone as Figure 1 shows.

[image: image92.png]

Figure 1: The (-zone calculated by N=21
3.4. The (-Zone

 Paper [55] constructs an (-zone of the following form.

[image: image93.wmf]1,

2,...,2,1,

2,...,2,1,

2,...,2,1,

2,...,2,2,...,2,

1,...,1,2,...,2

b

bbb

gones

bbb

gones

bbb

gones

uubb

gonesgones

uuuu

gonesgon

p

ppp

ppp

ppp

pppp

pppp

+

+++

+++

+++

--++

W=

1442443

M

1442443

MM

1442443

MMO

14424431442443

1442443

,1,

,...,,1,...,1,2,...,2,1,

,...,,2,...,2,2,...,2,1,

1,...,1

b

es

uuuubbb

gonesgonesgones

uuuubbb

gonesgonesgones

uu

gones

p

ppppppp

ppppppp

pp

+

--+++

--+++

--

MMO

1442443

OMM

1424314424431442443

OMM

1424314424431442443

O

142

,2,...,2,2,...,2,1,

,...,,1,...,1,2,...,2,2,...,2,1

uubbb

gonesgones

uuuuuubbb

gonesgonesgonesgones

ppppp

ppppppppp

ìü

ïï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

íý

ï

ï

ï

ï

ï

ï

ï

ï

--+++

ï

ï

ï

----+++

ï

ï

î

MM

444314424431442443

LL

14243144244314424431442443

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

þ

.

 By using X and Y to represent the indices of the row and column from top to bottom and from left to right, respectively, the term
[image: image94.wmf],

XY

w

 at row X and column Y is calculated by

[image: image95.wmf],

1

XYb

Y

pX

g

w

êú

-

=+-

êú

ëû

, (2)

and the four borders of the zone are
 line
[image: image96.wmf]1

b

XNp

=--

, line
[image: image97.wmf]1

ub

Y

Xpp

g

êú

-

=+-

êú

ëû

, line
[image: image98.wmf]1

Y

=

, and line
[image: image99.wmf](1)1

YXg

=-+

.

 The (-zone is easily to be computed, as exampled in Figure 2 for N=21 and g=2.
[image: image100.png]SUdag

Ernrr

GUdag

«
11,11,
14,14,13,13,12,12,11, 11,10, 10,

WG

SUdagd

1
1

BE S

«
1

SeBogd

1

12,12,

FECR GG

11,

10, ¢

13,15,12, 12,

15,15, 14,14,13,15, 12,12, 11,11, 10, 10,

15,15,14,14,13,13,12,12,11,11,10,10,
15,15,14,14,13,13,12,12,11,11,10,

15,15,14,14,13,13,12,12,11,11,10,10,

15,15,14,14,13, 13, 12,12, 11,11, 10,

15,15,14,14,15,15,12,12, 11,11,

Figure 2: The (-zone calculated by N=21 and g=2.

In order to see the hosts and non-hosts, Figure 2 is alternatively depicted with Figure 3. It is seen that the hosts are accumulating by g times locally here and there, even though they are sparsely distributed globally. This is described to be a property of local accumulation in global sparse distribution of the (-zone, for convenience.

[image: image101.png]

Figure 3: Hosts and non-hosts in the (-zone of N=21 and g=2
3.5. Search with Monte Carlo Method

Paper[56] proposes a deterministic-embedded Monte Carlo approach to find out a hidden host within an expected computing time (ECT) in a large interval IN that contains n odd integers. By defining an odd integer
[image: image102.wmf]ECT

N

 of the form
[image: image103.wmf]41

x

+

 and expressing n to be an integer of the form
[image: image104.wmf]2

M

ECT

nNR

=+

with
[image: image105.wmf]0

ECT

RN

£<

, the large interval IN is subdivided into two parts by

[image: image106.wmf]NPR

III

=È

where
[image: image107.wmf]P

I

contains
[image: image108.wmf]2

M

ECT

N

 consecutive odd integers,
[image: image109.wmf]R

I

contains R consecutive odd integers, and
[image: image110.wmf]PR

II

Ç=Æ

.

Since
[image: image111.wmf]P

I

 can be further subdivided into
[image: image112.wmf]2

M

subintervals, say
[image: image113.wmf]1

I

,
[image: image114.wmf]2

I

,..., and
[image: image115.wmf]2

M

I

, each containing
[image: image116.wmf]ECT

N

odd integers, the Monte Carlo sampling method is applied to select a subinterval
[image: image117.wmf]n

x

I

from the
[image: image118.wmf]2

M

subintervals, where integer
[image: image119.wmf]n

x

 is a pseudorandom number generated by the linear congruential generator (LCG)
[image: image120.wmf]1

1

21(mod2)

MM

nnECT

xxN

-

-

=+-

. As a result,
[image: image121.wmf]n

x

I

can be searched out within
[image: image122.wmf]ECT

N

 steps. It is evident that a host in
[image: image123.wmf]n

x

I

can be found inevitably, and the more host subintervals there are, the greater probability a host is found.

It should be clarified that the LCG
[image: image124.wmf]1

1

21(mod2)

MM

nnECT

xxN

-

-

=+-

with
[image: image125.wmf]1

1

x

=

, is utilized for generating pseudorandom numbers, is referred to as the Monte Carlo selector in this paper.
3.6. Search With Random Walk
According to the property of local accumulation in global sparse distribution of the (-zone, papers [53] and [55] have explored search with random walk.
Let
[image: image126.wmf]12

,,...,

XX

 and
[image: image127.wmf]n

X

 be identically distributed (iid) random variables, or alternatively random steps, a random walk
[image: image128.wmf]n

S

 is defined by

[image: image129.wmf]1

1

n

ninn

i

SXSX

-

=

==+

å

Each move (or step) of the random walk can be regarded to be a random selection of a host in the (-zone and the whole process is surely the Bernoulli trials. If the random steps are drawn from the uniform distribution,
[image: image130.wmf]n

S

 is a simple random walk (SRW), whereas, it is the Lévy flight (LF) in the case that the random steps are drawn from the isotropic symmetric Lévy stable distribution. The characteristic function of the LF is given by

[image: image131.wmf]||

(),02

k

Fke

b

a

b

-

=<£

where real (is a scale coefficient and real (is the Lévy index.

When
[image: image132.wmf]2

b

=

, the LF turns to be the Brownian motion (BM) whose iid random steps are drawn from the Gaussian distribution [57][58].

With 'footprint', the three different random walks, the SRW, the BM, and the LF, are intuitively illustrated with Figure 4. Seen in the footprints, the SRW is nearly-uniformly distributed, the BM is more concentrated near a center, and the LF is alternated between frequent short-distance jumps and occasional long-distance jumps. Therefore, the LF is regarded to be suitable for search in an area in which the targets are distributed in the way of local accumulation in global sparse distribution, whereas, the SRW and the BM are suitable for local searches. The BM is particularly good for the case that there is some reference (clue) to locate searched target while SRW is more suitable for the local blind search.
	[image: image133.png]

	[image: image134.png]

	[image: image135.png]

	(a) The SRW
	(b) The BM
	(c) The LF

Figure 4: Footprints of the SRW, the BM, and the LF

3.7. Parallel Strategy
As overviewed in the introductory part, parallel computing is essential for factoring a large integer. We have naturally touched this topic. In the papers [59], parallel strategies are proposed to meet the different needs. The main work of this issue is to create independent computing subspaces so that a parallel computing thread can perform its computations in a specified subspace.

3.8. Challenges and Limitations Identified in Prior Studies
Two categories of challenges were encountered in previous research: systematic issues, referred to as hardness, and algorithmic issues, termed softness. Hardness primarily concerns computational environments, encompassing both hardware and software infrastructure. For instance, as noted in [55] and [60], there is an insufficient supply of multi-core computers for parallel computing applications and limitations in handling large integers and random number generation, among other constraints. Softness issues, on the other hand, pertain mainly to the determination of computational parameters within specific algorithms, such as the starting point, step size, and local region, when employing random walk (RW) search methods and the Monte Carlo-based ECT.
4. New Research Issues and Results in This Paper
Regarding the probability of randomly selecting a host, Corollary 13 of [54] defines a rectangular sub-zone within the (-zone and proves that the rectangular sub-zone is better than the entire (-zone. That rectangle is oriented at an angle relative to the horizontal line, complicating its formulation and analysis. Subsequently, we identified a horizontally aligned parallelogram sub-zone with equivalent probability to that rectangular sub-zone. Through an isomorphic mapping of this parallelogram sub-zone onto a new rectangular sub-zone, we developed a partitioning strategy to divide the new rectangular sub-zone into a series of independent sub-spaces (ISSs). We then established a dynamic distributed parallel system to conduct random searches for the hosts within these ISSs. This section summarizes our research findings.
4.1. A Rectangular Hosting Zone
 A parallelogram sub-zone, denoted by
[image: image136.wmf]P

, can be taken from the (-zone by

[image: image137.wmf],1,,1,2,,2,1,

,1,,1,2,,2,1,

,1,,1,2,,2,1,

,

uuubbb

gtimesgtimes

uuubbb

gtimesgtimes

uuubbb

gtimesgtimes

u

pppppp

pppppp

pppppp

pp

--+++

--+++

P=

--+++

LLL

144424443144424443

LLL

144424443144424443

OLLLO

LLL

144424443144424443

1,,1,2,,2,1

uubbb

gtimesgtimes

pppp

ìü

ïï

ïï

ïï

ïï

ïï

íý

ïï

ïï

ïï

ïï

--+++

ïï

îþ

LLL

144424443144424443

.

[image: image138.wmf]P

 is made up of
[image: image139.wmf]u

Np

-

rows each having
[image: image140.wmf](2)2

ub

gpp

--+

columns. It therefore has totally
[image: image141.wmf]()((2)2)

uub

Npgpp

---+

 terms. Still use X and Y to denote the indices of the row and column, from top to bottom and from left to right, respectively; the term
[image: image142.wmf],

XY

w

 at row X and column Y is then calculated by

[image: image143.wmf],

1

1

XYu

Y

pX

g

w

êú

-

=+--

êú

ëû

, (3)

and the four borders are given by

line
[image: image144.wmf]1

X

=

, line
[image: image145.wmf]u

XNp

=-

, line
[image: image146.wmf]1

YgX

=-

, and line
[image: image147.wmf](2)1

ub

YXppg

=+--+

.

 Or alternatively

[image: image148.wmf],

1

1

XY

Y

X

g

w

êú

-

=--

êú

ëû

, (3*)

with the four borders given by

line
[image: image149.wmf]1

u

Xp

=+

, line
[image: image150.wmf]XN

=

, line
[image: image151.wmf]()1

YgXpu

=--

, and line
[image: image152.wmf](2)1

b

YXpg

=--+

 Take N=21 and g=2 for instance; then
[image: image153.wmf]4

b

pN

êú

==

ëû

 and
[image: image154.wmf]116

u

pNN

êú

=--=

ëû

, the (-zone is calculated as Figure 5 shows.

[image: image155.png]16,15,15,14,14,13,13,12,12, 1

16,15,15,14,14,13,13,1:

16,15,15,14,14, 1

16,15,15, 1

Figure 5: The (-zone calculated by N = 21, g = 2, pb = 4, and pu = 16.

 Being a parallelogram, (can be isomorphically mapped onto a rectangle by

[image: image156.wmf][1,]

[1,(2)2]

u

ub

XNp

Ygpp

Î-

ì

í

Î--+

î

. (4)

 This rectangle is referred to as the isomorphic rectangle of (, and its elements are determined by

[image: image157.wmf],

2

1

XYu

Y

p

g

w

êú

-

=--

êú

ëû

. (5)

 For example, Figure 6 is the isomorphic rectangle of (defined in Figure 5.

[image: image158.png]16,15,15,14,14,13,13,12,12,11,11,10,10,9,9, 8, 8,
16,15,15,14,14,13,13,12,12,11,11,10,10,9,
16,15,15,14,14,13,13,12,12,11,11,10,10,9,
10,10,9,5,
10,10,9, 9,

16,15,15,14,14,13,13,12,12, 11,11,
16,15,15,14,14,13,13,12,12,11, 11,

Figure 6: Isomorphic rectangle of (
The isomorphic rectangle is significantly more straightforward than the parallelogram when it comes to computational tasks; therefore, it will serve as the primary object of computation hereafter and will continue to be denoted by the symbol (unless otherwise specified.
4.2. Distribution Trait of the Hosts in (
The original (-zone inherits the distribution trait of the (-zone. That is, the hosts are accumulating locally here and there despite their sparse distribution globally. Figure 7 intuitively illustrates such a distribution.

[image: image159.png]

Figure 7: Hosts and non-hosts in the (-zone of N = 35, g = 2, pb = 5, and pu = 29.
In the isomorphic rectangle, the hosts and non-hosts are laid out tidily in rows and columns, still keeping their local accumulation in global sparsity, as seen in Figure 8 generated by N=35, g=2, pb=5, and pu=29.

[image: image160.png]§¢844¢
§4did

TEEEE
§ddddd

Figure 8: Hosts and non-hosts laid out tidily in the isomorphic rectangle

4.3. Probability of Randomly Selecting Hosts in (
The hosts exhibit a distribution pattern of local accumulation within a global sparsity in (. To assess the ease or difficulty of identifying a host, we have investigated the probability of randomly selecting a host across three scenarios: single-term, multi-term, and selection from a complete partition. Theoretical results indicate a higher probability appears in the selection from a complete partition.
4.3.1. Single-term Selection

Assume
[image: image161.wmf]pN

êú

ëû

Œ

; let
[image: image162.wmf]b

pN

êú

=

ëû

,
[image: image163.wmf]1

u

pNN

êú

=--

ëû

, and
[image: image164.wmf]N

p

w

êú

=

êú

ëû

. By Lemmas 2, 4, and 5, each row of (contains
[image: image165.wmf](22)

gpq

w

+--

hosts. Consider draw randomly an individual term in a row of (. The probability
[image: image166.wmf]host

row

P

 that the selected term is a host is given by

[image: image167.wmf](22)22

(2)222/

host

row

ubub

gpqpq

P

gppppg

ww

+--+--

==

--+--+

. (6)

Given that (comprises
[image: image168.wmf]u

Np

-

rows, the probability
[image: image169.wmf]host

P

P

of randomly selecting a host via a single draw from
[image: image170.wmf]P

is calculated as

[image: image171.wmf](22)()

22

((2)2)()22/

host

u

ubuub

gpqNp

pq

P

gppNpppg

w

w

P

+---

+--

==

--+---+

. (7)

 It is evident that
[image: image172.wmf]hosthost

row

PP

P

=

, holding

[image: image173.wmf]22

232/

hosthost

row

pq

PP

NNg

w

P

+--

==

êú

--+

ëû

. (8)

From (6) and (7), it can be seen that
[image: image174.wmf]b

p

,
[image: image175.wmf]u

p

, and g are three critical factors that influence the probability. By Lemmas 4, 5, 6, and the fact
[image: image176.wmf]3

p

³

, when taking
[image: image177.wmf]3

2

b

N

p

+

=

 and
[image: image178.wmf]1

u

pNN

êú

=--

ëû

, each row changes the total number of the terms to
[image: image179.wmf]1

(29)2

2

gNN

êú

--+

ëû

 and the number of the hosts to
[image: image180.wmf]1

(22)

2

pq

w

+--

. Consequently it yields

[image: image181.wmf]22

294/

hosthost

row

pq

PP

NNg

w

P

+--

==

êú

--+

ëû

. (9)

Comparing (8) with (9) knows that
[image: image182.wmf]3

2

b

N

p

+

=

 is better than
[image: image183.wmf]b

pN

êú

=

ëû

if
[image: image184.wmf]1

u

pNN

êú

=--

ëû

. Henceforth
[image: image185.wmf]3

2

b

N

p

+

=

is regarded as the default case from now on unless otherwise specified. Furthermore, due to
[image: image186.wmf]2

pqN

+>

, either (8) or (9) yields when
[image: image187.wmf]2

g

³

[image: image188.wmf]2

221

1(1)

host

P

NN

w

P

+

>-

--

, (10)

indicating that the minimal probability is around
[image: image189.wmf]2

1

host

P

N

P

»

-

, which is a very small number.

Picking a host randomly is surely a Bernoulli process; hence the probability
[image: image190.wmf]success

P

P

of selecting a host successfully after n times of picking is calculated by

[image: image191.wmf]1(1)

successhostn

PP

PP

=--

, (11)
by which n is estimated by

[image: image192.wmf]lg(1)lg(1)

lg(1)

lg(3)lg(1)

successsuccess

host

PP

n

P

NN

PP

P

--

=»

-

. (12)
It is also known from (11) that
[image: image193.wmf]success

P

P

 can reach an appreciate value with the increase of n. For instance, Figure 9 exhibits the cases of
[image: image194.wmf]9

10

N

=

 and
[image: image195.wmf]10

10

N

=

with
[image: image196.wmf]2

1

host

P

N

P

=

-

. Observably,
[image: image197.wmf]success

P

P

gradually approaches 1 with the increase of n.

	[image: image198.png]09

08

07

06

05

04

03

02

01

20000

40000

60000

80000

100000

	[image: image199.png]09

08

07

06

05

04

03

02

0.1

100000

200000

300000

	(a) N=109
	(b) N=1010

	Figure 9: Distribution of
[image: image200.wmf]success

P

P

On the other hand, it is also seen from (12) that a large N may lead to a very big n for an appreciate
[image: image201.wmf]success

P

P

 because
[image: image202.wmf]lg(3)lg(1)

NN

-»-

, which means it will take a long time to find a host. From (12), it is evident that the only way to reduce n is to increase
[image: image203.wmf]host

P

P

. This can be done by augmenting g in (8) and (9). Unfortunately, either (8) or (9) shows that it cannot be raised to a very large extent for a large N even with a considerable g. Consequently, an alternative approach is required for the random selection in (.
4.3.2. Multi-term Selection

When selecting multiple terms simultaneously, imagine n terms are chosen in a single draw. The probability of having at least one host among the chosen n terms, denoted as
[image: image204.wmf]hosts

P

P

, can be calculated by

[image: image205.wmf]0

1

1

1

()!()!

111(1)

!()!

knkn

n

n

hosts

MNMMNM

nn

k

k

NN

CCCC

NMNnM

P

CCNNMnNk

-

-

--

PPPP

P

=

=

PPPP

--

==-=-=--

å

Õ

, (13)

where
[image: image206.wmf]n

N

N

C

n

æö

=

ç÷

èø

is the combinational coefficient,
[image: image207.wmf]N

P

represents the total number of the terms in (, and
[image: image208.wmf]M

P

denotes the total number of the hosts in (.

 Denote
[image: image209.wmf]k

M

P

Nk

P

P

P

=

-

. In the case
[image: image210.wmf]b

pN

êú

=

ëû

, it follows
[image: image211.wmf]((23)2)()

u

NgNNNp

P

êú

=--+-

ëû

,
[image: image212.wmf](22)()

u

MgpqNp

w

P

=+---

, and
[image: image213.wmf]1

u

NpN

êú

-=+

ëû

, leading to

[image: image214.wmf]22

(232/)/(1)

k

pq

P

NNgkgN

w

P

+--

=

êúêú

--+-+

ëûëû

. (14)
 In the case
[image: image215.wmf]3

2

b

N

p

+

=

, it results in

[image: image216.wmf]22

(294/)/(1)

k

pq

P

NNgkgN

w

P

+--

=

êúêú

--+-+

ëûëû

. (15)

 With (14), (15), (13), and (11), it is easy to obtain

[image: image217.wmf]hostssuccess

PP

PP

>

. (16)

saying the multi-term selection is better than the single-term selection. Furthermore, (13) also indicates that a bigger n is better than a smaller one.

4.3.3. Selection on a Complete Partition of (
The multi-term selection can be conceptualized as a single-term selection conducted on a set of subsets derived from (, selecting one subset at a draw. This time, a complete partition of (is necessary to ensure that all the hosts are accounted for and to prevent any leakage or overlap. Assume (is the required complete partition, which divides (into m distinct sub-zones, say
[image: image218.wmf]12

,

pp

,..., and
[image: image219.wmf]m

p

, as illustrated with Figure 10.

[image: image220.png]m

m

Figure 10: A complete partition of (
Suppose
[image: image221.wmf]i

P

 is the probability of randomly selecting a host in sub-zone
[image: image222.wmf]i

p

 by the single-term selection; assume each sub-zone can be randomly chosen with an equal probability, namely,
[image: image223.wmf]1

m

 . Then, the total probability
[image: image224.wmf]hosts

P

S

with respect to the partition (is calculated by

[image: image225.wmf]1

1

m

hosts

i

i

PP

m

S

=

=

å

. (17)
This indicates that there must be at least a sub-zone
[image: image226.wmf]b

p

such that
[image: image227.wmf]hosts

b

PP

S

³

 because
[image: image228.wmf]hosts

P

S

is the arithmetic mean of
[image: image229.wmf]12

,,...,

PP

and
[image: image230.wmf]m

P

. Since the total number of the terms in
[image: image231.wmf]b

p

 is less than that in (, it takes less time to search in
[image: image232.wmf]b

p

 even with a brutal search. Therefore, a proper partition is mandatory for searching the hosts in a large region. Additionally, a complete partitioning approach offers an extra advantage: it enables the entire (to be computed through parallel processing.
4.4. Distributed Parallel Random Searches on (
Let L and W represent the number of columns and rows, respectively. Then
[image: image233.wmf]u

WNp

=-

,
[image: image234.wmf](2)2

ub

Lgpp

=--+

, and
[image: image235.wmf]LW

>

(when
[image: image236.wmf]25

N

³

). L and W are significantly large for a large N, resulting in a huge (. This scenario frequently necessitates applying parallel searching techniques to find a host. We thereby have investigated methodologies for implementing distributed parallel techniques and developed two distinct systems: a dynamic distributed parallel system and an extended dynamic distributed parallel system. In the dynamic distributed parallel system, each individual computer (machine) functions as a single computing node, while the extended dynamic distributed parallel system regards a cluster of computers as a single computing node.

 Both systems employ randomized algorithms for selection and search. The search process employs various algorithms, including Brutal Search (BS), Simple Random Walk (SRW), Brownian Motion (BM), Lévy Flight (LF), and even machine-learning-based approaches. For the sake of conciseness, these search algorithms are collectively denoted by the symbol X. Accordingly, the dynamic distributed parallel random search system is abbreviated as DDPRX or D2PRX, while the extended dynamic distributed parallel search system is represented as eDDPRX or eD2PRX.
 Given that partitioning the large (is essential for efficient distributed parallel computing, we propose a three-tiered partitioning strategy to meet the requirements of both D2PRX and eD2PRX. Additionally, we introduce an approach for creating computing cells within the partitioned sub-zones.
 Parallel computing entails concurrently executing multiple processes across distinct cores within multi-core processors. Consequently, the term 'process' is frequently employed in parallel computing literature. Nonetheless, this section opts for the term 'core' to underscore the architectural foundation of the computer system.
4.4.1. Partition Strategy

Two critical factors are paramount in the design of a partition: the dimensions and configuration of the subspaces that constitute the entire computational space. The dimensions influence the probability of randomly selecting a host, while the configuration affects the complexity of the partitioning process. Various methodologies exist for partitioning a rectangular domain like (; one of the simplest methods involves dividing (into a series of uniformly sized smaller rectangles (or squares), as illustrated in Figure 11. This approach exemplifies a basic configuration, where the size of the subspaces becomes the primary determinant. However, given the hosts' distribution characterized by local accumulation amidst global sparsity, some smaller rectangles may remain devoid of hosts unless they are sufficiently large. Given that larger rectangles may reduce the probability of randomly selecting a host within them, this partitioning method exhibits certain limitations in practical applications unless the hosts are densely distributed everywhere.
[image: image237.png]0.
0.

0.
0.

0000,
0000,

0.
0.

0.
0.

0.
0.

0.
0.

0000,
0000,

0000,
0000,

0.
0.

0.
0.

0.
0.

0.
0.

0000,
0000,

0000,
0000,

0.
0.

0.
0.

Figure 11: Partition the isomorphic rectangle with small rectangles

There are two other fundamental partitions with a simple configuration: row-based and column-based partitions. The row-based partition divides the whole space into a finite number of subspaces, called sub-zones later, each consisting of multiple rows, while the column-based partition segments the area into a finite number of sub-zones, each comprising multiple columns. These two distinct partitions are illustrated in Figure 12. Unlike the simplest partition, which features uniformly sized sub-zones, the sub-zones resulting from either of these two partitions may vary in size. Consequently, devising an appropriate sizing strategy is crucial for effectively utilizing these partitions.
	[image: image238.png]Sub-zone 1

Sub-zone 2

Sub-zone m

	[image: image239.png]Sub-zonel Sub-zone 2 Sub-zone m

	(a) Row-based partition
	(b) Column-based partition

	Figure 12: Row-based and column-based partitions

In light of the distribution characteristics of the hosts within (, the column-based partitioning approach is more likely to generate some sub-zones that have higher probabilities of randomly selecting the hosts. Consequently, we employ the column-based partition.
4.4.2. A Three-tiered Partition

Assuming n distinct multi-core computers are involved in the computation, the three-tiered partition (TTP) first aims to allocate an ISS for every computer, thereby partitioning (into n ISSs, say
[image: image240.wmf]12

,,...,

HH

and
[image: image241.wmf]n

H

, such that for
[image: image242.wmf]1,

ijn

££

 and
[image: image243.wmf]ij

¹

,

[image: image244.wmf]1

n

i

i

H

=

P=È

,
[image: image245.wmf]ij

HH

Ç=Æ

.

 As a result, each computer is responsible for processing one ISS.

The TTP next targets allocating independent sub-zone (ISZ) for every core within a single computer. Assuming that ISS
[image: image246.wmf]i

H

, where
[image: image247.wmf]1

in

££

, is processed by a computer having
[image: image248.wmf]i

m

 cores,
[image: image249.wmf]i

H

is further divided into
[image: image250.wmf]i

m

 ISZs, designated as
[image: image251.wmf],1,2

,,...,

ii

SS

and
[image: image252.wmf],

i

im

S

, such that for
[image: image253.wmf]1,

i

jkm

££

 and
[image: image254.wmf]jk

¹

[image: image255.wmf],

1

i

m

iij

j

HS

=

=È

,
[image: image256.wmf],,

ijik

SS

Ç=Æ

.

 Consequently, each core is available to handle one ISZ independently.

 The TTP subsequently establishes on the ISZ independent computing cells (ICCs) from which the core can randomly select and search. Under this consideration, an ISZ, such as
[image: image257.wmf],

ij

S

, is decomposed into a series of ICCs, represented as
[image: image258.wmf]12

,,

,,...,

ijij

CC

,and
[image: image259.wmf],

ij

c

ij

C

, totally
[image: image260.wmf]ij

c

 cells, such that for
[image: image261.wmf]1,

j

klc

££

 and
[image: image262.wmf]kl

¹

[image: image263.wmf],,

1

ij

c

k

ijij

k

SC

=

=È

,
[image: image264.wmf],,

kl

ijij

CC

Ç=Æ

.

 Then each core randomly selects an ICC and performs necessary computations on the chosen cell.

The hierarchical structure of TTP is illustrated in Figure 13, where the topmost node represents (, and each subsequent node corresponds to a specific partition.

Figure 13: Architecture of the three-tiered partition of (
 There are several critical issues in the three-tiered partition, as outlined below.

4.5.2.1. Columns contained in ISSs
(contains
[image: image265.wmf](2)2

ub

Lgpp

=--+

 columns that are broken up into a series of the ISSs. Because the ISSs are allocated to computers sequentially, the number of columns in an ISS is determined by the computational capability of the assigned computer. Typically, each core is designed to process a specific number of columns, which must align with the base B of that core. Consequently, a computer contributing m cores can process mB columns concurrently. Therefore, the number of columns in the ISS varies based on the computational contribution of the assigned computer.
4.5.2.2. Columns contained in ISZs
For ISS
[image: image266.wmf]i

H

 containing
[image: image267.wmf]i

l

columns that are to be divided into
[image: image268.wmf]i

m

ISZs, let
[image: image269.wmf]/(1)

ii

slm

=-

êú

ëû

, where
[image: image270.wmf]1

in

££

; then each of the first
[image: image271.wmf]1

i

m

-

 ISZs,
[image: image272.wmf],1,2

,,...,

ii

SS

and
[image: image273.wmf],1

i

im

S

-

, comprises s columns while the last one
[image: image274.wmf],

i

im

S

consists of
[image: image275.wmf](1)

ii

lms

--

columns.

4.5.2.3. ICCs in ISZs
Consider dividing the ISZ
[image: image276.wmf],

ij

S

containing
[image: image277.wmf],

ij

s

columns into
[image: image278.wmf]ij

c

 ICCs, where
[image: image279.wmf]1

in

££

 and
[image: image280.wmf]1

i

jm

££

, assuming that each of the first
[image: image281.wmf]1

ij

c

-

 ICCs contains the same number of columns while the last one contains a different one. Given that the ICCs are intended to be randomly selected and searched,
[image: image282.wmf]ij

c

 is proposed to be of the form
[image: image283.wmf]21

M

+

so that the Monte Carlo selector can be utilized. This can be achieved by expressing in the form of

[image: image284.wmf],

2

M

ijcc

sKR

=+

, (18)

where
[image: image285.wmf]0

cc

RK

£<

.

 Consequently,
[image: image286.wmf],

ij

S

 comprises
[image: image287.wmf]2

M

groups, each encompassing
[image: image288.wmf]c

K

columns, along with one additional group including
[image: image289.wmf]c

R

 columns. These
[image: image290.wmf]21

M

+

 groups constitute
[image: image291.wmf]21

M

+

 ICCs, say,
[image: image292.wmf]12

,,

,,...,

ijij

CC

and
[image: image293.wmf]21

,

M

ij

C

+

 .

For example,
[image: image294.wmf],

1380268

ij

s

=

can be expressed by

[image: image295.wmf],

101086

2018161110

10

987532

987532

2(

222

22221)

2134

22222222

7

222222

940,

ij

s

=

=+++++

++++++++

=×+

++

+++++

resulting in
[image: image296.wmf]10,1347

c

MK

==

, and
[image: image297.wmf]940

c

R

=

.

 In general, when expressed in binary form, an integer u can always be represented as

[image: image298.wmf]11

110110

22...22(2...)2...2

nnsnss

nnnss

ubbbbubbbbb

--

=++++Û=+++++

, (19)

where
[image: image299.wmf]0

i

b

=

or 1,
[image: image300.wmf]0

in

££

. Through this method, M,
[image: image301.wmf]c

K

, and
[image: image302.wmf]c

R

can be easily derived.

4.5.2.4. Dimension of the ICCs

Because the rows of (are identical, the ICC is proposed to be a square, meaning it comprises an equal number of rows and columns.
Note that the base B of a core is the minimum number of the columns the core searches; referring to the previous section, letting B be of the form
[image: image303.wmf]2

M

c

K

can yield
[image: image304.wmf]2

M

ICCs, each containing
[image: image305.wmf]c

K

columns. This time the square principle results in that the dimension of an ICC is
[image: image306.wmf]cc

KK

´

.

4.4.3. D2PRX
The D2PRX is analogous to grid computing; it operates within a network open to computers that voluntarily participate in computational processes. This section overviews the system's operational mechanism and underlying algorithms.
4.5.3.1 Working Mechanism
Regarding the multi-core computers participating in the computation as a computer queue, the D2PRX registers each computer with an unique integer identifier (ID), denoted by cID. It sequentially assigns an ISS from the unallocated portion of (to each computer for computation according to FIFO principle of the queue. This allocation process continues until either the expected result is achieved or the entire (is allocated. Figure 14 illustrates this scenario. In the figure, the arrowed curve represents the 'allocation' and the waved curves mean the omitted contents. The term 'dynamic' in the D2PRX signifies that computers can join the queue at any time, while 'distributed' indicates that each computer independently contributes its computational resources and executes computations (or searches) using its designated algorithm. Every computer divides its allocated ISS into ISZs according to the number and the base of its available cores , assigning each core a distinct ISZ for computation. Each core constructs its ICCs and performs searches on randomly selected ICCs.
 The D2PRX designates a specific computer, referred to as the root-host, to handle communication and collection of system status information. The information is recorded in a resource configuration table, denoted as rgTable. The rgTable records the global parameters for the computation, the cID of the last computer that has been assigned an ISS, and the overall job status of the system. This information enables a newly joined computer to ascertain whether the task has been completed and, if not, where to obtain its ISS.
[image: image307.png]Computer queue

Computer 1

Computer 2

1SZs

1SZs

ISS1

1SS 2

Figure 14: Illustration of D2PRX
 Initially, the newly joined computer registers itself to the root-host with its own information and asks for the location of its ISS, provided that the entire task has not been completed. Following the retrieval of necessary information from the rgTable, it proceeds to execute computational tasks, which encompass calculating an ISS for itself, planning ISZs for its cores, and initializing the cores to establish their ICCs and conduct stochastic searches on the ICCs. Upon task completion, it records its results locally, reports them to the root-host for documentation, and then exits the system. If the task is completed successfully, ie. a host is identified, the root-host broadcasts a message to all other computers to cease their computations.
4.5.3.2 Algorithm Description
The D2PRX algorithm requires three input parameters: N, an odd composite integer one of whose divisor is to be found; m, the number of cores participating in the computation; and B, the core's base. The N-S chart of this algorithm is illustrated in Figure 15, described with pseudo-C language. As depicted, each computer initially verifies and updates its registration information, subsequently calculates the ISS for itself and the ISZs for its respective cores, and then initiates the cores to conduct searches on randomly selected ICCs. The subroutine designated as 'Search' in the algorithm refers to the search algorithms X described in earlier sections, and it returns the found divisor.
4.4.4. Key Issues
 Seen from the algorithm's N-S chart, the multiplicity g, the base B, and the subroutine 'Search' are key issues. Here introduce their solutions, respectively.

4.5.5.1 The multiplicity g
Theoretically, the bigger g is, the more hosts are accumulated somewhere. Nevertheless, by
[image: image308.wmf](2)2

ub

Lgpp

=--+

, a large value of g also results in a proportionally large L, thereby increasing the search time. It is crucial to strike an appropriate balance between these two parameters. Referring to subsection 4.4.2-5 of [55], g is proposed to be

[image: image309.wmf]1

2

2

11

log

22

NgN

h

êú

éù

££

êú

êú

êú

êú

ëû

, (20)

where (is given by

[image: image310.wmf]2

22

log

loglog

N

N

h

êú

=

êú

ëû

. (21)

4.5.5.2 The base B
B is a metric that quantifies a computer's computational capability, which varies across different computers. For example, a processor core operating at 4.0 GHz generally exhibits superior processing performance compared to one at 3.0 GHz. Consequently, the computer owner or contributor must provide the base B as an input parameter. Given that the core serves as the fundamental unit in parallel computing, B typically denotes the processing capability of a single core. Any computer participating in computational tasks must specify its core base B.
 In general, B can be estimated based on the clock speed of the core. Assuming the clock speed of a core is b GHz, and given that 1 GHz=230 Hz≈ 109 Hz, the processing capability C of the core per hour can be approximated by

[image: image311.wmf]3043912

236002103600310

Cbbbb

=´´»´»´´»´

（

）

.

 Suppose the contributor wants to contribute 100 hours' computation; then

[image: image312.wmf]304814

236001002(310)

Bbbb

=´´´»´»´

.

 Referring to subsection 4.5.2.4, B is proposed to be of the form

[image: image313.wmf]2

BK

s

=

.
[image: image314.png]Input: N, m and C(=2%(4x+1)):

rgTable exists?

Y N
Read g, La, Lrand ¢ID; | Calculate a g;
=07 Calculate pu and pb;
N N Lr=g(pupv-2)72;
Lr=Lr-mC:. La=mC; cID=1;
La=La+mC; Lr=Lr-La;
clD=cID+1; Create rgTable;
Update rgTable; Save g, La, Lrand cID ;
issLeft=La+1;

issRight = issLeft + mC —1;

For 1<i<m do parellel core(i)

iszLeft =issLeft +1+ (i —1)C:

iszRight = iszLeft + C—1;

Calculate M and K by C;

iccTop =1; iccBottom=K; i=1;

1<i<2”

LCG generates a j;

iccLeft =iszLeft +1+(j —DK:

iccRight =iccLeft +K —1;

Res=Search(iccLeft,iccTop,iccRight,iccBottom);

Res>1?

N

Lr=0; | i=i+1;

Save results locally;

Post results to root-host, update rgTable, and quit task;

Figures 15 N-S chart of the general algorithm.

4.5.5.3 The search algorithm X
As aforementioned, each computer can choose its preferred search algorithm to execute the search on its ISS, including BS, SRW, BM, LF, and even machine-learning-based approaches. Considering that the partition possibly generates a certain number of ISSs contain an accumulation of hosts due to the characteristics of ('s structure, stochastic local search algorithms [20] are proposed to use in general.

4.4.5. Time Complexity and Space Complexity
The entire search process continuously computes the value of
[image: image315.wmf],

gcd(,)

XY

dN

w

=

, where
[image: image316.wmf],

XY

w

 is defined in equation (3). Consequently, an individual computation's time complexity depends on N, X, and ISS, whereas the space complexity is solely dependent on N.
4.5.5.1 The time complexity
Let
[image: image317.wmf]ISS

n

be the total number of the lattices in the ISS a computer randomly searches; then the best case of the search takes just one step, taking
[image: image318.wmf]2,

log()

XY

N

w

 times, whereas the worst case takes
[image: image319.wmf]2,

log()

ISSXY

nN

w

 times. Using
[image: image320.wmf]best

T

and
[image: image321.wmf]worst

T

 to denote the time complexity in the best and the worst cases, respectively; it follows

[image: image322.wmf]2

(2log)

best

TON

=

 (22)

and

[image: image323.wmf]2

(2log)

worstISS

TOnN

=

.

 Since
[image: image324.wmf]ISSc

nmBK

=×

, it yields
[image: image325.wmf]2

(2log)

worstc

TOmBKN

=

, saying

[image: image326.wmf]2

2(log)

worstT

TcON

=

, (23)

where
[image: image327.wmf]1

T

c

³

is a finite real constant.

4.5.5.2 The space complexity
It takes
[image: image328.wmf]2

(log)

ON

 binary bits to store N,
[image: image329.wmf],

XY

w

, and d. Along with other data, the space complexity of an individual computer is
[image: image330.wmf]2

3(log)

S

cON

×

, where
[image: image331.wmf]1

S

c

³

is a finite real constant.

4.4.6. eD2PRX

Let

[image: image332.wmf]12

{,,...,,...}

n

QGGG

=

be a queue of computer clusters such that

[image: image333.wmf],1,2,

{,,...,}

iiiis

Gccc

=

,

where s is a definite positive integer and
[image: image334.wmf],

ij

c

with
[image: image335.wmf]1

js

££

is a multi-core computer of base
[image: image336.wmf],

ij

B

.

 Then Q constitutes eD2PRX if the following conditions are met:
 1). Q functions within a network environment.
 2). Once established,
[image: image337.wmf]i

G

remains unchangeable and is responsible for computing an ISS.
 3). Each cluster
[image: image338.wmf]i

G

appoints an agent or representative, denoted as
[image: image339.wmf]i

g

, to manage both internal and external communications as well as the aggregation of system status information.
 4). Computers within cluster
[image: image340.wmf]i

G

can only communicate with
[image: image341.wmf]i

g

.

 5). Each computer is assigned an ISS to perform computations.

 6). A designated computer within Q serves as the root-host, analogous to that in D2PRX.
 7). The root-host of Q maintains communication with every representative
[image: image342.wmf]i

g

.
 The eD2PRX operates on the same principle as the D2PRX, treating a cluster as a single computer and an individual computer as a core. As a result, both the eD2PRX and D2PRX can be operated using the same algorithm, as illustrated by the N-S chart in Figure 15.
4.5. Numerical Experiments
Using 40 computers equipped with Intel(R) CoreCM i5-10500 CPU @ 3. 10GHz, 16GB memory, and Windows 10 OS, each one contributing a processing capability of 6(1012 per hour. Taking experimental data from paper [33], we perform the numerical experiments via Python. In the experiment, we take a fixed g=30 and designate brutal search as the local search approach. A computer is assigned an initial cID to start its computation first, and automatically relays the computing as a new role after it completes its task without obtaining the expected result. The Python source codes can be accessed in where [62] shows, and the results are list in Tables 3-7 in the Appendix section. In the tables, Time A is the computing time with D2PRX and Time B is taken from [37], respectively.
Conclusions can be surely obtained from the experiment:

1. The region (can be indeed available for a dataset to identify a divisor of an odd composite integer.

2. D2PRX works better than the method introduced in either [33] or [37] for a bigger N.

3. New better method is still in need to have a better efficiency than D2PRX.
5. Conclusion and Future Work
For the given odd integer N = pq, the dataset (constructed in this paper can accumulate hosts of p and q locally here and there in a global sparse distribution. This characteristic provides a way to develop new searching algorithms to find a host and thus to calculate a divisor of N, helpful to solve the hard problem of integer factorization. The method of D2PRX designed in this paper indicates that there exist expected approaches worthy of our further attempts to reach the goals. We will continue to explore better method and hope more scholars to join us.

Disclaimer (Artificial Intelligence)
Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

References

[1] Hans Riesel. (1994). Prime Numbers and Computer Methods for Factorization(2nd Edition), Birkhauser.

[2] Crandall R, Pomerance C. (2005). Prime Numbers: A Computational Perspective(2nd Edition). New York: Springer-Verlag.

[3] Shi Bai. (2006). Computer Methods for Integer Factorization and Discrete Logarithm: A Cryptographic Perspective. Mater Thesis, Australian National University.

[4] Yan S Y. (2013). Computational number theory and modern cryptography. Wiley & Higher Education Press.

[5] Alfred J Menezes, Paul C van Oorschot, Scott A Vanstone. (2018). Handbook of Applied Cryptography. CRC press. DOI:10.1201/9781439821916
[6] Joppe Bos, Martijn Stam . (2021). Computational Cryptography: Algorithmic Aspects of Cryptology. Cambridge University Press.

[7] Wunderlich M C. (1988). Computational methods for factoring large integers. Abacus, 5(2), 19-33.

[8] Peter L Montgomery. (1994). A Survey of Modern Integer Factorization Algorithms. CWI, 7(4), 337-365

[9] Pomerance C. (1996). A Tale of Two Sieves . Notice of The AMS,1996, 43(12), 1473–1485.
[10] Arjen K Lenstra. (2000). Integer Factoring . Designs, Codes and Cryptography, 19, 101-128.

[11] Kefa R. (2006). Review of Methods for Integer Factorization Applied to Cryptography. Journal of Applied Sciences, 6(2), 458-581.
Wanambisi A W，Aywa S, Maende C，Muchiri Muketha G. (2013). Advances in Composite Integer Factorization, Methematical theory and Modeling, 13(2), 86-90.
Sonal Sarnaik, Dinesh Gadekarand Umesh Gaikwad. (2014). An overview to Integer factorization and RSA in Cryptography . International Journal for Advance Research in Engineering and technoloy, 2(9):21-26
[12] Duta C L, Gheorghe L, Tapus N, (2016). Framework for evaluation and comparison of integer factorization algorithms, 2016 SAI Computing Conference (pp.1047-1053), London, UK,.
DOI: 10.1109/SAI.2016.7556107.
[13] Zhang X, Li M, Jiang Y, Sun Y. (2019). A Review of the Factorization Problem of Large Integers . In: Sun X, Pan Z, Bertino E (eds), Artificial Intelligence and Security. ICAIS 2019. Lecture Notes in Computer Science, 11635:202-213. DOI:10.1007/978-3-030 -24268-8 _19
[14] Majid Mumtaz, Luo Ping. (2019). Forty years of attacks on the RSA cryptosystem: A brief survey. Journal of Discrete Mathematical Sciences and Cryptography, 22(1),9-29. DOI: 10.1080/09720529.2018. 1564201
[15] Patro Subhasree, Alvaro Piedrafita. (2020). An Overview of Quantum Algorithms: From Quantum Supremacy to Shor Factorization. 2020 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5). DOI:10.1109/ISCAS45731.2020.9180793
[16] Wu Liangshun, et al. (2019). The Integer Factorization Algorithm With Pisano Period. IEEE Access 7 (pp. 167250-167259). DOI:10.1109/ACCESS.2019.2953755
[17] Wang Baonan, He Feng, Yao Haonan, Wang Chao. (2020). Prime factorization algorithm based on parameter optimization of Ising model. Scientific Reports, 10:7106. DOI:10.1038/s41598-020-62802-5
[18] Kritsanapong Somsuk. (2020). The new integer factorization algorithm based on fermat's factorization algorithm and euler's theorem. International Journal of Electrical and Computer Engineering, 10(2), 1469-1476. DOI: 10.11591/ijece.v10i2.pp1469-1476
[19] Overmars Anthony, Sitalakshmi Venkatraman. (2021). New Semi-Prime Factorization and Application in Large RSA Key Attacks. Journal of Cybersecurity and Privacy. 1, 660-674. DOI:10.3390/jcp1040033
[20] Murthy D H R. (2022). A Comprehensive study on RSA Prime Factorization Algorithms, Journal of Engineering & Management, 6(1),101-104. DOI: 10.37314/JJEM.2022.060114
[21] Omollo Richard, Arnold Okoth. (2022). Large Semi Primes Factorization with Its Implications to RSA Cryptosystems. BOHR International Journal of Smart Computing and Information Technology (3),1-8. DOI:10.54646/bijscit.011
[22] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé, et al. (2022). The State of the Art in Integer Factoring and Breaking Public-Key Cryptography. IEEE Security and Privacy Magazine, 20 (2), 80-86. DOI: 10.1109/MSEC.2022.3141918.
[23] Ruslan Skuratovskii. (2022). Optimal Method of Integer Factorization. Wseas Transactions on Information Science and Applications,19,23-29. DOI: 10.37394/23209.2022.19.3
[24] Balasubramanian, Kannan and Mohana Priya Pitchai. (2023). A Survey of Fermat Factorization Algorithms for Factoring RSA Composite Numbers. Multidisciplinary Science Journal. 6, 2024ss0101 DOI:10.31893/multiscience.2024ss0101.
[25] Ahmed T Sadiq, Tayseer S Atia, Abd-alsattar S Awad. (2009). Integer Factorization Problem Solving Using Tabu Search. Journal of Wasit for Science and Medicine, (1),1-10. DOI:10.31185/jwsm.20
[26] Ade Candra, Mohammad Andri Budiman, Dian Rachmawati. (2017). On Factoring The RSA Modulus Using Tabu Search. Journal of Computing and Applied Informatics, 01(1),30-37. DOI:10.32734/ JOCAI.V1.I1-65
[27] Choudhury Bhargab, Sangita Neog. (2015). Particle Swarm Optimization Algorithm for Integer Factorization Problem (IFP). International Journal of Computer Applications, 117,14-17. DOI:10.5120/20613-3276
[28] Wang X. (2017). Factorization of Odd Integers as Lattice Search Procedure. International Symposium on Intelligence Computation and Applications(pp.7-22). DOI:10.1007/978-981-13-1651-7_22
[29] Dash, Avinash et al. (2018). Exact search algorithm to factorize large biprimes and a triprime on IBM quantum computer, Quantum Physics, arXiv:1805.10478v2.
[30] Rutkowski Emilia, Sheridan K Houghten. (2020). Cryptanalysis of RSA: Integer Prime Factorization Using Genetic Algorithms. 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8).
DOI:10.1109/CEC48606.2020.918572
[31] Mahadee Al Mobin, Md Kamrujjaman. (2024). Cryptanalysis of RSA Cryptosystem: Prime Factorization using Genetic Algorithm. arXiv:2407.05944v1 [math.GM]
[32] Mohit Mishra, Utkarsh Chaturvedi, and Kaushal K Shukla. (2016). Heuristic algorithm based on molecules optimizing their geometry in a crystal to solve the problem of integer factorization. Soft Computing, 20(9),3363–3371. DOI: 10.1007/s00500-015-1772-8
[33] Fagin Barry S. (2021). Search Heuristics and Constructive Algorithms for Maximally Idempotent Integers. Information, 12, 305. DOI:10.3390/info12080305
[34] Hittmeir Markus. (2023). Smooth Subsum Search: A Heuristic for Practical Integer Factorization. International Journal of Foundations of Computer Science, arXiv:2301.10529v2. DOI:10.1142/s0129054123500296
[35] Wang X. (2024). Leveraging Lévy Flight for Efficient Divisor Identification in Odd Composite Integers. Journal of Advances in Mathematics and Computer Science 39 (11):116-39.
https://doi.org/10.9734/jamcs/2024/v39i111943.
[36] DLMF. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/27.19
[37] Brent R P. (1990). Some Parallel Algorithms for Integer Factorisation[C] Number Theory and Cryptography (edited by J. H. Loxton), Cambridge University Press, pp 26–37.
[38] Wolski E, Filho J G S, Dantas M A R. (2001). Parallel Implementation of Elliptic Curve Method for Integer Factorization Using Message-Passing Interface (MPI). Available at: http://www.lbd.dcc.ufmg.br/colecoes/ sbac-pad/2001/007.pdf
[39] Brynielsson J. (2000). Factoring large integers using parallel Quadratic Sieve. Available at https://www.csc.kth.se/~joel/qs.pdf
[40] Mcmath S S. (2005). Parallel Integer Factorization Using Quadratic Forms.U.S.N.A-trident Scholar Project Report No.339.
[41] Mcmath S, Crabbe F, Joyner D. (2006). Continued fractions and Parallel SQUFOF. Mathematics, 2006,(1):19-38.
[42] Yang L T, Xu L, Lin M. (2005). Integer Factorization by a Parallel GNFS Algorithm for Public Key Cryptosystems, Embedded Software and Systems 2005, pp 683-695, Springer Berlin Heidelberg.
[43] Sameh Daoud, Ibrahim Gad. (2014). A parallel line sieve for the GNFS Algorithm. International Journal of Advanced Computer Science and Applications, 5(7):178-185

[44] Yeh Y S, Huang T Y, Lin H Y, et al. (2009). A Study on Parallel RSA Factorization. Journal of Computers, 4(2):112-118
[45] Robert D Silverman. (1991). Massively distributed computing and factoring large integers, Communication of the ACM, 34(11):95-103
DOI:10.1145/125490.125504
[46] Herman te Riele, Walter Lioen. (2001). Factoring Large Numbers on a Grid of Computers, ERCIM News, No.45. https://www.ercim.eu/publication/Ercim_News/enw45/te-riele.html
[47] Wang X. (2016). Valuated Binary Tree: A New Approach in Study of Integers. International Journal of Scientific and Innovative Mathematical Research (IJSIMR),4(3),63-67. DOI: DOI:10.20431/2347-3142. 0403008
[48] Wang X. (2024). Distribution of Divisors of an Integer in a Triangle Integer Sequence, JP Journal of Algebra, Number Theory and Applications, 63(2),185-208. DOI:10.17654/0972555524011
[49] Wang X. (2024). Minimal Gap among Integers having a Common Divisor with an Odd Semi-prime. Journal of Advances in Mathematics and Computer Science, 39(6), 1–7. DOI:10.9734/jamcs/2024/ v39i61896
[50] Wang X. (2025). Gaps Between Integers Having a Common Divisor With an Odd Semiprime. Asian Research Journal of Mathematics 21 (2):67-88. https://doi.org/10.9734/arjom/2025/v21i2894
[51] Wang X. (2023). Densification of Witnesses for Randomized Algorithm Design. Journal of Advances in Mathematics and Computer Science, 38(10):44-69. DOI: 10.9734/JAMCS/2023/v38i101823.
[52] Wang X. (2024). Distribution of Divisors of an Integer in a Triangle Integer Sequence, JP Journal of Algebra, Number Theory and Applications, 63(2):185-208. doi:10.17654/0972555524011
[53] Wang X. (2024). Leveraging Lévy Flight for Efficient Divisor Identification in Odd Composite Integers. Journal of Advances in Mathematics and Computer Science, 39 (11):116-139. DOI:10.9734/jamcs/2024/ v39i111943
Wang X, Guo J. (2019). Deterministic-Embedded Monte Carlo Approach to Find out an Objective Item in a Large Number of Data Sets. International Journal of Applied Physics and Mathematics, 9(4):173-181. DOI: 10.17706/ijapm.2019.9.4.173-181
[54] Xin-She Yang, Xingshi He. (2019). Mathematical Foundations of Nature-Inspired Algorithms. Springer Briefs in Optimization. DOI:10.1007/978-3-030-16936-7
Sajad Ahmad Rather, Aybike Özyüksel Çiftçioğlu, P Shanthi Bala, (2023). Lévy flight and Chaos theory based metaheuristics for grayscale image thresholding, Chapter 12 of Comprehensive Metaheuristics Algorithms and Applications edited by Seyedali Mirjalili and Amir H Gandomi, Academic Press. DOI: 10.1016/B978-0-323-91781-0.00012-0.
[55] Wang X. Strategy For Algorithm Design in Factoring RSA Numbers, IOSR Journal of Computer Engineering (IOSR-JCE),2017,19(3,ver.2):1-7.
[56] Wang X. Algorithm Available for Factoring Big Fermat Numbers, Journal of Software,2020,vol.15, no.3, pp86-97. DOI: 10.17706/jsw.15.3.86-97
[57] Hoos H H, Stützle T. (2015). Stochastic Local Search Algorithms: An Overview. In: Kacprzyk, J., Pedrycz, W. (eds) Springer Handbook of Computational Intelligence. Springer Handbooks. Springer, Berlin, Heidelberg. DOI:10.1007/978-3-662-43505-2_54
[58] Wang X. Source Code along with Experimental data of this paper.
https://python-forum.io/thread-44170.html
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0)

Appendix
Computing results with D2PRX.

Table 1. Factorization Group 1

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	10909343
	8
	2693
	1
	1
	2
	59342
	3.54
	0.2817

	29835457
	8
	4001
	1
	1
	5
	13048338
	2.63
	0.0900

	392913607
	9
	21937
	1
	1
	1
	31682
	3.59
	0.4497

	5325280633
	10
	57731
	1
	1
	4
	15104072
	2.37
	0.7980

	42336478013
	11
	243077
	1
	1
	4
	15664562
	2.38
	1.1181

	272903119607
	12
	374989
	1
	1
	9
	40522502
	2.12
	9.9060

	11683458677563
	14
	4500737
	1
	1
	7
	32411282
	5.15
	202.3835

	51790308404911
	14
	9278263
	2
	2
	1
	62436632
	3.73
	305.5239

	115137038087959
	15
	11471099
	1
	1
	5
	22168262
	3.65
	490.4322

	8335465900089539
	16
	91855193
	1
	1
	4
	16627532
	3.30
	2424.0374

	10380088039872631
	17
	101858333
	11
	51
	12
	3055009202
	13.04
	/

	253422413591685001
	18
	501900991
	31
	251
	3
	15011688302
	31.66
	/

	1160633764479964633
	19
	1004922797
	27
	467
	4
	27975550232
	52.60
	/

	31625125947164338313
	20
	9010002107
	14
	1694
	3
	101591363582
	192.09
	/

	454367322351811534933
	21
	13545006127
	8
	2888
	1
	173223497702
	329.11
	/

	4500000514520012390279
	22
	50000003993
	19
	16459
	12
	987538886432
	1875.85
	/

	26785956134870280125273
	23
	113630636299
	14
	88614
	11
	5316832496312
	10118.36
	/

Table 2. Factorization Group 2
	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	12654529
	8
	 1697
	1
	1
	5
	20001332
	3.02
	/

	369717133
	9
	25609
	1
	1
	9
	40070702
	2.87
	/

	1897440553
	10
	65099
	1
	1
	5
	20126972
	2.57
	/

	52739663177
	11
	111637
	1
	1
	11
	50022632
	6.00
	/

	130713369233
	12
	519733
	1
	1
	5
	20286002
	2.14
	/

	6748770789473
	13
	2090593
	1
	1
	10
	47461112
	3.37
	/

	11524840919477
	14
	1802261
	2
	2
	1
	6231362
	2.58
	/

	430485039573419
	15
	14567051
	12
	12
	6
	688514012
	5.23
	/

	1955733632904137
	16
	58510391
	8
	8
	2
	428558492
	6.43
	/

	30217484037846601
	17
	115447669
	29
	29
	7
	1711851932
	5.79
	/

	266941704466880371
	18
	267927329
	10
	10
	8
	575672102
	4.87
	/

	2166633888615295159
	19
	2027514317
	38
	278
	10
	16666917062
	31.86
	/

	22756653803671245041
	20
	6451727197
	1
	841
	9
	50440005962
	97.06
	/

	413222670126548323081
	21
	13504913321
	21
	3341
	12
	200458353212
	397.38
	/

	1503913043740073215127
	22
	53729287673
	35
	7475
	6
	448469041202
	861.5
	/

	23208481761499119809917
	23
	103222262531
	11
	27051
	8
	1623036622352
	3054.51
	/

Table 3. Factorization Group 3

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	11157067
	8
	1663
	1
	1
	3
	10013702
	2.21
	/

	383910353
	9
	12391
	1
	1
	4
	15012392
	3.37
	/

	1438236853
	10
	29201
	1
	1
	9
	40017812
	2.54
	/

	59495473109
	11
	460217
	1
	1
	5
	20225852
	2.37
	/

	204338073419
	12
	244217
	1
	1
	5
	45025442
	1.75
	/

	4075254216277
	13
	3909233
	1
	1
	12
	56638832
	3.17
	/

	16522992841517
	14
	7906771
	2
	2
	12
	115206932
	2.33
	/

	415613171542577
	15
	13464553
	4
	4
	4
	196223612
	3.40
	/

	2130887677054559
	16
	65850437
	10
	10
	11
	590606882
	19.12
	/

	31043832317143097
	17
	251809561
	38
	38
	10
	2268434072
	7.65
	/

	209495243841913543
	18
	225880099
	30
	110
	12
	6597952172
	14.38
	/

	4082205679196499709
	19
	1023526193
	14
	14
	4
	798105692
	6.14
	/

	33019716065589397447
	20
	8290277077
	18
	5418
	2
	325028197982
	597.08
	/

	450574758051764161729
	21
	13581342847
	8
	2968
	12
	178078114472
	397.38
	/

	1878613353066239152189
	22
	33445347731
	14
	11774
	11
	706431649502
	2069.93
	/

	27913133719399938961837
	23
	129510556649
	15
	45975
	6
	2758466091962
	7894.19
	/

Table 4. Factorization Group 4

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time
	Time

	13414967
	8
	 1949
	1
	1
	2
	5017712
	2.96
	/

	331451893
	9
	26459
	1
	1
	2
	5005082
	2.76
	/

	1933146287
	10
	32633
	1
	1
	7
	30004292
	3.28
	/

	61376888039
	11
	119237
	1
	1
	3
	10421912
	4.50
	/

	221449201327
	12
	 233663
	1
	1
	5
	20856572
	2.93
	/

	8356391888797
	13
	1993679
	1
	1
	7
	32894522
	4.00
	/

	10503658570897
	14
	1622449
	1
	1
	1
	98492
	3.89
	/

	530802693107327
	15
	16361099
	5
	5
	11
	290440922
	3.66
	/

	1571847149341363
	16
	52290587
	7
	7
	4
	379270232
	5.63
	/

	30266236030889197
	17
	262157671
	5
	45
	2
	2645520302
	7.30
	/

	227020160422765063
	18
	920927503
	23
	223
	3
	13333792622
	28.62
	/

	7632766872780422213
	19
	2067929597
	7
	687
	74
	41193373742
	21.16
	/

	28518585380150198561
	20
	8198690527
	30
	1430
	3
	85752258782
	171.77
	/

	549438783354451709261
	21
	32834112247
	17
	4697
	12
	281819986112
	809.52
	/

	1885102352659402618003
	22
	31356944219
	9
	9649
	1
	578883642362
	1827.62
	/

	21852468492088577490449
	23
	206686559659
	31
	29431
	5
	1765822576532
	5153.08
	/

Table 5. Factorization Group 5

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	11427677
	8
	1583
	1
	1
	2
	20492
	1.81
	/

	405031259
	9
	14029
	1
	1
	5
	20009402
	1.34
	/

	1354177351
	10
	27241
	1
	1
	6
	25023662
	2.03
	/

	61111357501
	11
	123733
	1
	1
	1
	3842
	2.14
	/

	190838622707
	12
	819187
	1
	1
	8
	35991572
	1.88
	/

	3856534651811
	13
	 1010897
	2
	2
	1
	62329502
	2.98
	/

	15286768369531
	14
	2045713
	1
	1
	2
	5380172
	1.41
	/

	450109181452867
	15
	13700527
	31
	31
	6
	1829576372
	6.94
	/

	1317487523002697
	16
	25232681
	8
	8
	2
	425022242
	2.46
	/

	31042285010899441
	17
	241950887
	33
	33
	11
	1972807322
	4.01
	/

	218532124445731211
	18
	238707713
	5
	5
	12
	298219982
	3.53
	/

	8202929148558584683
	19
	2111935009
	40
	680
	11
	40793790962
	111.63
	/

	24120674285926579159
	20
	7437872333
	24
	1264
	4
	75797708432
	218.28
	/

	464395777895275578169
	21
	29317776269
	4
	3884
	12
	233037889742
	715.56
	/

	1789550188834786401307
	22
	54178402379
	27
	33027
	
	1981611838682
	6229.76
	/

	29891632748859892878863
	23
	130706538707
	8
	174968
	2
	10498025530262
	30481.30
	/

(

Independent

subspace H1

Independent

subspace H2

Independent

subspace Hn

Sub-zone S11

Sub-zone S12

Sub-zone S1m

......

...

......

......

Sub-zone Sns

......

Computing cell

Computing cell

Computing cell

......

Computing cell

Computing cell

Computing cell

......

......

......

......

......

......

......

_1794968095.unknown

_1800106244.unknown

_1804041876.unknown

_1804042178.unknown

_1804515950.unknown

_1804515997.unknown

_1804516031.unknown

_1804516059.unknown

_1804516074.unknown

_1804516046.unknown

_1804516008.unknown

_1804515973.unknown

_1804515986.unknown

_1804515962.unknown

_1804042318.unknown

_1804042385.unknown

_1804515926.unknown

_1804515939.unknown

_1804042555.unknown

_1804042587.unknown

_1804042359.unknown

_1804042373.unknown

_1804042346.unknown

_1804042276.unknown

_1804042288.unknown

_1804042250.unknown

_1804042263.unknown

_1804042196.unknown

_1804042023.unknown

_1804042081.unknown

_1804042140.unknown

_1804042151.unknown

_1804042095.unknown

_1804042128.unknown

_1804042052.unknown

_1804042063.unknown

_1804042040.unknown

_1804041930.unknown

_1804041954.unknown

_1804042008.unknown

_1804041943.unknown

_1804041902.unknown

_1804041913.unknown

_1804041890.unknown

_1804041094.unknown

_1804041768.unknown

_1804041822.unknown

_1804041852.unknown

_1804041864.unknown

_1804041834.unknown

_1804041798.unknown

_1804041810.unknown

_1804041782.unknown

_1804041714.unknown

_1804041737.unknown

_1804041754.unknown

_1804041726.unknown

_1804041513.unknown

_1804041702.unknown

_1804041532.unknown

_1804041498.unknown

_1800157321.unknown

_1800425160.unknown

_1801016895.unknown

_1803540918.unknown

_1803990455.unknown

_1803540933.unknown

_1801459916.unknown

_1800450458.unknown

_1801016876.unknown

_1800455973.unknown

_1800450152.unknown

_1800157495.unknown

_1800157855.unknown

_1800157934.unknown

_1800157957.unknown

_1800157880.unknown

_1800157587.unknown

_1800157735.unknown

_1800157397.unknown

_1800107211.unknown

_1800154332.unknown

_1800156329.unknown

_1800156950.unknown

_1800154834.unknown

_1800113224.unknown

_1800106313.unknown

_1800106406.unknown

_1800106285.unknown

_1798082210.unknown

_1798376166.unknown

_1798379622.unknown

_1798379784.unknown

_1799939447.unknown

_1799986775.unknown

_1799990938.unknown

_1800017567.unknown

_1800018351.unknown

_1799991000.unknown

_1799989110.unknown

_1799990801.unknown

_1799987495.unknown

_1799986626.unknown

_1798982982.unknown

_1799121381.unknown

_1798379846.unknown

_1798379854.unknown

_1798379699.unknown

_1798379735.unknown

_1798379685.unknown

_1798378823.unknown

_1798379403.unknown

_1798379612.unknown

_1798378833.unknown

_1798376510.unknown

_1798378537.unknown

_1798378574.unknown

_1798376192.unknown

_1798347323.unknown

_1798374582.unknown

_1798374769.unknown

_1798375839.unknown

_1798375848.unknown

_1798376068.unknown

_1798375682.unknown

_1798375779.unknown

_1798374721.unknown

_1798374729.unknown

_1798374640.unknown

_1798351125.unknown

_1798351440.unknown

_1798374533.unknown

_1798351153.unknown

_1798350964.unknown

_1798350993.unknown

_1798350947.unknown

_1798347529.unknown

_1798203261.unknown

_1798335570.unknown

_1798336130.unknown

_1798347301.unknown

_1798336058.unknown

_1798336111.unknown

_1798335662.unknown

_1798335151.unknown

_1798335530.unknown

_1798335551.unknown

_1798335507.unknown

_1798335124.unknown

_1798335133.unknown

_1798335045.unknown

_1798203172.unknown

_1798203218.unknown

_1798202721.unknown

_1795579083.unknown

_1797916347.unknown

_1798081983.unknown

_1798082083.unknown

_1798082130.unknown

_1798082019.unknown

_1798079255.unknown

_1798079502.unknown

_1798080449.unknown

_1798080458.unknown

_1798079729.unknown

_1798079417.unknown

_1798077776.unknown

_1796459431.unknown

_1796538152.unknown

_1797829065.unknown

_1797916249.unknown

_1797828619.unknown

_1797395584.unknown

_1796534777.unknown

_1796535194.unknown

_1796538096.unknown

_1796535174.unknown

_1796534757.unknown

_1795616894.unknown

_1795625904.unknown

_1796448639.unknown

_1795625843.unknown

_1795616286.unknown

_1795616854.unknown

_1795615190.unknown

_1795246814.unknown

_1795273875.unknown

_1795279185.unknown

_1795317985.unknown

_1795318737.unknown

_1795321478.unknown

_1795318022.unknown

_1795318167.unknown

_1795316301.unknown

_1795277098.unknown

_1795277149.unknown

_1795276463.unknown

_1795276964.unknown

_1795273700.unknown

_1795273761.unknown

_1795247521.unknown

_1795223213.unknown

_1795225438.unknown

_1795233432.unknown

_1795244747.unknown

_1795229499.unknown

_1795225419.unknown

_1795221895.unknown

_1795223206.unknown

_1795060249.unknown

_1789666763.unknown

_1791006428.unknown

_1794451357.unknown

_1794626384.unknown

_1794633573.unknown

_1794641201.unknown

_1794642064.unknown

_1794660806.unknown

_1794641253.unknown

_1794636549.unknown

_1794633540.unknown

_1794464469.unknown

_1794470807.unknown

_1794552685.unknown

_1794554814.unknown

_1794555473.unknown

_1794552695.unknown

_1794471760.unknown

_1794470792.unknown

_1794451845.unknown

_1794452112.unknown

_1794464008.unknown

_1794451991.unknown

_1794451811.unknown

_1791950760.unknown

_1792044822.unknown

_1794124650.unknown

_1794125179.unknown

_1794127632.unknown

_1792045047.unknown

_1792044740.unknown

_1791950646.unknown

_1791950746.unknown

_1791950620.unknown

_1789667338.unknown

_1789667798.unknown

_1789750147.unknown

_1790055142.unknown

_1790057779.unknown

_1789750183.unknown

_1789667828.unknown

_1789744951.unknown

_1789744961.unknown

_1789667852.unknown

_1789667810.unknown

_1789667621.unknown

_1789667632.unknown

_1789667560.unknown

_1789667228.unknown

_1789667272.unknown

_1789667289.unknown

_1789667253.unknown

_1789666818.unknown

_1789666839.unknown

_1789666807.unknown

_1772756598.unknown

_1789666661.unknown

_1789666715.unknown

_1789666740.unknown

_1789666750.unknown

_1789666728.unknown

_1789666682.unknown

_1789666704.unknown

_1789666676.unknown

_1789666498.unknown

_1789666558.unknown

_1789666586.unknown

_1789666616.unknown

_1789666573.unknown

_1789666538.unknown

_1783212156.unknown

_1789666392.unknown

_1789666407.unknown

_1789666486.unknown

_1789666372.unknown

_1783128729.unknown

_1783167979.unknown

_1775361003.unknown

_1775361012.unknown

_1774156522.unknown

_1766982470.unknown

_1772600995.unknown

_1772601097.unknown

_1772756534.unknown

_1772601081.unknown

_1767060294.unknown

_1771384993.unknown

_1771385002.unknown

_1771385097.unknown

_1770985903.unknown

_1771208879.unknown

_1770789051.unknown

_1770985891.unknown

_1767060308.unknown

_1767029994.unknown

_1767030006.unknown

_1767029984.unknown

_1767029968.unknown

_1717769551.unknown

_1766288928.unknown

_1766715645.unknown

_1766756165.unknown

_1751509157.unknown

_1751817736.unknown

_1751893183.unknown

_1717769562.unknown

_1717769287.unknown

_1717769305.unknown

_1717769490.unknown

_1566915631.unknown

