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A Dataset and A Dynamic Distributed Parallel Network for Identifying Divisors of Odd Composite Integers



Abstract: For a given odd integer N = pq , where p and q are prime factors satisfying 2 < p < q, we define a dataset that systematically accumulates multiples of p and q. This dataset is isomorphic to a rectangular lattice structure described in terms of rows and columns. We then design a dynamic distributed parallel network to search for a multiple of p or q, enabling the calculation of a divisor of N via the greatest common divisor (GCD) between the identified multiple and N. Experimental results demonstrate that the defined dataset provides a novel scenario for applying search algorithms to identify divisors of N and the designed dynamic distributed parallel network operates efficiently when paired with an appropriate search method.
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1. Introduction

The mathematical challenge of integer factorization has persisted as a fundamental research subject for centuries. Its cryptographic significance became particularly pronounced following the advent of the RSA cryptosystem, whose security framework is intrinsically predicated on the computational intractability of this problem. The theoretical foundation of RSA would be fundamentally compromised should an efficient polynomial-time factorization algorithm emerge for large integers. This critical dependency has driven sustained research efforts by cryptanalysts and number theorists to develop enhanced factorization methodologies.

As documented in foundational monographs [1-6] and comprehensive survey papers [7-17], the post-1970s era witnessed remarkable algorithmic evolution, yielding over a dozen distinct factorization approaches. These include: Pollard's rho method; Shanks' SQUFOF (SQUare FOrm Factorization); the Morrison-Brillhart CFRAC (Continued FRACtion method); Pomerance's Quadratic Sieve (QS); Lenstra's Elliptic Curve Method (ECM); the Number Field Sieve (NFS/GNFS); and quantum computing-based approaches. Despite this methodological proliferation, recent investigations [18-26] published within the past 5 years reveal persistent demands for improved factorization efficiency, particularly regarding cryptographically relevant integers, suggesting ongoing algorithmic innovation in this field.

A systematic review of factorization methodologies reveals that search mechanisms, randomization strategies, and parallel computation paradigms constitute three foundational pillars underlying both classical and modern integer factorization approaches. 

The search component operates through systematic identification of integers sharing non-trivial divisors with the target composite number. This manifests through distinct implementations across algorithms: cycle detection in the Pollard-( method, square number exploration in SQUFOF, and elliptic curve point searching in ECM. Contemporary developments over the past two decades demonstrate accelerated integration of intelligent search heuristics, including Tabu search implementations (Sadiq A. T. [27], 2009; Candra A. [28], 2017), genetic algorithm-driven searches (Rutkowski E. [32], 2020; Mobin M. A. [33], 2024), Grover's algorithm of the quantum search (Dash A. [31], 2018), heuristic searches (Mishra M. [34], 2016; Fagin B.S. [35], 2021; Hittmeir M. [36], 2023), and Lévy flight-based divisor search and identification (Wang X. [37], 2024). Notably, the period 2015-2017 witnessed concentrated efforts in general search algorithm applications (Choudhury B. [29], 2015; Wang X. [30], 2017), highlighting sustained interest in search-space optimization techniques.

According to the Digital Library of Mathematical Functions (DLMF) assessment framework, randomized algorithms have revolutionized integer factorization research [38]. Classical factorization methods – including Pollard-(, SQUFOF, CFRAC, QS, ECM, and GNFS – fundamentally rely on randomization principles. Notably, even advanced intelligent search methodologies inherently incorporate stochastic components.

The evolution of parallel computing architectures has been instrumental in advancing factorization capabilities since R.P. Brent's seminal work [39]. Extensive adaptations of major algorithms (ECM, QS, SQUFOF, CFRAC, and GNFS) for parallel environments have been systematically demonstrated through [40–46], with subsequent extensions to distributed and grid computing paradigms [47,48]. Crucially, all successful factorizations of RSA numbers to date have leveraged parallel implementations. This establishes parallelism as an essential requirement for practical large integer factorization. An algorithm that lacks parallelizability would face substantial limitations in factoring large integers unless it exhibits exceptionally high speed.
It is evident that a high-quality dataset plays a crucial role in the application of search algorithms, regardless of whether the computing environment is sequential or parallel. Consequently, we have constructed an integer dataset focusing on multiples sharing divisors of a given composite odd integer, building upon our foundational research. This dataset is associated with a rectangular lattice region that can be easily searched using various algorithms in both sequential and parallel computing paradigms. We also propose a Distributed Dynamic Parallel Random Search (DDPRS) framework, which operates within this dataset as an example for identifying divisors of odd composite numbers. Our methodological innovations address the dual requirements of parallelizability and stochastic search efficiency, which are critical in addressing current factorization challenges.
This paper is organized as follows: Section 1 contextualizes the research landscape. Section 2 establishes formal definitions and notational conventions. Section 3 synthesizes relevant prior work from our research group. Section 4 details our technical contributions through theoretical analysis, algorithmic innovations, and empirical validation. Section 5 concludes with implications and future directions.
2. Terminologies, Symbols and Notations

This section contains the necessary symbols, notations, and definitions for further use.
Symbol
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. If d is a divisor of integer h, h is called a host number of d , or a number hosting d, or simply a host of d, denoted by symbol 
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. If an integer interval contains integer x, that integer interval is called a host interval of x. If a two-dimensioanl region (zone, area) contains integer point P, that region (zone, area) is called a host region (zone, area) of P. A finite set is called a computing cell if the set is used to compute something. A computational base, or simply a base, which originates from the concept of an artillery base, refers to the minimum number of computational tasks a processing unit is scheduled to complete within its designated time frame. The base of a multi-core computer is the multiplication of the number of its cores with the base of an individual core. A complete partition of a set S is to divide S into finite subsets, say 
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is called the gap between a and b. Symbol 
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 is the fractional part of x. 

For an odd composite integer N , 'a host of N's divisors' can sometimes be simply called 'a host' in the case that there is no misunderstanding, and likewise, 'the hosts of N's divisors' can be said to be 'the hosts'.
3. Our Previous Research Results
For an odd composite integer N=pq with 
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 as odd prime factors, the prime divisors p or q can be determined by computing the greatest common divisor (gcd) of N and any integer sharing a nontrivial factor with N. The central challenge lies in developing an efficient methodology for rapid identification of the hosts. Building upon this foundation, our prior investigations have systematically addressed four critical dimensions: distribution characteristics of the hosts, densification strategies for enhancing host integer concentration, optimized search protocols for host integer detection, and parallel computing architectures to accelerate the search process.

This section concisely summarizes these foundational results, which underpin the subsequent analytical developments presented in this work.
3.1. Distribution of the Hosts
Lemma 1[49]. Let q be a positive odd number, 
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Lemma 2[50]. Given an odd integer 
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Lemma 3[50]. Given an odd integer 
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 Lemma 4[51]. Let 
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and there exists a pair, still say 
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Lemma 5[52]. Let p and q be odd integers with 
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Lemma 6 [52] . Given an odd integer 
[image: image63.wmf]Npq

=

, where p and q are odd integers such that 
[image: image64.wmf](,)1

pq

=

 and 
[image: image65.wmf](1)

pqp

ll

<<+

with 
[image: image66.wmf]1

l

³

being an integer; let 
[image: image67.wmf][1,1]

N

IN

=-

 be an integer interval. Then in 
[image: image68.wmf]N

I

, each of 
[image: image69.wmf]01

,,...

GG

, and 
[image: image70.wmf]2

p

G

-

 symmetrically occurs twice between two adjacent hosts of N's divisors, whereas 
[image: image71.wmf]1

p

G

-

 totally occurs 
[image: image72.wmf]1

qp

--

 times across p distinct subintervals in a symmetric manner. Furthermore, there exist exactly 
[image: image73.wmf]1

r

-

subintervals in each of which 
[image: image74.wmf]1

p

G

-

 occurs 
[image: image75.wmf]l

 times.  

3.2. Distribution Trait of the Hosts In Their Hosting Interval
Let 
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indicating one successful pick for a big p is like finding proverbial needle in the haystack.
3.3. Densification of the Hosts
Paper [53] proposed a method to make the hosts a denser distribution by Cartesian subtraction and obtained a sequence of the form

[image: image86.wmf]1,,1,

,,,1,,1,

1,,1,,,,1,,1

bb

gtimes

g

bb

N

gtimes

gtimes

bb

gtimesgtimes

gtimes

pp

eepp

T

NNeepp

++

ìü

ïï

ïï

ïï

ïï

++

ïï

=

íý

ïï

ïï

ïï

--++

ïï

ïï

îþ

L

144424443

LL

LLL

14243

144424443

LLLL

LLLLL

14442444314243

144424443

,

where 
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pp

<

is a lower bound of p, and g is the multiplicity of the terms.

By this means, a host accumulates together to g times every time it occurs and the its total number is increased by g times. Hence the densification increases the probability of a successful pick for a local search. Paper [54] investigated the case g=1 in detail. It demonstrated that taking 
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led to a pq-band ( that has a more concentrated distribution of the hosts, where ( is given by 
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( is easily seen to have ridges (defined in paper [54]) each one identified with a unique integer in 
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. Therefore, ( consists of host ridges and non-host ridges. Each term is a host on a host-ridge, whereas there is not a host on a non-host ridge. For example, with symbol 'o' to express a host and '.' to express a non-host, taking N=21 obtains the (-zone as Figure 1 shows.
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Figure 1: The (-zone calculated by N=21
3.4. The (-Zone

  Paper [55] constructs an (-zone of the following form.
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  By using X and Y to represent the indices of the row and column from top to bottom and from left to right, respectively, the term 
[image: image94.wmf],

XY

w

 at row X and column Y is calculated by

  
[image: image95.wmf],

1

XYb

Y

pX

g

w

êú

-

=+-

êú

ëû

,                                     (2)

and the four borders of the zone are 
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  The (-zone is easily to be computed, as exampled in Figure 2 for N=21 and g=2.
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Figure 2: The (-zone calculated by N=21 and g=2.

In order to see the hosts and non-hosts, Figure 2 is alternatively depicted with Figure 3. It is seen that the hosts are accumulating by g times locally here and there, even though they are sparsely distributed globally. This is described to be a property of local accumulation in global sparse distribution of the (-zone, for convenience. 
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Figure 3: Hosts and non-hosts in the (-zone of N=21 and g=2
3.5. Search with Monte Carlo Method

Paper[56] proposes a deterministic-embedded Monte Carlo approach to find out a hidden host within an expected computing time (ECT) in a large interval IN that contains n odd integers. By defining an odd integer 
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It should be clarified that the LCG 
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, is utilized for generating pseudorandom numbers, is referred to as the Monte Carlo selector in this paper.
3.6. Search With Random Walk
According to the property of local accumulation in global sparse distribution of the (-zone, papers [53] and [55] have explored search with random walk. 
Let 
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Each move (or step) of the random walk can be regarded to be a random selection of a host in the (-zone and the whole process is surely the Bernoulli trials. If the random steps are drawn from the uniform distribution, 
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 is a simple random walk (SRW), whereas, it is the Lévy flight (LF) in the case that the random steps are drawn from the isotropic symmetric Lévy stable distribution. The characteristic function of the LF is given by 
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where real ( is a scale coefficient and real ( is the Lévy index.

When 
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, the LF turns to be the Brownian motion (BM) whose iid random steps are drawn from the Gaussian distribution [57][58]. 

With 'footprint', the three different random walks, the SRW, the BM, and the LF, are intuitively illustrated with Figure 4. Seen in the footprints, the SRW is nearly-uniformly distributed, the BM is more concentrated near a center, and the LF is alternated between frequent short-distance jumps and occasional long-distance jumps. Therefore, the LF is regarded to be suitable for search in an area in which the targets are distributed in the way of local accumulation in global sparse distribution, whereas, the SRW and the BM are suitable for local searches. The BM is particularly good for the case that there is some reference (clue) to locate searched target while SRW is more suitable for the local blind search. 
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	(a) The SRW
	(b) The BM
	(c) The LF


Figure 4: Footprints of the SRW, the BM, and the LF

3.7. Parallel Strategy
As overviewed in the introductory part, parallel computing is essential for factoring a large integer. We have naturally touched this topic. In the papers [59], parallel strategies are proposed to meet the different needs. The main work of this issue is to create independent computing subspaces so that a parallel computing thread can perform its computations in a specified subspace. 

3.8. Challenges and Limitations Identified in Prior Studies
Two categories of challenges were encountered in previous research: systematic issues, referred to as hardness, and algorithmic issues, termed softness. Hardness primarily concerns computational environments, encompassing both hardware and software infrastructure. For instance, as noted in [55] and [60], there is an insufficient supply of multi-core computers for parallel computing applications and limitations in handling large integers and random number generation, among other constraints. Softness issues, on the other hand, pertain mainly to the determination of computational parameters within specific algorithms, such as the starting point, step size, and local region, when employing random walk (RW) search methods and the Monte Carlo-based ECT.
4. New Research Issues and Results in This Paper
Regarding the probability of randomly selecting a host, Corollary 13 of [54] defines a rectangular sub-zone within the (-zone and proves that the rectangular sub-zone is better than the entire (-zone. That rectangle is oriented at an angle relative to the horizontal line, complicating its formulation and analysis. Subsequently, we identified a horizontally aligned parallelogram sub-zone with equivalent probability to that rectangular sub-zone. Through an isomorphic mapping of this parallelogram sub-zone onto a new rectangular sub-zone, we developed a partitioning strategy to divide the new rectangular sub-zone into a series of independent sub-spaces (ISSs). We then established a dynamic distributed parallel system to conduct random searches for the hosts within these ISSs. This section summarizes our research findings.
4.1. A Rectangular Hosting Zone
  A parallelogram sub-zone, denoted by 
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, can be taken from the (-zone by
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 terms. Still use X and Y to denote the indices of the row and column, from top to bottom and from left to right, respectively; the term 
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and the four borders are given by 
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  Or alternatively 
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  Take N=21 and  g=2 for instance; then 
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, the (-zone is calculated as Figure 5 shows.
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Figure 5: The (-zone calculated by N = 21, g = 2, pb = 4, and pu = 16.

  Being a parallelogram, ( can be isomorphically mapped onto a rectangle by  
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  This rectangle is referred to as the isomorphic rectangle of ( , and its elements are determined by 
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  For example, Figure 6 is the isomorphic rectangle of ( defined in Figure 5.
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Figure 6: Isomorphic rectangle of (
The isomorphic rectangle is significantly more straightforward than the parallelogram when it comes to computational tasks; therefore, it will serve as the primary object of computation hereafter and will continue to be denoted by the symbol ( unless otherwise specified.
4.2. Distribution Trait of the Hosts in (
The original (-zone inherits the distribution trait of the (-zone. That is, the hosts are accumulating locally here and there despite their sparse distribution globally. Figure 7 intuitively illustrates such a distribution.
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Figure 7: Hosts and non-hosts in the (-zone of N = 35, g = 2, pb = 5, and pu = 29.
In the isomorphic rectangle, the hosts and non-hosts are laid out tidily in rows and columns, still keeping their local accumulation in global sparsity, as seen in Figure 8 generated by N=35, g=2, pb=5, and pu=29. 
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Figure 8: Hosts and non-hosts laid out tidily in the isomorphic rectangle

4.3. Probability of Randomly Selecting Hosts in (
The hosts exhibit a distribution pattern of local accumulation within a global sparsity in (. To assess the ease or difficulty of identifying a host, we have investigated the probability of randomly selecting a host across three scenarios: single-term, multi-term, and selection from a complete partition. Theoretical results indicate a higher probability appears in the selection from a complete partition.
4.3.1. Single-term Selection

Assume 
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Given that ( comprises 
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  It is evident that
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From (6) and (7), it can be seen that
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Comparing (8) with (9) knows that 
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indicating that the minimal probability is around 
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Picking a host randomly is surely a Bernoulli process; hence the probability 
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It is also known from (11) that 
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 can reach an appreciate value with the increase of n. For instance, Figure 9 exhibits the cases of 
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gradually approaches 1 with the increase of n.  
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	(a) N=109
	(b) N=1010

	Figure 9: Distribution of 
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On the other hand, it is also seen from (12) that a large N may lead to a very big n for an appreciate 
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. This can be done by augmenting g in (8) and (9). Unfortunately, either (8) or (9) shows that it cannot be raised to a very large extent for a large N even with a considerable g. Consequently, an alternative approach is required for the random selection in (.
4.3.2. Multi-term Selection

When selecting multiple terms simultaneously, imagine n terms are chosen in a single draw. The probability of having at least one host among the chosen n terms, denoted as 
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where 
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  In the case 
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  With  (14), (15), (13), and (11), it is easy to obtain  
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saying the multi-term selection is better than the single-term selection. Furthermore, (13) also indicates that a bigger n is better than a smaller one. 

4.3.3. Selection on a Complete Partition of (
The multi-term selection can be conceptualized as a single-term selection conducted on a set of subsets derived from (, selecting one subset at a draw. This time, a complete partition of ( is necessary to ensure that all the hosts are accounted for and to prevent any leakage or overlap. Assume ( is the required complete partition, which divides ( into m distinct sub-zones, say 
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Figure 10: A complete partition of (
Suppose 
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This indicates that there must be at least a sub-zone 
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 is less than that in (, it takes less time to search in 
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 even with a brutal search. Therefore, a proper partition is mandatory for searching the hosts in a large region. Additionally, a complete partitioning approach offers an extra advantage: it enables the entire ( to be computed through parallel processing.
4.4. Distributed Parallel Random Searches on ( 
Let L and W represent the number of columns and rows, respectively. Then 
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). L and W are significantly large for a large N, resulting in a huge (. This scenario frequently necessitates applying parallel searching techniques to find a host. We thereby have investigated methodologies for implementing distributed parallel techniques and developed two distinct systems: a dynamic distributed parallel system and an extended dynamic distributed parallel system. In the dynamic distributed parallel system, each individual computer (machine) functions as a single computing node, while the extended dynamic distributed parallel system regards a cluster of computers as a single computing node. 

  Both systems employ randomized algorithms for selection and search. The search process employs various algorithms, including Brutal Search (BS), Simple Random Walk (SRW), Brownian Motion (BM), Lévy Flight (LF), and even machine-learning-based approaches. For the sake of conciseness, these search algorithms are collectively denoted by the symbol X. Accordingly, the dynamic distributed parallel random search system is abbreviated as DDPRX or D2PRX, while the extended dynamic distributed parallel search system is represented as eDDPRX or eD2PRX.
  Given that partitioning the large ( is essential for efficient distributed parallel computing, we propose a three-tiered partitioning strategy to meet the requirements of both D2PRX and eD2PRX. Additionally, we introduce an approach for creating computing cells within the partitioned sub-zones. 
  Parallel computing entails concurrently executing multiple processes across distinct cores within multi-core processors. Consequently, the term 'process' is frequently employed in parallel computing literature. Nonetheless, this section opts for the term 'core' to underscore the architectural foundation of the computer system.
4.4.1. Partition Strategy 

Two critical factors are paramount in the design of a partition: the dimensions and configuration of the subspaces that constitute the entire computational space. The dimensions influence the probability of randomly selecting a host, while the configuration affects the complexity of the partitioning process. Various methodologies exist for partitioning a rectangular domain like (; one of the simplest methods involves dividing ( into a series of uniformly sized smaller rectangles (or squares), as illustrated in Figure 11. This approach exemplifies a basic configuration, where the size of the subspaces becomes the primary determinant. However, given the hosts' distribution characterized by local accumulation amidst global sparsity, some smaller rectangles may remain devoid of hosts unless they are sufficiently large. Given that larger rectangles may reduce the probability of randomly selecting a host within them, this partitioning method exhibits certain limitations in practical applications unless the hosts are densely distributed everywhere.
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Figure 11: Partition the isomorphic rectangle with small rectangles

There are two other fundamental partitions with a simple configuration: row-based and column-based partitions. The row-based partition divides the whole space into a finite number of subspaces, called sub-zones later, each consisting of multiple rows, while the column-based partition segments the area into a finite number of sub-zones, each comprising multiple columns. These two distinct partitions are illustrated in Figure 12. Unlike the simplest partition, which features uniformly sized sub-zones, the sub-zones resulting from either of these two partitions may vary in size. Consequently, devising an appropriate sizing strategy is crucial for effectively utilizing these partitions.
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	(a) Row-based partition
	(b) Column-based partition

	Figure 12: Row-based and column-based partitions


In light of the distribution characteristics of the hosts within (, the column-based partitioning approach is more likely to generate some sub-zones that have higher probabilities of randomly selecting the hosts. Consequently, we employ the column-based partition.
4.4.2. A Three-tiered Partition 

Assuming n distinct multi-core computers are involved in the computation, the three-tiered partition (TTP) first aims to allocate an ISS for every computer, thereby partitioning ( into n ISSs, say
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  As a result, each computer is responsible for processing one ISS. 

The TTP next targets allocating independent sub-zone (ISZ) for every core within a single computer. Assuming that ISS 
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  Consequently, each core is available to handle one ISZ independently. 

  The TTP subsequently establishes on the ISZ independent computing cells (ICCs) from which the core can randomly select and search. Under this consideration, an ISZ, such as 
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  Then each core randomly selects an ICC and performs necessary computations on the chosen cell. 

The hierarchical structure of TTP is illustrated in Figure 13, where the topmost node represents (, and each subsequent node corresponds to a specific partition.


Figure 13: Architecture of the three-tiered partition of (
  There are several critical issues in the three-tiered partition, as outlined below. 

4.5.2.1. Columns contained in ISSs 
( contains 
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 columns that are broken up into a series of the ISSs. Because the ISSs are allocated to computers sequentially, the number of columns in an ISS is determined by the computational capability of the assigned computer. Typically, each core is designed to process a specific number of columns, which must align with the base B of that core. Consequently, a computer contributing m cores can process mB columns concurrently. Therefore, the number of columns in the ISS varies based on the computational contribution of the assigned computer. 
4.5.2.2. Columns contained in ISZs
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4.5.2.3. ICCs in ISZs
Consider dividing the ISZ 
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resulting in 
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  In general, when expressed in binary form, an integer u can always be represented as
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where 
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4.5.2.4. Dimension of the ICCs 

Because the rows of ( are identical, the ICC is proposed to be a square, meaning it comprises an equal number of rows and columns.
Note that the base B of a core is the minimum number of the columns the core searches; referring to the previous section, letting B be of the form 
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columns. This time  the square principle results in that the dimension of an ICC is 
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4.4.3. D2PRX
The D2PRX is analogous to grid computing; it operates within a network open to computers that voluntarily participate in computational processes. This section overviews the system's operational mechanism and underlying algorithms.
4.5.3.1 Working Mechanism
Regarding the multi-core computers participating in the computation as a computer queue, the D2PRX registers each computer with an unique integer identifier (ID), denoted by cID. It sequentially assigns an ISS from the unallocated portion of ( to each computer for computation according to FIFO principle of the queue. This allocation process continues until either the expected result is achieved or the entire ( is allocated. Figure 14 illustrates this scenario. In the figure, the arrowed curve represents the 'allocation' and the waved curves mean the omitted contents. The term 'dynamic' in the D2PRX signifies that computers can join the queue at any time, while 'distributed' indicates that each computer independently contributes its computational resources and executes computations (or searches) using its designated algorithm. Every computer divides its allocated ISS into ISZs according to the number and the base of its available cores , assigning each core a distinct ISZ for computation.    Each core constructs its ICCs and performs searches on randomly selected ICCs. 
  The D2PRX designates a specific computer, referred to as the root-host, to handle communication and collection of system status information. The information is recorded in a resource configuration table, denoted as rgTable. The rgTable records the global parameters for the computation, the cID of the last computer that has been assigned an ISS, and the overall job status of the system. This information enables a newly joined computer to ascertain whether the task has been completed and, if not, where to obtain its ISS.
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Figure 14: Illustration of D2PRX
  Initially, the newly joined computer registers itself to the root-host with its own information and asks for the location of its ISS, provided that the entire task has not been completed. Following the retrieval of necessary information from the rgTable, it proceeds to execute computational tasks, which encompass calculating an ISS for itself, planning ISZs for its cores, and initializing the cores to establish their ICCs and conduct stochastic searches on the ICCs. Upon task completion, it records its results locally, reports them to the root-host for documentation, and then exits the system. If the task is completed successfully, ie. a host is identified, the root-host broadcasts a message to all other computers to cease their computations.
4.5.3.2 Algorithm Description
The D2PRX algorithm requires three input parameters: N, an odd composite integer one of whose divisor is to be found; m, the number of cores participating in the computation; and B, the core's base. The N-S chart of this algorithm is illustrated in Figure 15, described with pseudo-C language. As depicted, each computer initially verifies and updates its registration information, subsequently calculates the ISS for itself and the ISZs for its respective cores, and then initiates the cores to conduct searches on randomly selected ICCs. The subroutine designated as 'Search' in the algorithm refers to the search algorithms X described in earlier sections, and it returns the found divisor.
4.4.4. Key Issues 
  Seen from the algorithm's N-S chart, the multiplicity g, the base B, and the subroutine 'Search' are key issues. Here introduce their solutions, respectively.

4.5.5.1 The multiplicity g
Theoretically, the bigger g is, the more hosts are accumulated somewhere. Nevertheless, by 
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, a large value of g also results in a proportionally large L, thereby increasing the search time. It is crucial to strike an appropriate balance between these two parameters. Referring to subsection 4.4.2-5 of [55], g is proposed to be 
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where ( is given by
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4.5.5.2 The base B
B is a metric that quantifies a computer's computational capability, which varies across different computers. For example, a processor core operating at 4.0 GHz generally exhibits superior processing performance compared to one at 3.0 GHz. Consequently, the computer owner or contributor must provide the base B as an input parameter. Given that the core serves as the fundamental unit in parallel computing, B typically denotes the processing capability of a single core. Any computer participating in computational tasks must specify its core base B.
  In general, B can be estimated based on the clock speed of the core. Assuming the clock speed of a core is b GHz, and given that 1 GHz=230 Hz≈ 109 Hz, the processing capability C of the core per hour can be approximated by
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  Suppose the contributor wants to contribute 100 hours' computation; then 
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  Referring to subsection 4.5.2.4, B is proposed to be of the form 
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Figures 15 N-S chart of the general algorithm.

4.5.5.3 The search algorithm X 
As aforementioned, each computer can choose its preferred search algorithm to execute the search on its ISS, including BS, SRW, BM, LF, and even machine-learning-based approaches. Considering that the partition possibly generates a certain number of ISSs contain an accumulation of hosts due to the characteristics of ('s structure, stochastic local search algorithms [20] are proposed to use in general.  

4.4.5. Time Complexity and Space Complexity
The entire search process continuously computes the value of 
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 is defined in equation (3). Consequently, an individual computation's time complexity depends on N, X, and ISS, whereas the space complexity is solely dependent on N.
4.5.5.1 The time complexity 
Let 
[image: image317.wmf]ISS

n

be the total number of the lattices in the ISS a computer randomly searches; then the best case of the search takes just one step, taking 
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where 
[image: image327.wmf]1

T

c

³

is a finite real constant.

4.5.5.2 The space complexity
It takes 
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4.4.6. eD2PRX

Let 
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where s is a definite positive integer and 
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  Then Q constitutes eD2PRX if the following conditions are met:
  1). Q functions within a network environment.
  2). Once established,
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remains unchangeable and is responsible for computing an ISS.
  3). Each cluster
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appoints an agent or representative, denoted as 
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, to manage both internal and external   communications as well as the aggregation of system status information.
  4). Computers within cluster
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  5). Each computer is assigned an ISS to perform computations.

  6). A designated computer within Q serves as the root-host, analogous to that in D2PRX.
  7). The root-host of Q maintains communication with every representative
[image: image342.wmf]i
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.
  The eD2PRX operates on the same principle as the D2PRX, treating a cluster as a single computer and an individual computer as a core. As a result, both the eD2PRX and D2PRX can be operated using the same algorithm, as illustrated by the N-S chart in Figure 15.
4.5. Numerical Experiments
Using 40 computers equipped with Intel(R) CoreCM i5-10500 CPU @ 3. 10GHz, 16GB memory, and Windows 10 OS, each one contributing a processing capability of 6(1012 per hour. Taking experimental data from paper [33], we perform the numerical experiments via Python. In the experiment, we take a fixed g=30 and designate brutal search as the local search approach. A computer is assigned an initial cID to start its computation first, and automatically relays the computing as a new role after it completes its task without obtaining the expected result. The Python source codes can be accessed in where [62] shows, and the results are list in Tables 3-7 in the Appendix section. In the tables, Time A is the computing time with D2PRX and Time B is taken from [37], respectively. 
Conclusions can be surely obtained from the experiment:

1. The region ( can be indeed available for a dataset to identify a divisor of an odd composite integer.

2. D2PRX works better than the method introduced in either [33] or [37] for a bigger N.

3. New better method is still in need to have a better efficiency than D2PRX.    
5. Conclusion and Future Work
For the given odd integer N = pq, the dataset ( constructed in this paper can accumulate hosts of p and q locally here and there in a global sparse distribution. This characteristic provides a way to develop new searching algorithms to find a host and thus to calculate a divisor of N, helpful to solve the hard problem of integer factorization. The method of D2PRX designed in this paper indicates that there exist expected approaches worthy of our further attempts to reach the goals. We will continue to explore better method and hope more scholars to join us.     
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Appendix
Computing results with D2PRX.

Table 1. Factorization Group 1

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	10909343
	8
	2693
	1
	1
	2
	59342
	3.54
	0.2817 

	29835457
	8
	4001
	1
	1
	5
	13048338
	2.63
	0.0900

	392913607
	9
	21937
	1
	1
	1
	31682
	3.59
	0.4497

	5325280633
	10
	57731
	1
	1
	4
	15104072
	2.37
	0.7980

	42336478013
	11
	243077
	1
	1
	4
	15664562
	2.38
	1.1181

	272903119607
	12
	374989
	1
	1
	9
	40522502
	2.12
	9.9060

	11683458677563
	14
	4500737
	1
	1
	7
	32411282
	5.15
	202.3835

	51790308404911
	14
	9278263
	2
	2
	1
	62436632
	3.73
	305.5239

	115137038087959
	15
	11471099
	1
	1
	5
	22168262
	3.65
	490.4322

	8335465900089539
	16
	91855193
	1
	1
	4
	16627532
	3.30
	2424.0374

	10380088039872631
	17
	101858333 
	11
	51
	12
	3055009202
	13.04
	/

	253422413591685001
	18
	501900991
	31
	251
	3
	15011688302
	31.66
	/

	1160633764479964633
	19
	1004922797
	27
	467
	4
	27975550232
	52.60
	/

	31625125947164338313
	20
	9010002107
	14
	1694
	3
	101591363582
	192.09
	/

	454367322351811534933
	21
	13545006127
	8
	2888
	1
	173223497702
	329.11
	/

	4500000514520012390279
	22
	50000003993
	19
	16459
	12
	987538886432
	1875.85
	/

	26785956134870280125273
	23
	113630636299
	14
	88614
	11
	5316832496312
	10118.36
	/


Table 2. Factorization Group 2 
	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	12654529
	8
	 1697
	1
	1
	5
	20001332
	3.02
	/

	369717133
	9
	25609
	1
	1
	9
	40070702
	2.87
	/

	1897440553
	10
	65099
	1
	1
	5
	20126972
	2.57
	/

	52739663177
	11
	111637
	1
	1
	11
	50022632
	6.00
	/

	130713369233
	12
	519733
	1
	1
	5
	20286002
	2.14
	/

	6748770789473
	13
	2090593
	1
	1
	10
	47461112
	3.37
	/

	11524840919477
	14
	1802261
	2
	2
	1
	6231362
	2.58
	/

	430485039573419
	15
	14567051
	12
	12
	6
	688514012
	5.23
	/

	1955733632904137
	16
	58510391
	8
	8
	2
	428558492
	6.43
	/

	30217484037846601 
	17
	115447669 
	29
	29
	7
	1711851932
	5.79
	/

	266941704466880371
	18
	267927329
	10
	10
	8
	575672102
	4.87
	/

	2166633888615295159
	19
	2027514317
	38
	278
	10
	16666917062
	31.86
	/

	22756653803671245041
	20
	6451727197 
	1
	841
	9
	50440005962
	97.06
	/

	413222670126548323081
	21
	13504913321 
	21
	3341
	12
	200458353212
	397.38
	/

	1503913043740073215127
	22
	53729287673
	35
	7475
	6
	448469041202
	861.5
	/

	23208481761499119809917
	23
	103222262531
	11
	27051
	8
	1623036622352
	3054.51
	/


Table 3. Factorization Group 3

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	11157067
	8
	1663
	1
	1
	3
	10013702
	2.21
	/

	383910353
	9
	12391
	1
	1
	4
	15012392
	3.37
	/

	1438236853
	10
	29201
	1
	1
	9
	40017812
	2.54
	/

	59495473109
	11
	460217
	1
	1
	5
	20225852
	2.37
	/

	204338073419
	12
	244217 
	1
	1
	5
	45025442
	1.75
	/

	4075254216277
	13
	3909233
	1
	1
	12
	56638832
	3.17
	/

	16522992841517
	14
	7906771
	2
	2
	12
	115206932
	2.33
	/

	415613171542577
	15
	13464553
	4
	4
	4
	196223612
	3.40
	/

	2130887677054559
	16
	65850437 
	10
	10
	11
	590606882
	19.12
	/

	31043832317143097
	17
	251809561
	38
	38
	10
	2268434072
	7.65
	/

	209495243841913543
	18
	225880099
	30
	110
	12
	6597952172
	14.38
	/

	4082205679196499709
	19
	1023526193
	14
	14
	4
	798105692
	6.14
	/

	33019716065589397447
	20
	8290277077
	18
	5418
	2
	325028197982
	597.08
	/

	450574758051764161729
	21
	13581342847
	8
	2968
	12
	178078114472
	397.38
	/

	1878613353066239152189
	22
	33445347731
	14
	11774
	11
	706431649502
	2069.93
	/

	27913133719399938961837
	23
	129510556649
	15
	45975
	6
	2758466091962
	7894.19
	/


Table 4. Factorization Group 4

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time
	Time

	13414967
	8
	 1949 
	1
	1
	2
	5017712
	2.96
	/

	331451893
	9
	26459
	1
	1
	2
	5005082
	2.76
	/

	1933146287
	10
	32633 
	1
	1
	7
	30004292
	3.28
	/

	61376888039
	11
	119237
	1
	1
	3
	10421912
	4.50
	/

	221449201327
	12
	 233663  
	1
	1
	5
	20856572
	2.93
	/

	8356391888797
	13
	1993679
	1
	1
	7
	32894522
	4.00
	/

	10503658570897
	14
	1622449
	1
	1
	1
	98492
	3.89
	/

	530802693107327
	15
	16361099
	5
	5
	11
	290440922
	3.66
	/

	1571847149341363
	16
	52290587 
	7
	7
	4
	379270232
	5.63
	/

	30266236030889197
	17
	262157671 
	5
	45
	2
	2645520302
	7.30
	/

	227020160422765063
	18
	920927503
	23
	223
	3
	13333792622
	28.62
	/

	7632766872780422213
	19
	2067929597
	7
	687
	74
	41193373742
	21.16
	/

	28518585380150198561
	20
	8198690527
	30
	1430
	3
	85752258782
	171.77
	/

	549438783354451709261
	21
	32834112247
	17
	4697
	12
	281819986112
	809.52
	/

	1885102352659402618003
	22
	31356944219
	9
	9649
	1
	578883642362
	1827.62
	/

	21852468492088577490449
	23
	206686559659
	31
	29431
	5
	1765822576532
	5153.08
	/


Table 5. Factorization Group 5

	Integer N
	Digits
	Found Divisor
	cID
	ISS
	ISZ
	ICC
	Time A
	Time B

	11427677
	8
	1583
	1
	1
	2
	20492
	1.81
	/

	405031259
	9
	14029
	1
	1
	5
	20009402
	1.34
	/

	1354177351
	10
	27241 
	1
	1
	6
	25023662
	2.03
	/

	61111357501
	11
	123733
	1
	1
	1
	3842
	2.14
	/

	190838622707
	12
	819187  
	1
	1
	8
	35991572
	1.88
	/

	3856534651811
	13
	 1010897
	2
	2
	1
	62329502
	2.98
	/

	15286768369531
	14
	2045713
	1
	1
	2
	5380172
	1.41
	/

	450109181452867
	15
	13700527
	31
	31
	6
	1829576372
	6.94
	/

	1317487523002697
	16
	25232681 
	8
	8
	2
	425022242
	2.46
	/

	31042285010899441
	17
	241950887 
	33
	33
	11
	1972807322
	4.01
	/

	218532124445731211
	18
	238707713
	5
	5
	12
	298219982
	3.53
	/

	8202929148558584683
	19
	2111935009
	40
	680
	11
	40793790962
	111.63
	/

	24120674285926579159
	20
	7437872333
	24
	1264
	4
	75797708432
	218.28
	/

	464395777895275578169
	21
	29317776269
	4
	3884
	12
	233037889742
	715.56
	/

	1789550188834786401307
	22
	54178402379 
	27
	33027
	
	1981611838682
	6229.76
	/

	29891632748859892878863
	23
	130706538707
	8
	174968
	2
	10498025530262
	30481.30
	/
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