
NEW CONTEMPORARY CONJECTURES FOR THE RIEMANN
HYPOTHESIS

Abstract. We will present two new results for the �Dirichlet eta� function
S (s) =

P
n�1

(�1)n
ns

which would lead us to announce some new conjectures
equivalent to that of the Riemann hypothesis.

1. Introduction

The Riemann Hypothesis is a conjecture formulated in 1859 by the mathemati-
cian Bernhard Riemann, according to which the nontrivial zeros of the Riemann
zeta function are in�nite and all have a real part equal to 1=2.
His proof would improve knowledge of the distribution of prime numbers and

open up new areas of mathematics. Riemann�s article (see [4]) on the distribution
of prime numbers is his only text dealing with number theory. He develops the

properties of the zeta function C(s) =
+1P
n=1

1

ns
and proves the prime number theorem

by admitting several results, including what is now called the Riemann Hypothesis.
Hardy then demonstrated that there are in�nitely many zeros on the critical line.
(see [1], [2]), which gives us hope that the RH might be true...
This paper is a continuation of our last "A Contemporary Conjecture for the

Riemann Hypothesis" work already published (see [5]).

Let

S(s) =
+1P
n=1

(�1)n
ns = �

+1P
n=1

(�1)n�1
ns

so
S (s) = � (s) ei�(s)S (1� s)

Remark 1. (Functional equation of Hardy)
We have 8s 2 C such Re (s) 2 ]0; 1[

S (s) = ' (s)S (1� s)

with ' (s) = 2 1�2
s�1

1�2s �
s�1 sin

�
s
2�
�
� (1� s) = � (s) ei�(s).

see [1] & [2]
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2. Preliminary

Proposition 1. Let s = r + ic, so

S =
+1X
n=1

(�1)n e
�i ln(n)c

nr
= C1 � C2

S =
+1X
n=1

(�1)n e
i�n

nr
= R0 + iI 0

and

C =
+1X
n=1

1

ns
=

+1X
n=1

e�i ln(n)c

(2n)
r =

+1X
n=1

ei�n

(2n)
r

C = C1 + C2 = R+ iI

with �n = � ln (n) c,

C1 =
+1X
n=1

1

(2n)
s =

+1X
n=1

e�i ln(2n)c

(2n)
r =

+1X
n=1

ei�2n

(2n)
r = R1 + iI1

C2 =

+1X
n=1

1

(2n� 1)s =
+1X
n=1

e�i ln(2n�1)c

(2n� 1)r =

+1X
n=1

ei�2n�1

(2n� 1)r = R2 + iI2

and

R1 =
+1X
n=1

cos (�2n)

(2n)
r , I1 =

+1X
n=1

sin (�2n)

(2n)
r , R2 =

+1X
n=1

cos (�2n�1)

(2n� 1)r , I2 =
+1X
n=1

sin (�2n�1)

(2n� 1)r

R =
+1X
n=1

cos (�n)

(2n)
r = R1 +R2, I =

+1X
n=1

sin (�n)

(2n)
r = I1 + I2

R0 =

+1X
n=1

(�1)n cos (�n)
nr

, I 0 =
+1X
n=1

(�1)n sin (�n)
nr

, R0 = R1 �R2, I 0 = I1 � I2

Proposition 2. Let s = r + ic = r + i �
ln(2) (since � = ln (2) c)

C1 =
e�i�

2r
C

C2 =

�
1� e

�i�

2r

�
C

S =
�
21�re�i� � 1

�
C

Proof. � = ln (2) c) e�i ln(2)c = e�i�

Therefore,

C1 =
+1X
n=1

e�i ln(2n)c

(2n)
r =

e�i ln(2)c

2r

+1X
n=1

e�i ln(n)c

nr

C1 =
e�i ln(2)c

2r
C =

e�i�

2r
C
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3

C2 = C � C1 = C � e�i�

2r C )

C2 =

�
1� e

�i�

2r

�
C

and
S = C1 � C2 = e�i�

2r C �
�
1� e�i�

2r

�
C =)

S =
�
21�re�i� � 1

�
C

�

3. Our previous contributions

Theorem 1. (Adherent Point and Closure)
Let X be a topological space and A � X be a subset. A point x 2 X is said to be

an adherent point (Closure point) of A if every open neighborhood of x intersects
A. The closure of A, denoted by A, consists of all adherent points of A.

Theorem 2. (Adherent Point and Existence of Convergent Sequences)
Let X be a topological space and A � X be a subset. A point x 2 X is an

adherent point (Closure point) of A if and only if there exists a sequence xn in A
such that

lim
n!+1

xn = x

3.1. The �rst announcement.

Lemma 1. Assuming that there exists an s1 with r1 = Re [s1] 2
�
0; 12

�
and � =

ln (2) c > 0 such that S2 (s1) 2 IR, so
(i) 9V (s1) � C such 8s 2 V (s1)� fs1g, S2 (s) =2 IR
(ii) 9un 2 V (s1)�fs1g such limun = s1 (since s1 2 V (s1)� fs1g with A is the

adherant of A).

Proof. Obvious.
(i) Reasoning by the absurd.
(ii) Using (i) and the last theorem. �

Lemma 2. Let D1 =
�
z 2 C=Re (z) 2 ]0; 1[ ;Re (z) 6= 1

2 and Im (z) 6= 0
	
, so 8s 2

D1
S2 (s) 2 IR, S2 (1� s) 2 IR

Proof. Since the �rst lemma:
Assuming that there exists an s1 with r1 = Re [s1] 2

�
0; 12

�
and � = ln (2) c > 0

such that S2 (s1) 2 IR, so
(i) 9V (s1) � C such 8s 2 V (s1)� fs1g, S2 (s) =2 IR
(ii) 9un 2 V (s1)� fs1g such limun = s1
(since s1 2 V (s1)� fs1g with A is the adherant of A).
un 2 V (s1)� fs1g ) S2 (un) =2 IR
)
�
S (un) ; S (un)

�
is a basis of C

) 9! (an; bn) 2 IR2 such S (1� un) = anS (un) + bnS (un)
S (s) = ' (s)S (1� s)
) S (1� un) = an' (un)S (1� un) + bn' (un)S (1� un)
) [1� an' (un)]S (1� un) =

h
bn' (un)

i
S (1� un)
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)
h
1� an' (un)

i
S (1� un) = [bn' (un)]S (1� un)

) bn' (un)S
2 (1� un) =

h
1� an' (un)

i
jS (1� un)j2

' (s)' (1� s) = 1 8s
) bnS

2 (1� un) = ' (1� un)
h
1� an' (un)

i
jS (1� un)j2

) bnS
2 (1� un) =

h
' (1� un)� an' (un)' (1� un)

i
jS (1� un)j2

' (s)' (1� s) = 1) j' (s)j2 ' (1� s) = ' (s)
) ' (s) = �2' (1� s)
)

bnS
2 (1� un) = jS (1� un)j2

�
' (1� un)� an�2n'2 (1� un)

�
= jS (1� un)j2 ' (1� un)

�
1� an�2n' (1� un)

�
) jbnj = j' (1� un)j

��1� an�2n' (1� un)�� or jS (1� un)j = 0
we have S2 (un) =2 IR) S (un) 6= 0) jS (1� un)j 6= 0
) jbnj = j' (1� un)j

��1� an�2n' (1� un)��
also �n 6= 0 since jS (un)j = �n jS (1� un)j
) jbnj = 1

�n

��1� an�2n' (1� un)��
) b2n�

2
n =

��1� an�2n' (1� un)��2
)

b2n�
2
n = 1 + a

2
n�

2
n � 2an�n cos (�n) (1)

S (1� un) = anS (un) + bnS (un)
) jS (1� un)j2 =

�
a2n + b

2
n

�
jS (un)j2 + anbn

�
S2 (un) + S2 (un)

�
) �2n jS (1� un)j

2
=
�
a2n�

2
n + b

2
n�

2
n

�
jS (un)j2 + anbn�2n

�
S2 (un) + S2 (un)

�
)
jS (un)j2 =

�
a2n�

2
n + 1 + a

2
n�

2
n � 2an�n cos (�n)

�
jS (un)j2+anbn�2n

�
S2 (un) + S2 (un)

�
) 0 =

�
2a2n�

2
n � 2an�n cos (�n)

�
jS (un)j2 + anbn�2n

�
S2 (un) + S2 (un)

�
) an�n

h
2 (an�n � cos (�n)) jS (un)j

2
+ bn�n

�
S2 (un) + S2 (un)

�i
= 0

) an�n = 0 or 2 [an�n � cos (�n)] jS (un)j
2
+ bn�n

h
S2 (un) + S2 (un)

i
= 0

2 [an�n � cos (�n)] jS (un)j
2
+ bn�n

h
S2 (un) + S2 (un)

i
= 0 =)

bn�n

h
S2 (un) + S2 (un)

i
= �2 [an�n � cos (�n)] jS (un)j

2

) b2n�
2
n

h
S2 (un) + S2 (un)

i2
= 4 [an�n � cos (�n)]

2 jS (un)j4

)
�
1 + a2n�

2
n � 2an�n cos (�n)

� h
S2 (un) + S2 (un)

i2
= 4 [an�n � cos (�n)]

2 jS (un)j4

)
h
(an�n � cos (�n))

2
+ sin2 (�n)

i h
S2 (un) + S2 (un)

i2
= 4 [an�n � cos (�n)]

2 jS (un)j4
)
sin2 (�n)

h
S2 (un) + S2 (un)

i2
= [an�n � cos (�n)]

2

�
4 jS (un)j4 �

�
S2 (un) + S2 (un)

�2�
) sin2 (�n)

h
S2 (un) + S2 (un)

i2
= [an�n � cos (�n)]

2
h
2 jS (un)j4 � S4 (un)� S4 (un)

i
) sin2 (�n)

h
S2 (un) + S2 (un)

i2
= � [an�n � cos (�n)]

2
h
S2 (un)� S2 (un)

i2

UNDER PEER REVIEW



5

) [i sin (�n)]
2
h
S2 (un) + S2 (un)

i2
= [an�n � cos (�n)]

2
h
S2 (un)� S2 (un)

i2
)

[an�n � cos (�n)]
h
S2 (un)� S2 (un)

i
= �i sin (�n)

h
S2 (un) + S2 (un)

i
)
[an�n � cos (�n)� i sin (�n)]S2 (un) = [an�n � cos (�n)� i sin (�n)]S2 (un) = Z
as Z = Z so Z = [an�n � cos (�n)� i sin (�n)]S2 (un) 2 R
) �

an�n � e�i�n
�
S2 (un) 2 R

)
S2 (un) = Kn

�
an�n � e�i�n

�
with Kn 2 R
)

Im
�
S2 (un)

�
= �Kn sin (�n)

since limun = s1 & S2 (s1) 2 IR� so
lim [sin (�n)] = sin (� (s1)) = 0
)

� (s1) � 0 [�]
as S (s) = ' (s)S (1� s) & ' (s) = � (s) ei�(s)
) S (s1) = � (s1) e

i�(s1)S (1� s1)
) S2 (s1) = �

2 (s1) e
2i�(s1)S2 (1� s1)

� (s1) � 0 [�]) S2 (s1) = �
2 (s1)S

2 (1� s1)
so
S2 (s) 2 IR, S2 (1� s) 2 IR
Another proof :
If lim an = a and lim bn = b, and as we have

bnS
2 (1� un) = jS (1� un)j2

�
' (1� un)� an�2n'2 (1� un)

�
with �n = j' (un)j
where n �! +1 we would have
bS2 (1� s1) = jS (1� s1)j2

h
' (1� s1)� a' (s1)' (1� s1)

i
)

bS2 (1� s1) = jS (1� s1)j2
�
' (1� s1)� a�2'2 (1� s1)

�
with S (s1) = ' (s1)S (1� s1) = �ei�(s1)S (1� s1)
) S2 (1� s1) = ��2e�i2�(s1)S2 (s1) (or � = 0)
(S (s1) 6= 0, � 6= 0)

)

8<: b��2e�i2�(s1)S2 (s1) = jS (1� s1)j2
�
' (1� s1)� a�2'2 (1� s1)

�
or
S2 (s1) = S

2 (1� s1) = 0
Moreover
S2 (1� s1) = ��2e�i2�(s1)S2 (s1) and S2 (s1) 2 IR) jS (1� s1)j2 = ���2S2 (s1)
) �be�i2�(s1) = ' (1� s1)� a�2'2 (1� s1) or S2 (s1) = S2 (1� s1) = 0
' (s1) = �e

i�(s1) and ' (s1)' (1� s1) = 1
) �b�2 = ' (s1)� a�2 or S2 (s1) = S2 (1� s1) = 0
) (a� b) �2 = ' (s1) or S2 (s1) = S2 (1� s1) = 0
(a� b) �2 = ' (s1) = �ei�(s1) )

(ja� bj � = 1 and � (s1) � 0 [�]) or � = 0
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) S2 (1� s1) = ��2e�i2�(s1)S2 (s1) = ��2S2 (s1) 2 IR or S (s1) = 0
Conclusion: S2 (s1) 2 IR) S2 (1� s1) 2 IR or S2 (s1) = S2 (1� s1) = 0 �

Remark 2. It�s obvious if s 2 IR, S (s) 2 IR and S (1� s) 2 IR.

Lemma 3. Let D = fz 2 C=Re (z) 2 ]0; 1[g, so 8s 2 D
S2 (s) 2 IR, S2 (1� s) 2 IR

Proof. Since D �D1 =
�
z 2 C=Re (z) = 1

2 and Im (z) 6= 0
	

Re (s) = 1
2 ) 1� s = s

so S (1� s) = S (s) = S (s)
and S2 (s) 2 IR, S2 (1� s) 2 IR �

Claim 1. Let D = fz 2 C=Re (z) 2 ]0; 1[g, so 8s 2 D
S (s) 2 IR, S (1� s) 2 IR
S (s) 2 iIR, S (1� s) 2 iIR

Proof. S (s) 2 IR or S (s) 2 iIR) S2 (s) 2 IR) � (s) � 0 [�]
S (s) = ' (s)S (1� s) = �ei�(s)S (1� s1) = ��S (1� s1) �

3.2. Other results. Let be S = S (s) and S0 = S (1� s)such S2 (s) 2 IR
so C1 = e�i�

2r C, C2 =
�
1� e�i�

2r

�
C and S =

�
21�re�i� � 1

�
C

with C2 = C � C1, S = C1 � C2
&
C 01 =

ei�

21�rC
0, C 02 =

�
1� ei�

21�r

�
C 0 and S0 =

�
2rei� � 1

�
C 0

with C 02 = C
0 � C 01, S0 = C 01 � C 02

as 1� s = r0 + ic0 = 1� r� ic, � = ln (2) c) r0 = 1� r , c0 = �c) r0 = 1� r ,
�0 = ��

Remark 3. Let be S = S (s) such S2 (s) 2 IR, so
1) 2C1C 01 = CC

0

2) C1C
0
= 21�2rCC

0
1

3) 2C1C
0
1 = e

�i2�CC
0

4) 2C1C 02 = SC
0

5) 2C2C 02 = SS
0 2 IR

6) SC 01 = CC
0
2 (& S

0C1 = C
0C2)

Proof. 1) C1C 01 =
e�i�

2r C
ei�

21�rC
0 = CC0

2

2) C 01 =
ei�

21�rC
0 ) C 0 = 21�re�i�C 01

C1C
0
=
�
e�i�

2r C
��
21�re�i�C 01

�
C1C

0
=
�
e�i�

2r C
��
21�rei�C 01

�
= 21�2rCC

0
1

3) 2C1C
0
1 = 2

�
e�i�

2r C
��

ei�

21�rC
0
�
= 2 e

�i�

2r C
e�i�

21�rC
0

2C1C
0
1 = e

�i2�CC
0

4) If S 2 IR we have S = 2C1 � C = 2C1 � C = S 2 IR
=) 2C1 + C = 2C1 + C
=) 2C1C

0 + CC 0 = 2C1C
0 + CC 0

=) 2C1C
0 + CC 0 = 2C1C

0 + 2C1C
0
1
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=) 2C1C
0 � 2C1C 01 = 2C1C 0 � CC 0

=) 2C1 (C
0 � C 01) =

�
2C1 � C

�
C 0

=) 2C1C
0
2 = SC

0 = SC 0.
If S 2 iIR we have S = 2C1 � C = C � 2C1 = �S 2 iIR
=) 2C1 � C = �2C1 + C
=) 2C1C

0 � CC 0 = �2C1C 0 + CC 0
=) 2C1C

0 � CC 0 = �2C1C 0 + 2C1C 01
=) 2C1C

0 � 2C1C 01 = �2C1C 0 + CC 0
=) 2C1 (C

0 � C 01) =
�
�2C1 + C

�
C 0

=) 2C1C
0
2 = �SC 0 = SC 0.

5) 2C1C 02 = SC
0 ) 2 (S + C2)C

0
2 = SC

0

) 2SC 02 + 2C2C
0
2 = SC

0 ) S (C 0 � S0) + 2C2C 02 = SC 0
) SC 0 � SS0 + 2C2C 02 = SC 0
) SS0 = 2C2C

0
2.

6) is 4)+5) �

Lemma 4.
S2 (s) 2 IR) C2 (s)C2 (1� s) 2 IR

Proof. Since the last Claim 8s 2 D = fz 2 C=Re (z) 2 ]0; 1[g

S (s) 2 IR, S (1� s) 2 IR
S (s) 2 iIR, S (1� s) 2 iIR

=) SS0 = S (s)S (1� s) 2 IR
and from the last Remark 5)
2C2C

0
2 = SS

0 2 IR. �

3.3. The second announcement.

Claim 2.
9s0=S (s0) 2 iIR() 9s1 2 (r0; s0] =S (s1) = 0

such r0 = Re (s0) 2
�
0; 12

�
[
�
1
2 ; 1
�
and (r0; s0] = fr0 + ic 2 C=0 � c � c0g

Proof. Assuming that
9s0 = r0 + ic0 such S (s0) 2 iIR�
with r0 2

�
0; 12

�
Let

c0 = min
�
c 2 IR+=9n 2 IN�; Sn (r0 + ic) 2 iIR�

	
(�)

so 9m 2 IN�; Sm (s0) 2 iIR� with s0 = r0 + ic0 (c0 � c0)
) S2m (s0) 2 IR��
without forgetting S2m (r0) 2 IR+� ,
since

S (r) =
X
n�1

(�1)n

nr
2 IR; 8r 2 IR+�

Let now S2m (s) = R (s) + iI (s)
we have R (s0) � 0 and R (r0) � 0, so
9s1 = r0 + ic1 2 (r0; s0) such R (s1) = 0
) S2m (s1) 2 iIR with 0 � c1 � c0
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0 � c1 � c0 ) S2m (s1) =2 iIR� (since (�))
S2m (s1) 2 iIR & S2m (s1) =2 iIR� ) S2m (s1) = 0

) S (s1) = 0

Conclusions:
- 9s0=S (s0) 2 iIR) S (s0) 2 iIR� or S (s0) = 0) 9s1 2 (r0; s0] =S (s1) = 0:
- The other implication is obvious:
9s1 2 (r0; s0] =S (s1) = 0) 9s1 2 (r0; s1] =S (s1) = 0
with s1 = s0 S (s0) = S (s1) = 0) 9s0=S (s0) 2 iIR. �

4. News contributions

Corollary 1.

(9m0 & 9s0 such Sm0 (s0) 2 iIR)() 9s1 2 (r0; s0] =S (s1) = 0
such r0 = Re (s0) 2

�
0; 12

�
[
�
1
2 ; 1
�
and (r0; s0] = fr0 + ic 2 C=0 � c � c0g

Proof. Same proof as the previous one. �

Conjecture 1. 8r 2 ]0; 1[ and s = r + ic

r 6= 1

2
) Re [S (s)] 6= 0

Re [S (s)] = 0 =) r =
1

2

Proof. Re [S (s)] = 0 =) S (s) 2 iIR =) 9s1 2 (r; s] =S (s1) = 0 (according to the
last Claim)
and according to the Riemann hypothesis:
S (s1) = 0 =) Re (s1) =

1
2

=) r = 1
2

since s1 2 (r; s] & s = r + ic. �

Conjecture 2.

( r =
1

2
& �

�
1

2
+ ic

�
= (2k + 1)� ) =) S

�
1

2
+ ic

�
= 0

Proof. Assuming that
9s = 1

2 + ic such �
�
1
2 + ic

�
= (2k + 1)� & S

�
1
2 + ic

�
6= 0

S (s) = ' (s)S (1� s), 1� s = s, ' (s) = �ei�(s) = �1
=) S (s) = �S (s)
=) S (s) 2 iIR�
=) S2 (s) 2 IR��
8r 2

�
0; 12

�
, S (r) 2 IR� =) S2 (r) 2 IR+�

Let now S2 = R+ iI
we have R (s) � 0 and R (r) � 0, so
9s0 = r0 + ic0 2 (r; s) such R (s0) = 0
=) 9s0 = r0 + ic0 such r0 2

�
0; 12

�
& S2 (s0) 2 iIR

since r0 + ic0 2
�
r; 12 + ic

�
=) r < r0 <

1
2

we have seen in the last corollary that
(9m0 & 9s0 such Sm0 (s0) 2 iIR)=) 9s1 2 (r0; s0] =S (s1) = 0
with m0 = 2 & s0 = r0 + ic0
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s1 2 (r0; s0] =) Re (s1) = r0 2
�
0; 12

�
Absurd according to the Riemann hypothesis.
=) S

�
1
2 + ic

�
= 0. �

5. Conclusions

We have two new conjectures based on the Riemann hypothesis, and so this is
a new way to see if this hypothesis is correct, and if not, we also have a useful new
method for determining a counterexample.
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