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NEW CONTEMPORARY CONJECTURES FOR THE RIEMANN
HYPOTHESIS

ABSTRACT. We will present two new results for the “Dirichlet eta” function

n
S(s) =2 n>1 (7n13) which would lead us to announce some new conjectures
equivalent to that of the Riemann hypothesis.

1. INTRODUCTION

The Riemann Hypothesis is a conjecture formulated in 1859 by the mathemati-
cian Bernhard Riemann, according to which the nontrivial zeros of the Riemann
zeta function are infinite and all have a real part equal to 1/2.

His proof would improve knowledge of the distribution of prime numbers and
open up new areas of mathematics. Riemann’s article (see [4]) on the distribution
of prime numbers is his only text dealing with number theory. He develops the

+oo 7
properties of the zeta function C(s) = > — and proves the prime number theorem
n

by admitting several results, includingnwhat is now called the Riemann Hypothesis.
Hardy then demonstrated that there are infinitely many zeros on the critical line.
(see [1], [2]), which gives us hope that the RH might be true...

This paper is a continuation of our last "A Contemporary Conjecture for the
Riemann Hypothesis" work already published (see [5]).

Let . N
S(s)= 5 G =- 5 S
S0 " "

S(s)=p(s)e?®)S(1—5s)

Remark 1. (Functional equation of Hardy)
We have Vs € C such Re (s) € ]0,1]

S(s)=@(s)S(1—s)

with ¢ (s) = 222227 Lsin (57) T (1 — s) = p (s) ().
see [1] & [2]
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2. PRELIMINARY

Proposition 1. Let s =1+ ic, so
—+o0

n €
S = > (-1 ——=C1-0C
n=1
+ (%o
S = S
= Z (-1) e +i
n=1
and
+oo 721n (n)e +oo eian
C = =
Z ns Z (2n)" 7; (2n
Cc = Cl +Cy = R + 1l
with a, = —In(n) ¢,
+oo +oo —i1n(2n)c +00  iaan
1 e e
Clzz s:Z T :Z r:R1+7:I1
n=1 (277,) n=1 (27’L) n=1 (277,)
+oo +oo —iIn(2n—1)c +oo 102y 1
1 e e
Co=) ———=2_ = 7 =Ry +ilp
— (2n—1) — (2n—1) —~ (2n—1)
and
R = +§ cos (aap) 7 f sin (aap,) R — +ZOO cos (agn—1) 7 — +§ sin (agp—1)
1 - ~ (Zn)r y 41 — —~ (27’7,), ’ 2 — —~ (2n _ 1)r s 42 — ~ (2n _ 1)7
R — icos(an):Rl+R2 l_ZJri:wsin(ozn)_1_1_’_12
n=1 (2n)r n=1 (2’)’L)
+o0 +o0 .
R = Cpyreostan) NS Cqyesin(an) o p g -
- Z ( ) nr 9 - Z ( ) nr ) - 1 25 — 41

n=1

Proposition 2. Lel s =71 +ic=71+ i (2

n=1

—i

(since a =1n (2) c)

e
o = S-c
e—ia
e = (1-5 )c
S = (21 r 7za o )C
Proof. a=1n(2)c = e 1n()e = ¢-ia
Therefore,
10 —iln(2n)c —iln(2)c £ _—iln(n)c
Cl _ Z e 5 _ o (& - (& _
n=1 ( TL) n=1 "
efiln(Q)c e—ta
o= —c="c
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Co=C—-C=C-5"C=
e—i(x
em(1-55) e
and

S=C-C=5"C—(1-5")C=

S=@2""e"-1)C

3. OUR PREVIOUS CONTRIBUTIONS

Theorem 1. (Adherent Point and Closure)

Let X be a topological space and A C X be a subset. A point x € X is said to be
an adherent point (Closure point) of A if every open neighborhood of x intersects
A. The closure of A, denoted by A, consists of all adherent points of A.

Theorem 2. (Adherent Point and Existence of Convergent Sequences)

Let X be a topological space and A C X be a subset. A point x € X is an
adherent point (Closure point) of A if and only if there exists a sequence x, in A
such that

lim z, =z
n—-+4oo

3.1. The first announcement.

Lemma 1. Assuming that there exists an s; with r1 = Rel[s1] € ]O, %[ and o =
In(2) ¢ > 0 such that S*(s1) € IR, so

(i) 3V (s1) C C such Vs € V (s1) — {s1}, S?(s) ¢ IR

(ii) Fu, € V (s1) — {s1} such limu,, = s (since s1 € V (s1) — {s1} with A is the
adherant of A).

Proof. Obvious.
(7) Reasoning by the absurd.
(7) Using (i) and the last theorem. O

Lemma 2. Let Dy = {z € C/Re(z) €]0,1[,Re(2) # 1 and Im (2) # 0}, so Vs €
Dy
S%(s)e IR< S*(1—s)€ IR

Proof. Since the first lemma:

Assuming that there exists an s; with 71 = Re[s1] € ]0,1[ and @ =In(2)¢ > 0

such that 5% (s1) € IR, so

(1) 3V (s1) C Csuch Vs € V (s1) — {s1}, S*(s) ¢ IR

(#4) Jup, € V (s1) — {s1} such limu,, = 51

(since s; € V (s1) — {s1} with A is the adherant of A).

up €V (s1) — {s1} = 5% (u,) ¢ IR

= <S (up),S (un)> is a basis of C

= 3! (an,b,) € IR? such S (1 — u,) = a,S (uy) + b,S (uy,)
S(s)=¢(s)S(1—s)

= S (1 —un) = anp (un) S (1 —upn) + bnip (un)S (1 — un)
= [1 = anp ()] S (1= un) = [bup ()| ST = u)
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= 1= anp ()| ST = ) = [bagp (un)] S (1 = )

= e () S (1= 1) = [1 = anip (ua)] 1S (1 = )
p(s)p(l—s)=1Vs

= b0 (1= ) = @ (1= un) |1 = anip ()] IS (1 = un)|
= b0 (1= un) = [0 (1 = tn) = anip (wa)ip (1 = un) | 1S (1 = wn)

() p(l—s)=1=[p(s))?p(1—5)=p(s)
= ¢ (s) = p*p (1 —s)
=

2

bnS2 (1-wu,) = |S (1 —uy) ? o (1 —u,)— anpi<p2 (1- un)]
S

|
= | (1 - un>|2 90(1 - un) [1 - anpi(p (1 - un)]
= |bn] = o (1 — uy)| |1 —anpie(l— un)’ or [S(1—wu,)| =0
we have S? (u,) ¢ IR = S (up) #0=|S (1 —uy,)| #0
= [bal = o (1 = up)| [1 = anpp (1 = up)|
also Pn 7é 0 since |S(u’ﬂ)| = Pn |S(1 - un)‘
= |b,| = i |1 —anple (1 —un)|

2
= bip? = |1 —anpe(l— un)’
=

brpy =1+ anph = 2anp, cos (6,) (1)

S(1—up) =anS (uy) + b,S (uy)
= 1S (1= )l = (a2 + 62) 15 (un)” + @nbn (52 (wn) + 52 (un) )

= 218 (1= un)® = (22 +6202) 1S () + anbp? (52 (un) + 5 (un) )
=
1 ()l = (@202 + 1+ a2p% = 2a0p, <08 (0)) | (1) +anbup? (5° (un) + 57 (un))

= 0= (2022 — 2anp,, 05 (0a)) | ()| + anbug (S (un) + 5 (un)

= anpy [2(anp,, = €08 (0)) 1S () + bup, (S2 (wn) + 57 (un) )| =0

= anp, = 0 or 2[anp, — cos (0n)] 1S (wn)|> + bup,, [52 (tn) +W] =0
2 [np, — <08 ()] ()| + bup, [S? (un) + 57 ()| = 0 —

bup [S2 () + 57 (un) | = =2 [anp,, — cos (6,)] 1S (un)|?

= 1202 52 () + 57 ()] = 40, — cos (6,019 (u)

= (1+ a2p2 — 2a,p,, cos (0,,)) [52 (un) + S2 (un)] - A [anp,, — cos (0,))7 | (un)|*

= [(@npn 03 (0,))° + sin? (0,)] [52 (1) + 57 ()| = dlanp, — cos (8] |5 (u)
=

sin? (6,,) [52 (up) + 52

—~

2 2
W] = fanpa = cos (@) 11 @l = (57 () + 570 |
= sin® (6,) [52 (up) + 52 (un)} * _ lanp, — cos (0] [2 1S (u)|* — 8% (uy,) — 53 (un)]
= sin? (0,) [ 52 () + 52 ()] = — lanp,, — cos (0,)]* [$2 () — 57 ()]
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= [isin (0,)]? [52 (up) + 52 (un)} * — lanp, — cos (0,2 [52 (up) — 52 (un)} i
=

[anp, — cos (6,)] [52 (1) — 52 (un)} — +isin (0,) [52 (1) + 52 (un)]
=
[anp,, — cos (0,) Fisin (0,)] 52 (up) = [anp,, — cos (0,) Eisin (0,)] 52 (u,) = Z
as Z = Z 5o Z = |anp,, — cos (0,) Fisin (0,)] S? (u,) € R

=
(anp, — ") 52 (u,) € R
=
52 (up) = Ky, (anp,, — e¥i)
with K,, € R
=

Im [S? (u,)] = £K,, sin (0,,)
since limu,, = s; & S? (s1) € IR* so
lim [sin (6,,)] = sin (0 (s1)) =0

0(s1)=0 [n]
as S (s) = ¢ (s)S (1 —5) & p(s) = p(s) e
s1) = p(s1)e?CVS (1 - s9)
(s1) = p? (51) P01 S2 (1 = s1)

SO
S?2(s)eIR< S*(1—s)€ IR

Another proof :

If lima,, = a and limb,, = b, and as we have

bnS? (1 —uy) =[S (1 - un)‘Q [‘P (1 —un) — anpigoz (1- un)}

with p,, = ‘90 (un)]

where n — +00 we would have

b5 (1-s1) =15 (1= 1) [0 (1= 51) = ag (s1)p (1= 51)]
=
bS* (1—s1) =[S (1= s1)|* [ (1 = s1) — ap¢” (1 — 1)]

with S (s1) = ¢ (51) S (1 — 51) = pe®G1) S (1 — 51)

= 52 (1 —s1) = p2e720(51) 82 (57) (or p = 0)
(S(s1) #0< p#0)
bp~2e~120(s1) 62 (51) = |S (1 — s1)|° (o (1= s1) — ap?? (1 — 51)]
=< or
S5%(s1)=5%(1-51)=0
Moreover
S2(1—s1) = p 2206162 (51) and S? (s1) € IR = |S (1 — 51)]* = £p 252 (1)
= +be20(51) = o (1 — 51) —ap?p® (1 —51) or S (51) = 5% (1 —51) =0
o (51) = pe) and g (s1) i (1 — s1) = 1
= +bp? = ¢ (s1) —ap® or S%(s1) =S?(1—51) =0
= (atb)p?=¢(s1)or S?(s1)=5%(1—51)=0
(a£b)p* =@ (s1) = pe?C1) =

(latblp=1and 0(s1)=0[x]) or p=0
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= S2(1—s1) =p 2e 2001) 82 (51) = p=252% (s;) € IR or S (51) =0
Conclusion: S%(s;) € IR= S?(1 —s1) € IRor S?(s1) =8?(1—5)=0 O
Remark 2. It’s obvious if s € IR, S(s) € IR and S(1 —s) € IR.
Lemma 3. Let D ={z € C/Re(z) €]0,1[}, so Vs € D
S%(s)eIR< S*(1—s)€ IR
Proof. Since D — Dy = {z € C/Re(z) = 1 and Im(z) # 0}
Re(s)=1=1-s=3

s0S(1—s5)=8(3)=5(s)
and S?(s) € IR S?(1—s) € IR O

Claim 1. Let D ={z € C/Re(z) €]0,1[}, so Vs € D
S(s) € IR&S(1—s)elR
S(s) € IR S(1—s)€ilR
Proof. S(s) € IR or S(s) €ilR= S?(s) € IR= 0(s)=0]n]
S(s) =@ (s)S(1—s)=pe?®)S(1—s51)==4pS(1—s1) O
3.2. Other results. Let be S = S (s) and S’ = S (1 — s)such S?(s) € IR
S0 C1 = 5°C, Gy = (1= 5% ) Cand § = (217ei 1) C
WitthZC*Cl,S:CH*CQ
&
Cf = 50", Gy = (1= 55 ) € and §' = (27€™ — 1) C"
with C, =C' - C1, S'=C] - C},
asl—s=r'+id=1-r—ic,ca=InQ)c=r=1-r,d=—c=>r"=1-r,

o = —a

Remark 3. Let be S = S (s) such S?(s) € IR, so
1) 2C,C = CC
2) C,C" =21=2rCC,
3) 2C,C, = e~22CC'
1) 2C:C} = SC
5) 2C5Ch — SS' € IR
6) SC!, = CC, (@ 5’01 —C'Cy)

Proof. 1) 0101 o=
)Cl 21 TC/:>C/_21 T —mzc/

- (5-0) (s=v)
T = ( C) (21reCy) = 22T
8) 2010, =2 (5°C) (55:0") = 2552 O
20,C, = e~ 2°CC -
4)If S € IR we have S = 2Cy —C =20, ~C =S € IR
= 204 —‘rCiQCl —|—£J
— 20,C" + CC' = 2C,C" + CC
— 20,0 + CC' = 20,C" +2C4C}
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— 2010/ — 2010{ = 2610/ — 60/

= 2C, (Cl — Oi) = (261 —6) c’

— 20,C) = 5C" = SC.

If S €iIR we have S =20, —C =C —2C, = —-S €ilR
= 2C4 —62—261+C

= 2C,C' - CC' = =2C,C" +CC’

— 2010/ — 60/ = —2610/ + 2010{

= 2C,C" — 20101 = —2610/ + cc’

= 204 (Cl — Ci) = (—261 —l—é) c’

— 2010} = —5C" = SC.

5) 20,0 = SC' = 2(S + Cs) C = SC’

= 25C) + 2050} = SC' = § (C" — §') + 205CY = SC”
= SC' — S5 +2C,C% = SC’

= §5' = 205C,.

6) is 4)+5)

Lemma 4.
S%(s)€IR= Cy(s)Ca(1—s) € IR
Proof. Since the last Claim Vs € D = {z € C/Re(z) € ]0,1[}
S(s) € IR S(1—-s)elR
S(s) € iIR< S(1—s)€ilR
= 55" =5(s)S(1—s)€IR

and from the last Remark 5)
20,C5 = 85" € IR.

3.3. The second announcement.

Claim 2.
380/5(80) € ilR <= ds; € (7"0,50] /S(Sl) =0
such rg = Re (so) € ]0,2[U]3,1[ and (ro, so] = {ro +ic € C/0 < ¢ < co}

Proof. Assuming that
38’ =" +ic such S (s') € il R*
with 7/ €]0, 3|
Let
co =min {c € IR /In € IN*,S" (+' +ic) € ilR"} (%)
so Im € IN*,S™ (s9) € il R* with sg =1’ +icg (co < ')
= §2m (S(]) c IR;
without forgetting S?™ (') € IR} ,
since
(_1)71»
S(r)=> +——€lIR, VreIR}
n>1
Let now S?™ (s) = R (s) + il (s)
we have R (sp) < 0 and R (') > 0, so
sy =71 +icy € (1, 50) such R(s1) =0
= §2™ (s1) € ilR with 0 < ¢1 < ¢
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0<cy <co= S?M(s1) ¢ ilR, (since (x))
S*m(s) € IR & S®™ (s1) ¢ iR, = S*™ (s1) =0
Conclusions:
- 3s0/S (s9) € iR = S (sg) € iIR* or S (s9) =0 = 3s1 € (10, 50] /S (s1) = 0.
- The other implication is obvious:
sy € (ro, 0] /S (s1) =0 = 3s1 € (ro,51] /S (s1) =0
with s1 =59 S (s0) =5 (s1) = 0= 3s0/S (s0) € iIR. O

4. NEWS CONTRIBUTIONS
Corollary 1.
(Img & Jsg such S™° (sg) € iIR) <= Is1 € (9, S0] /S (s1) =0
such 1o = Re(sg) € ]0,%[U]%,1[ and (ro, s0] = {ro+ic € C/0 < c < ¢y}
Proof. Same proof as the previous one. O

Conjecture 1. Vr € 0,1 and s =+ ic
1
ro# §:>Re[S(s)]7é0
1
Re[S(s)] = O=>r=§
Proof. Re[S(s)] =0= S(s) € iIR = Is1 € (r,8] /S (s1) = 0 (according to the
last Claim)
and according to the Riemann hypothesis:
S(s1)=0=>Re(s)) =12
=r=1

2
since 1 € (r,8] & s =r +ic. O

Conjecture 2.
1 1 1

Proof. Assuming that
Js =1 4icsuch 0 (5 +ic) = (2k+1)7 & S (5 +ic) #0
S(s)=¢(s)S(1—5),1—5=3, @(s) = pe?s) = -1
= S (s) =—-S5(s)
= S(s) € iIR*
= S?(s) € IR,
vrel0,5[, S(r) € IR* = 5(r) € IR
Let now S? = R+l
we have R (s) <0 and R(r) > 0, so
dsg =19 +ico € (r,s) such R (sp) =0
= dsg = rg + icg such r¢ € ]0,%[ & S?%(sp) €ilR
since rg + ico € (7“,%—1—2'0) —r<ry< %
we have seen in the last corollary that
(Img & Jsg such S™0 (sg) € tIR)=— sy € (ro, 0] /S (s1) =0
with mg =2 & sg = rg + ico
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9
S1 € (’I"Q,So] — Re (51) ENOES ]0, %[
Absurd according to the Riemann hypothesis.
= S (5 +ic) =0. a

5. CONCLUSIONS

We have two new conjectures based on the Riemann hypothesis, and so this is
a new way to see if this hypothesis is correct, and if not, we also have a useful new
method for determining a counterexample.
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