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ABSTRACT 

	This paper establishes the optimality conditions for convex optimization in -spaces. We prove that if a lower semi-continuous function    is Lipschitz continuous in an -space , then it is weakly lower semi-continuous and must attain a unique global minimizer for the convex optimization problem  on a sequentially bounded convex constraint set . We also provide further necessary conditions for optimality using the concepts of compactness and coercivity of semi-continuous functions on sequentially bounded domains. Additionally, we prove the existence of minimizers using the concepts of Gateux and Frchet differentiability
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1. INTRODUCTION 
A lot of studies involving convex optimization have been conducted over a long period of time with interesting conditions for optimality obtained. Alexanderian [1] conducted a study on convex optimization in Hilbert spaces, focusing on determining minimizers for convex programs in such spaces. The study used optimization tools involving lower semi-continuous functions and convex functionals, and applied the generalized Weierstrass Theorem to present conditions required for minimizers to be attained for Hilbert space convex problems. Since this assertion holds for a reflexive space such as  which is a Hilbert space, it would be interesting to see whether it holds for general -spaces, where 1 ≤ p < ∞. This study examined the applicability of Alexandrian's findings to general -spaces and sought to discuss properties of convex optimization in -spaces.
Houska and Chachuat [8] dealt with non-convex optimization problems and used a complete-search algorithm to identify feasible solutions. Bay, Grammont, and Maatouk [3] formulated interpolation problems as convex programs governed by linear constraints in Hilbert spaces. They developed an algorithm that approached a constrained interpolating function through the convergence of approximate solutions. However, their study was limited to inner product norms, whereas in the current research, the norms were defined as -norms. This change in norm structure provided a new perspective on the behavior of the functions representing the optimization problems and potentially offered new insights into determining solutions for these problems.

Okelo [12] conducted a study on optimization in Hilbert spaces, showing that if a function is weakly sequentially lsc, then the function  attains a minimizer on the convex set . The study also established that if  is closed, then the optimization problem  admits at least one global minimizer. Offia [11] minimized COPs operating on infinite-dimensional Hilbert spaces using  functions. However, none of these studies dealt with convex optimization in -spaces.

 Peypouquet [13] studied convex optimization in normed spaces, particularly Banach spaces, characterizing properties such as topological duals and linear functionals in these spaces. Devore and Temlyakov [5] examined the application of convex optimization in Banach spaces using interior point methods and investigated recent advances in structural optimization. However, neither of these studies considered convex optimization in -spaces. Unser [14] worked on COPs expressing the solutions as component sums in Banach spaces, regularizing the COPs through the penalization of norms of the minima.
Therefore, the current paper aimed to investigate convex optimization in -spaces and address the gap left by Peypouquet and other researchers who established optimality conditions in complete normed spaces. We have explored the conditions for convex optimization in -spaces, taking into consideration the underlying -norm structures and the range of p, i.e., 1 ≤ p < ∞.

2. PRELIMINARIES
In this section, useful preliminary results used in later discussion are stated and key concepts are defined. We start by defining a special type of Banach space referred to as the −space. 
Definition 2.1 : Let  be a measure space.   For a number  an Lp space which consists of measurable functions is defined as 
 
The Lp−norm of  is defined by 
Now we proceed to define a global minimizer and a local minimizer.

Definition 2.2 [12]
A point  is termed as a global minimizer of the program  for, if  for all  and.

Definition 2.3 [12]
A point is termed as a local minimizer of the program , for , if there exists  such that for all  whenever satisfies.

Theorem 2.4 [2]
Let be convex on the convex set . Given that the local minimum for  over  is , then  is also the global minimum of  over .

Proof:
If we set a local minimum for to be at  it means that  throughout the neighborhood of q ∈ 𝓠. Suppose a positive number p satisfies and there exists  that satisfies  for all  where  Now, . Therefore,  Thus, by Jensen's inequality, we have . Hence,  implying that the minimum  is global.

We now define Gateux differentiability and Fréchet differentiability.

Definition 2.5 [4]
Let  be an -space. Suppose  is open. Then  is Gâteaux differentiable at  if for all for all . Here,  is termed as Gateux -variation of  with respect to .

Definition 2.6 [4] 

A function from a subset  of an Lp -space  is Fréchet differentiable at  if a bounded operator exists that satisfies. We call ) Fréchet derivative of  with respect to .
3. MAIN RESULTS
Now we give the main results in which we have presented the requirements necessary for convex optimization in -spaces. We begin by showing that if a function in a strongly sequentially bounded convex sub-space of a convex -space taking a convex closed set to the extended real line is Lipschitz continuous and , then it must attain minimizers in its domain.
Proposition 3.1  Let the sub-space  of a convex -space  be strongly sequentially bounded. If a function where  is a convex closed set, is Lipschitz continuous in , then  is lower semi-continuous  and attains a minimizer on .
Proof. Let   be a sequence converging strongly to . Since  is bounded (from hypothesis), a subsequence  of  exists, converging strongly to . The closure of  implies that  Now, since  is Lipschitz continuous and  converges to , we have  Clearly, is   in . We proceed to show that a minimizer exists in  Given that the sequence  is convergent, we have  for each . This shows that  is minimized on  by . Since  is strongly sequentially bounded and closed, there exists a subsequence  of  converging strongly to . Furthermore, if  is a minimizer on , since  is lsc in , we obtain  Therefore,  is the required minimizer on . 
In the following lemma we characterize the solvability property of a convex optimization problem in an -space with a weakly lower semi-continuous objective function.
Lemma 3.2 Let  be an -space and  be a convex set. Assume a function  in  satisfying  is weak lower semi-continuous (w-lsc) and coercive. If  is a convex optimization problem, then attains a solution .

Proof. Suppose and assume  minimizes a convergent sequence in G, with as  Since  is coercive and, then  is a bounded sequence. Therefore, there exists strongly. Furthermore, since  is weakly lower semi-continuous,  Hence, .
The next result proves that if a convex function is coercive and weakly lower semi-continuous then it attains a unique global minimizer.	
Theorem 3.3 Suppose a finite function  is convex and coercive in an -space . Assume that  is weak lower semi-continuous (w-lsc). If  is a convex optimization problem, then attains a solution . Furthermore, strict convexity in θ guarantees a unique solution .

Proof. Let  be a convex optimization problem. Since  is lsc, convex and coercive (from hypothesis), then as for all  (by Lemma 3.2). Thus,  attains an optimal solution  To prove the uniqueness of this solution, assume are two optimal solutions for the unconstrained convex optimization problem  Then we have . This is a contradiction. Thus, .

Theorem 3.4 Let a function  in an -space   be Gateaux-differentiable over a convex set . If the Gateaux-derivative is given by for , then  for all  is necessary for  to minimize .

Proof. Let  minimize , then  for all , . Hence,  Therefore, . Now, since  is convex, we have:




So,

     .


The findings in the following result show the conditions for existence of minimizers in sequentially bounded and compact regions.
Proposition 3.5 Let G be a sequentially bounded and compact set. Let  be an lsc function in an -space . If the convex function  is compact, then there is a local minimizer  of 

Proof. Suppose  Since  is bounded, there exists  As  becomes sufficiently large, we have , implying that  is in a compact set. Since the bounded sequence  is compact, there exists  tending to  for some . Since is , we have  showing that the global minimizer of  is . Hence,  is also the local minimizer because  is convex.
In the next theorem we have proved that a closed and convex lower semi-continuous function on a a sequentially bounded compact set attains minimizers for a convex optimization problem.
Theorem 3.6 Let G be a sequentially bounded and compact set. Let   be an lsc function in an -space . If satisfies the compactness and convexity conditions, then the set of all local minimizers of  is compact.

Proof. Given that the set of constraints  is sequentially bounded and compact, then by Proposition 3.5 and convexity of , local minimizers of  exist and they lie in the level set  This shows pre-compactness. It now suffices to prove the closedness property. Since  is  then for all  in the closure of , we obtain:
.
The next proposition shows a condition for optimality in convex optimization using the notion of Frchet-differentiability.
Proposition 3.7 Let  be an -space and  be a convex function from a convex set  to the extended real line  If  is Fréchet-differentiable, then it satisfies 

Proof. If ), define linear functionals in  such that and :

 
 

Thus, as . This shows that  in , hence 	
The following theorem proves  the classical result that for convex objective functions every local minimizer is a global minimizer holds in -spaces.
Theorem 3.8 Let the set  be a convex constraint set for the convex optimization problem  If a function in an -space  is convex, then every single local minimum forms a global minimum, and moreover,  forms a minimizer for  if and only if 

Proof. Assume that  minimizes ) locally and not globally. So, there exists  such that  Convexity of  yields
 for all .
Also, claiming convexity of , we deduce ) for  as . This contradicts the assumption that  minimizes  strictly locally. Hence,  is a global minimizer.

Now, suppose  Then, :




showing that is a global minimizer.

Conversely, assume  minimizes  globally and let. Then ), implying that  is not a minimizer. This is a contradiction. Hence, 	

4. Conclusion
We have discussed the conditions for convex optimization in -spaces. We have proved that if a lower semi-continuous function  is Lipschitz continuous in an -space  then it is weakly lower semi-continuous and must attain a unique global minimizer for the convex optimization problemon a sequentially bounded convex constraint set   We have further proved that if a lower semi-continuous function in an -space  which is convex and coercive is Gateaux-differentiable or Fréchet-differentiable then it attains a minimizer on a convex set. The open question is: Can these results hold in Sobolev spaces on manifolds?
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