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Abstract
Wheat (Triticum aestivum L.) serves as a fundamental component of global food security; however, its production faces growing challenges due to frequent droughts intensified by climate change. This review consolidates existing knowledge regarding traditional and trait-based methods for improving drought tolerance in wheat, emphasizing physiological, morphological, and agronomic traits. Drought stress markedly diminishes wheat yield by adversely affecting plant height, tillering, spikelet count, and grain size, with the most pronounced losses observed during reproductive stages. Essential characteristics that enhance drought resilience encompass strong root architecture, a stay-green phenotype, osmotic adjustment, and increased water-use efficiency. The review examines the intricacies of breeding for drought tolerance, emphasizing challenges including genotype-by-environment interactions and the trade-offs between drought resistance and yield potential. Recent advancements in precision breeding, such as marker-assisted selection, genomic selection, and gene editing techniques like CRISPR/Cas9, are expediting the creation of drought-tolerant cultivars. Integrated agronomic practices, climate-smart agriculture, and international collaborations are essential strategies for maintaining wheat productivity in water-limited environments. The review concludes that a multifaceted approach, integrating conventional breeding, biotechnological innovations, and adaptive management, is essential for ensuring yield stability and food security amid increasing climatic variability.
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Introduction
Wheat (Triticum aestivum L.) is a fundamental crop that supports global food security, sustaining billions and propelling rural economies globally. Nonetheless, as climate change escalates, persistent droughts have become a significant danger to wheat output, especially in dry and semi-arid areas. The unpredictable rainfall, elevated temperatures, and heightened evapotranspiration have substantially undermined yield stability, jeopardizing advancements in global food systems (Mohammadi, 2018).
To meet the anticipated 60% increase in global wheat consumption by 2050, it is essential to improve yields and strengthen resilience to drought stress (Reynolds et al., 2021). Irrigation-based solutions, while beneficial, are becoming increasingly unsustainable in arid places. Consequently, developing drought-tolerant cultivars is the most pragmatic and sustainable approach to alleviate output reductions (Mohammadi, 2018).
This review emphasizes traditional, trait-based methods for enhancing drought tolerance in wheat, avoiding molecular or biotechnological strategies. We investigate the physiological, morphological, and agronomic characteristics that impart drought tolerance, the difficulties in phenotypic selection, and the prospects of genetic resources, traditional selection indices, and ideotype breeding. The objective is to furnish a thorough and accessible resource for plant breeders, agronomists, and agricultural scientists dedicated to creating wheat varieties suited for water-scarce conditions.
2. Effects of Drought Stress on Wheat Yield
Drought stress is a significant limitation on wheat production globally, resulting in considerable yield reductions by affecting essential agronomic, physiological, and morphological characteristics. The intricate interplay of environmental factors and crop genotype in water-scarce conditions leads to inconsistent responses, frequently resulting in significant economic repercussions.
2.1. Agronomic and Physiological Impacts
Wheat exhibits sensitivity to drought across its entire life cycle, with reproductive stages, including blooming and grain filling, being especially susceptible (Farooq et al., 2014). Drought typically results in diminished plant height, tillering capability, spikelet count, and grain size. Drought-induced losses of as much as 30% in plant height and 50% in grain output have been recorded (Ahmed et al., 2020; Royo et al., 2019).
Water stress physiologically disrupts photosynthesis, chlorophyll production, and stomatal control. Characteristics include relative water content (RWC), canopy temperature (CT), and stay-green ability are markedly reduced in drought conditions (Condon et al., 2004; Tardieu et al., 2018). Leaf water potential and osmotic adjustment decline, directly affecting biomass distribution and grain growth (Kumar et al., 2021).
2.2. Sensitivity Throughout Developmental Phases
The magnitude of yield loss is closely associated with the crop development stage at which drought transpires. Drought during booting or flowering might result in ovule abortion, diminish spike fertility, and decrease the grain count per spike (Saini & Westgate, 2000). A longitudinal study indicated that wheat output could diminish by as much as 60% when dryness coincides with anthesis (Zhang et al., 2018). Grain filling during water stress frequently leads to shriveled grains and a diminished harvest index (Passioura, 2007).
2.3. Global Context and Consequences
Drought episodes have intensified worldwide due to climate variability, resulting in significant losses in wheat-producing areas. A thorough meta-analysis of 60 research showed an average yield reduction of 20–25% under mild drought, escalating to nearly 40% under severe stress (Lesk et al., 2016). In sub-Saharan Africa and South Asia, seasonal droughts have diminished wheat productivity by more than 30% in several places (Shiferaw et al., 2013; Tesfaye et al., 2017).
Recently, extreme weather anomalies in Europe and Central Asia, including prolonged droughts and hailstorms, have resulted in local output failures, illustrating the increasing unpredictability in wheat production systems (FAO, 2022).

These realities highlight the imperative for drought-resistant wheat cultivars created using traditional breeding techniques, focusing on essential morphological and physiological characteristics to ensure yield stability in stressful situations.
Table 1: Agronomic Impacts of Drought Stress on Wheat Yield
	Agronomic Parameter
	Impact of Drought Stress
	References

	Plant Height
	Reduction of up to 30% in plant height
	Ahmed et al., 2020; Royo et al., 2019

	Tillering Capability
	Decrease in tillering ability, limiting total biomass production
	Farooq et al., 2014; Kumar et al., 2021

	Spikelet Count
	Lowered spikelet count, affecting overall grain formation
	Farooq et al., 2014; Saini & Westgate, 2000

	Grain Size
	Shrinkage in grain size and reduced grain weight
	Passioura, 2007; Royo et al., 2019

	Grain Yield
	Reduction of up to 50% in grain yield
	Ahmed et al., 2020; Royo et al., 2019



Table 2: Physiological Impacts of Drought Stress on Wheat
	Physiological Parameter
	Impact of Drought Stress
	References

	Photosynthesis
	Inhibition of photosynthetic activity
	Condon et al., 2004; Tardieu et al., 2018

	Chlorophyll Production
	Significant reduction in chlorophyll content
	Condon et al., 2004; Kumar et al., 2021

	Stomatal Control
	Reduced stomatal conductance, limiting water and gas exchange
	Kumar et al., 2021; Farooq et al., 2014

	Relative Water Content (RWC)
	Significant decrease, indicating plant dehydration
	Condon et al., 2004; Tardieu et al., 2018

	Canopy Temperature (CT)
	Increase in canopy temperature due to reduced transpiration
	Condon et al., 2004; Farooq et al., 2014

	Stay-Green Ability
	Markedly reduced, leading to premature senescence
	Condon et al., 2004; Kumar et al., 2021



Table 3: Developmental Stage Sensitivity to Drought Stress
	Developmental Phase
	Impact of Drought Stress
	References

	Booting Stage
	Reduced spike fertility, resulting in fewer grains per spike
	Saini & Westgate, 2000; Zhang et al., 2018

	Flowering Stage
	Ovule abortion, reduction in grain set
	Saini & Westgate, 2000; Zhang et al., 2018

	Grain Filling Stage
	Shrinkage of grains, reduced harvest index
	Passioura, 2007; Zhang et al., 2018



Table 4: Global Yield Impact of Drought Stress on Wheat
	Region
	Average Yield Reduction (%)
	References

	Mild Drought Conditions
	20-25% yield reduction
	Lesk et al., 2016

	Severe Drought Conditions
	40% yield reduction
	Lesk et al., 2016

	Sub-Saharan Africa
	Yield reduction exceeding 30% during seasonal droughts
	Shiferaw et al., 2013; Tesfaye et al., 2017

	South Asia
	Similar yield loss due to recurring seasonal droughts
	Shiferaw et al., 2013; Tesfaye et al., 2017

	Europe and Central Asia
	Increased unpredictability with prolonged droughts and hailstorms
	FAO, 2022












Enhancing Drought Resilience in Wheat Cultivation
The creation of drought-resistant wheat varieties has emerged as a primary objective in global wheat breeding initiatives. Due to the intricacies of drought stress, encompassing various physiological, biochemical, and morphological elements, breeding for drought tolerance necessitates a thorough and multifaceted strategy. Conventional breeding techniques have achieved considerable progress; but, contemporary issues like climate change and erratic drought conditions have compelled the adoption of sophisticated breeding procedures.

3.1. Morphological Characteristics for Drought Resistance
Conventional breeding has concentrated on choosing features linked to drought resistance. These characteristics encompass:

The architecture of root systems is vital for enhancing drought resilience, as deep and widespread roots allow plants to reach moisture in deeper soil layers (Richards et al., 2002). Root length, density, and biomass are critical indications of drought resilience.

Leaf morphology characterized by smaller, elongated leaves and a thicker cuticle diminishes evaporation and water loss (Blum, 2011). The leaf area index (LAI) and canopy structure significantly influence water-use efficiency.

The Stay-Green Phenotype refers to the capacity of plants to preserve green leaf area during drought, a vital characteristic associated with grain filling under water stress (Blum, 2009). This characteristic improves photosynthesis during the essential grain-filling phase.

3.2. Physiological Characteristics for Drought Resistance
Physiological systems are essential for the drought tolerance of wheat, which encompass:

Osmotic Adjustment: Osmotic adjustment, the capacity of plants to sustain cell turgor in conditions of low water potential, is an extensively researched physiological response to drought (Sharp et al., 2004). The accumulation of suitable solutes such as proline and carbohydrates aids wheat plants in enduring drought by preserving cellular integrity.

Water-Use Efficiency (WUE): The ratio of carbon absorption to water loss is essential for assessing wheat yield in drought situations. Enhancing water use efficiency (WUE) through breeding is crucial for sustaining production in conditions of restricted water availability (Fischer, 1985).

Stomatal Regulation: Effective stomatal control that equilibrates water loss with CO2 absorption is an additional physiological characteristic of significance. Wheat plants can conserve water and reduce stress-related yield loss by modulating stomatal closure during drought circumstances (Lawlor & Tezara, 2009).

3.3. Obstacles in Breeding for Drought Resilience
Despite significant advancements in discovering and selecting for drought-tolerant characteristics, numerous problems persist:

Drought stress is a multifaceted environmental condition comprising water scarcity, temperature variations, and occasionally elevated sun radiation. The interplay of these factors complicates the selection of drought-resistant cultivars.

Genotype-by-environment (GxE) interactions present a significant obstacle in breeding for drought tolerance, as wheat's reaction to drought stress differs by location and season. This diversity complicates the development of uniformly drought-resistant cultivars (Garrity et al., 2010).

Trade-offs between Drought Resistance and Yield Potential: Certain drought-resistant wheat types exhibit compromises in yield potential. For instance, enhanced drought resistance may lead to reduced growth rates or diminished grain size, adversely affecting production under non-stress situations (Blum, 2011).

3.4. Progress in Breeding for Drought Tolerance
Recent improvements in breeding for drought tolerance involve employing genomic technologies and molecular markers to identify genes associated with drought resistance. Marker-assisted selection (MAS) is progressively employed to expedite the breeding process, facilitating the incorporation of drought-resistant characteristics into superior wheat lines (Agarwal et al., 2018).

The creation of drought-resistant wheat varieties by quantitative trait locus (QTL) mapping has identified critical loci linked to water-use efficiency, osmotic adjustment, and root architecture (Reynolds et al., 2007). Genomic selection (GS) improves the prediction of drought tolerance in breeding lines and expedites the creation of novel cultivars (Semenov et al., 2019).
Table 5: Morphological Traits for Drought Tolerance in Wheat
	Trait
	Description
	Impact on Drought Tolerance
	References

	Root System Architecture
	Deep and extensive root systems
	Improves access to deeper soil moisture
	Richards et al., 2002

	Leaf Morphology
	Smaller, elongated leaves, thicker cuticle
	Reduces transpiration and water loss
	Blum, 2011

	Stay-Green Phenotype
	Maintenance of green leaf area during drought
	Enhances photosynthesis during grain filling
	Blum, 2009


Table 6: Physiological Traits for Drought Tolerance in Wheat
	Trait
	Description
	Impact on Drought Tolerance
	References

	Osmotic Adjustment
	Accumulation of solutes like proline and sugars
	Maintains cell turgor, allowing wheat to tolerate drought
	Sharp et al., 2004

	Water-Use Efficiency (WUE)
	Ratio of carbon assimilation to water loss
	Increases yield under water-limited conditions
	Fischer, 1985

	Stomatal Regulation
	Regulation of stomatal closure to conserve water
	Minimizes water loss while maintaining photosynthesis
	Lawlor & Tezara, 2009


Table 7: Challenges in Breeding for Drought Tolerance in Wheat
	Challenge
	Description
	Impact on Breeding for Drought Tolerance
	References

	Complexity of Drought Stress
	Drought stress is influenced by multiple factors: water deficit, temperature, and solar radiation.
	Difficulty in selecting for traits due to multiple interacting factors
	Garrity et al., 2010

	Genotype-by-Environment Interactions (GxE)
	Wheat's response to drought varies across different environments and seasons.
	Makes it challenging to develop universally drought-tolerant varieties
	Garrity et al., 2010

	Trade-offs Between Drought Resistance and Yield
	Drought tolerance may reduce growth rates or grain size under non-stress conditions.
	Potential reduction in yield potential in drought-resistant varieties
	Blum, 2011


Table 8: Advancements in Drought Tolerance Breeding
	Advancement
	Description
	Impact on Drought Tolerance Breeding
	References

	Marker-Assisted Selection (MAS)
	Use of molecular markers to select for drought-tolerant traits
	Accelerates the breeding process for drought-tolerant varieties
	Agarwal et al., 2018

	Quantitative Trait Locus (QTL) Mapping
	Identification of QTLs associated with drought resistance traits
	Facilitates the introgression of drought-tolerant traits into elite lines
	Reynolds et al., 2007

	Genomic Selection (GS)
	Prediction of drought tolerance based on genomic data
	Increases accuracy in selecting for drought tolerance in breeding lines
	Semenov et al., 2019











Future Prospects and Strategies for Augmenting Drought Resistance in Wheat
Global wheat production is increasingly challenged by unpredictable climatic events, necessitating urgent novel techniques to enhance drought resistance. The amalgamation of conventional breeding techniques with contemporary biotechnological innovations, alongside an enhanced comprehension of the genetic foundations of drought tolerance, presents significant opportunities for the development of wheat cultivars capable of flourishing in arid circumstances. Future potential for improving drought tolerance in wheat can be examined using a multifaceted strategy.
4.1. Precision Breeding and Genomic Technologies
Innovations in genomics have transformed wheat breeding for drought resistance. Utilizing high-density molecular markers, genomic selection (GS), and CRISPR/Cas9 genome editing, breeders can accurately identify and integrate drought-resistant characteristics. Precision breeding facilitates:
Accelerated Development of Drought-Resilient Varieties: Utilizing genetic data for selection enables breeders to create drought-resilient varieties far more rapidly than traditional approaches (Jia et al., 2020).
Enhanced Comprehension of Drought-Resilient Genes: The identification of drought-resistant genes and important loci linked to drought tolerance offers essential insights for enhancing wheat's drought response (Zhang et al., 2018).
4.2. Environmental and Agronomic Management Approaches
Although breeding is the principal approach for enhancing drought tolerance, agronomic management measures are equally essential in alleviating the impacts of drought stress. Several fundamental tactics encompass:
Efficient Irrigation Systems: The adoption of advanced irrigation methods such as drip and spray irrigation can minimize water wastage and enhance water utilization, enabling wheat to endure drought conditions (Hussain et al., 2021).
Conservation tillage, including reduced tillage and no-till methods, enhances soil moisture conservation by decreasing evaporation and augmenting water retention (Lal, 2015). These techniques are particularly crucial in regions susceptible to water constraint.
4.3. Utilizing Climate-Smart Agriculture (CSA)
Climate-smart agriculture (CSA) prioritizes sustainable farming methods that increase output, bolster resilience to climate change, and diminish emissions. Essential elements of Climate-Smart Agriculture (CSA) that may facilitate wheat's adaptability to drought stress encompass:

Integrating drought-tolerant crops with wheat in crop rotation and intercropping systems can improve water use efficiency and soil fertility, while also diversifying farmers' income sources (Bationo et al., 2018).
Utilization of Climate-Resilient Varieties in Arid Regions: Establishing drought-resistant wheat cultivars in regions prone to water scarcity is crucial for sustaining yield stability and ensuring food production (FAO, 2022).
4.4. Incorporating Biotechnological Methods
Contemporary biotechnological methods, such as transgenic plants and gene editing, possess the capacity to improve wheat's drought resistance beyond the limits of traditional breeding techniques. Essential methodologies encompass:
CRISPR/Cas9 Gene Editing: This potent instrument facilitates exact alterations in the wheat genome, permitting the targeted altering of genes linked to drought tolerance. Genes associated with stress-responsive signaling pathways, osmotic adjustment, and root development can be modified to enhance drought resilience (Chakraborty et al., 2021).
Transgenic Approaches: The incorporation of drought-responsive genes by genetic transformation can endow wheat plants with improved drought tolerance. The extensive implementation of transgenic wheat remains constrained by regulatory and societal obstacles (Sallam et al., 2020).
4.5. Cooperative Initiatives and International Alliances
Drought represents a global challenge, necessitating international cooperation and collaboration to expedite the development and acceptance of drought-resistant wheat varieties. The dissemination of information, resources, and technology via global platforms like the International Wheat Improvement Network (IWIN) and the Global Wheat Program will augment the collective capacity to mitigate the effects of drought stress.
Table 9: Precision Breeding and Genomic Tools for Drought Tolerance
	Strategy
	Description
	Impact on Drought Tolerance
	References

	Genomic Selection (GS)
	Use of genomic data to predict drought tolerance in breeding lines
	Faster development of drought-tolerant varieties
	Jia et al., 2020

	Mapping Drought-Resistant Genes
	Identifying key loci associated with drought tolerance
	Better understanding of genetic basis of drought resistance
	Zhang et al., 2018

	CRISPR/Cas9 Gene Editing
	Targeted modification of drought-resilient genes
	Precision enhancement of drought tolerance
	Chakraborty et al., 2021


Table 10: Environmental and Agronomic Management Strategies
	Strategy
	Description
	Impact on Drought Tolerance
	References

	Water-Saving Irrigation Systems
	Use of efficient irrigation techniques such as drip or sprinkler
	Reduces water loss, optimizes water use during drought
	Hussain et al., 2021

	Conservation Tillage
	Reduced or no-till practices that conserve soil moisture
	Improves water retention, reduces evaporation
	Lal, 2015


Table 11: Climate-Smart Agriculture (CSA) for Drought Adaptation
	Strategy
	Description
	Impact on Drought Tolerance
	References

	Drought-Tolerant Crop Rotation
	Rotation with drought-tolerant crops to enhance soil fertility and water use efficiency
	Helps diversify cropping systems and reduce water usage
	Bationo et al., 2018

	Climate-Resilient Varieties
	Use of drought-tolerant wheat varieties in water-scarce regions
	Ensures yield stability in drought-prone areas
	FAO, 2022


Table 12: Biotechnological Approaches for Drought Tolerance
	Strategy
	Description
	Impact on Drought Tolerance
	References

	CRISPR/Cas9 Gene Editing
	Precision editing of genes involved in stress response and drought tolerance
	Enhances wheat’s ability to tolerate drought at the genetic level
	Chakraborty et al., 2021

	Transgenic Approaches
	Introduction of drought-responsive genes through genetic transformation
	Provides enhanced drought tolerance beyond conventional breeding
	Sallam et al., 2020


Table 13: Collaborative Efforts and Global Partnerships
	Strategy
	Description
	Impact on Drought Tolerance
	References

	International Wheat Improvement Network (IWIN)
	Global collaboration to improve wheat varieties and technologies
	Accelerates the development and adoption of drought-tolerant wheat varieties
	FAO, 2022

	Global Wheat Program
	Worldwide initiative for wheat improvement in drought-prone regions
	Facilitates resource sharing and access to drought-tolerant varieties
	FAO, 2022



Conclusions and Prospective Directions
Drought stress is a critical challenge in wheat production, negatively impacting output, quality, and global food security. Given the increasing severity of climate conditions globally, the imperative to cultivate drought-resistant wheat cultivars has become paramount. Recent study has significantly advanced the comprehension of the genetic, physiological, and morphological determinants of drought tolerance. Nonetheless, numerous gaps persist that necessitate coordinated efforts from both scholars and policymakers to resolve.

5.1. Principal Discoveries
Yield Loss Due to Drought Drought affects multiple stages of wheat development, particularly the reproductive phase, resulting in significant output losses. Vulnerability to water stress during blooming, grain filling, and vegetative growth phases markedly diminishes productivity (Farooq et al., 2014; Zhang et al., 2018).

Morphological and physiological features, including as root architecture, stay-green phenotype, osmotic adjustment, and water-use efficiency, are essential for enhancing wheat's resilience to drought stress. Breeding for these characteristics, in conjunction with the use of genetic resources and biotechnological instruments, demonstrates potential in creating more drought-resistant cultivars (Blum, 2009; Richards et al., 2002).

Biotechnological Integration: Precision breeding methodologies, including marker-assisted selection (MAS), genomic selection (GS), and gene editing techniques such as CRISPR/Cas9, provide robust instruments for accelerating the development of drought-resistant wheat. These methods enable the identification of essential genes linked to drought tolerance, facilitating targeted breeding (Jia et al., 2020; Chakraborty et al., 2021).

Climate-Smart Practices: Alongside genetic enhancements, the implementation of climate-smart agricultural techniques, including efficient irrigation systems, conservation tillage, and crop rotation with drought-resistant species, can substantially mitigate drought impacts and improve wheat yield in arid regions (Hussain et al., 2021; Bationo et al., 2018).

5.2. Prospective Research Avenues
To augment the drought resilience of wheat and guarantee food security throughout climate change, various research avenues must be explored:

Comprehensive Genetic Research: Enhancing the comprehension of the genetic foundations of drought tolerance by functional genomics and genome-wide association studies (GWAS) would enable the discovery of novel genes suitable for enhancement.

Multi-Trait Breeding Strategies: It is essential to develop wheat varieties that can endure drought while sustaining good yields under stress situations. Multi-trait breeding strategies that integrate drought resistance with additional beneficial agronomic characteristics will be essential for enhancing overall crop output.

The amalgamation of crop modeling and climate forecasts with breeding methodologies can facilitate the identification of ideal sites for drought-resistant wheat cultivars and anticipate the effects of future climatic scenarios on wheat yield.

Expansion of Biotechnological Innovations: Although gene editing and transgenic methods exhibit significant potential, the implementation of these technologies in commercial wheat production is a problem. Research must concentrate on surmounting regulatory obstacles and fostering public acceptance to optimize the capabilities of biotechnology for drought-resistant wheat.

5.3. Recommendations for Policy
Advocacy for Drought-Resistant Research: Governments and funding organizations should prioritize research focused on the development of drought-resistant wheat varieties and facilitate the implementation of climate-resilient agricultural practices.

Enhancing international collaboration among research institutions, agribusinesses, and policymakers will promote the interchange of information and resources for drought tolerance research and implementation.

Educating farmers and providing access to resources is crucial for enabling the adoption of drought-resistant cultivars and effective water management practices, so mitigating drought impacts and improving wheat output.

The future of wheat production in drought-prone regions depends on a multifaceted approach that integrates genetic, physiological, agronomic, and biotechnology tactics. By concentrating on enhancing drought resilience via precision breeding, implementing sustainable agricultural practices, and promoting international cooperation, the wheat industry may more effectively respond to the problems presented by climate change. Despite advancements, ongoing research and innovation are vital to maintain wheat as a dependable staple crop, ensuring food security for future generations.
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