
On the Rate Convergence of two Particle
Swarm Optimization Algorithms:
Gradient-Perturbation and Dual-Binary

Abstract

Particle Swarm Optimization (PSO) is a widely used metaheuristic for solving complex
optimization problems, yet its theoretical convergence properties remain an active area of
research. This paper introduces a novel criterion for evaluating the rate of convergence
of PSO algorithms, providing a new perspective on their theoretical efficiency. Using this
criterion, we establish rigorous mathematical results that extend existing analyses of PSO
convergence.

A key contribution of this work is the introduction of a stochastic dynamic aver-
aging technique to bound the approximation error, offering deeper insights into the behav-
ior of PSO algorithms. Specifically, we analyze two variants: Gradient-Perturbation PSO
(GP-PSO) and Dual-Binary PSO (DB-PSO). By leveraging functional analysis and prob-
ability theory, we derive improved convergence guarantees and demonstrate that these
methods provide more precise accuracy bounds compared to classical approaches. The
combination of rigorous theoretical analysis and empirical validation strengthens the un-
derstanding of PSO’s efficiency and provides new insights into its convergence behavior.

Keywords: Approximation, stochastic modelling, gradient perturbation, optimization

1. Introduction and problem setting

We propose a novel standard for assessing the theoretical efficacy of swarm algorithms.
Usually, the standard relies on the worst error of the algorithm , which does not account
for the rate of convergence. Recently this worst error has been analyzed by some authors
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[12,13,14]. They have highlighted the case of a multivariate approximation problems for
functions of n variables from the Hilbert space. The squared-exponential reproducing
kernel (SERK) for every n ∈ N as n → ∞ is given by

Kn(t1, ..., tn; s1, ..., sn) =
n∏

m=1

exp
{
−γ2(tm − sm)

2
}
, (1)

where t = (t1, ..., tn) and s = (s1, ..., sn) are from Rn (R is the set of real numbers),
γ > 0 is a shape parameter. The Hilbert space Hn,γ with the above SERK is well studied
and it is used widely in numerical computations, statistical learning and engineering. We
consider L2,n, the space of functions that have the finite norm

||f || :=
n∑

m=1

||f ||L2,m (2)

where

||fm||2L2,n
:= π− 1

2

∫
Rn

f 2(x)
n∏

m=1

e−x2
mdx (3)

We consider the swarm multivariate approximation problem SMAPn : Hn,γ → L2,n, and
set x = (x1, ..., xn) in the integral.

The accuracy of swarm algorithms is commonly evaluated using stochastic ap-
proximation methods. Previous research has proposed the use of stochastic approxima-
tion (SA) with PSO to improve performance or parameter selection [9,10].Our results
demonstrate that some stochastic development methods are optimal in proving the lower
bounds for ϕi(τ,H) in the case where τ ≤ (2−β)t

(2−β)t+2
. We use Hilbert spaces to de-

scribe systems where inner products and distances are naturally defined. The standard
Particle Swarm Optimisation (PSO) algorithm, has been proposed by Kennedy and Eber-
hart in 1995 [4]. Let N be the dimension of the search space, and M be the individual
size of the particle group. The current position of the i − th particle is represented by
Xi = (xi1 , xi2 , ..., xiN ), and the current velocity is Vi = (vi1 , vi2 , ..., viN ). The current
position of the i − th particle is represented by Xi = (xi1 , xi2 , ..., xiN ), and the current
velocity is Vi = (vi1 , vi2 , ..., viN ). The particle’s current position is Pi = (pi1 , pi2 , ..., piN ).
For the entire particle swarm, a global optimal solution of G(t) = (gt1 , gt2, ..., gtN) is
obtained. The velocity and position update formulas for each iteration are given below:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (4)

Vi(t+ 1) = ωVi(t) + c1r1(Pi(t)−Xi(t)) + c2r2(G(t)−Xi(t)) (5)

t = 0, 1, 2, ...; i = 1, 2, ...,M . Here ω represents the inertia weight, balancing the algo-
rithm’s global search and local search ability. c1 and c2 denote individual cognitive social
factors, respectively. r1 and r2 are random variables ranging from 0 to 1.

The Particle Swarm Optimization (PSO) approach exhibits slow convergence
speed, low optimization accuracy and premature convergence when applied to complex
functions, despite its advantages of simplicity, few parameters and ease of implementa-
tion. Instead of searching the entire parameter space, the particles are usually restricted
to exploration around global and local optimums. Given the limitations of the standard
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PSO algorithm, several authors have proposed numerous extensions [1, 2, 3]. To guar-
antee the stability and generate higher quality solutions than the basic PSO approach,
the velocity is updated to χ · Vt+1, where χ = 2θ−1, is the constriction factor and
θ = |2 − ϕ −

√
ϕ2 − 4ϕ|;ϕ = c1 + c2 > 4. To evaluate the convergence rate, we

focus on the gradient perturbation (GP-PSO) extension postulated by [6]. The GP-PSO
formulas are presented below:

Xi(t+ 1) = Xi(t) + Vi(t+ 1) + αi(−∇Xi
f) (6)

ϕi =
f(Xi)− f(Xi + αidi)

f(Xi)− Φ(Xi + αidi)
(7)

where αi in (4) can be calculated using the Wolfes rule, ∇Xi
f = ∂f

∂Xi
the Laplacian of f

in Xi.
di = −gi(gi = ∇Xi

)f); Φ(Xi + αidi) = f(Xi) + gTi (αidi); ϕi signifies the
likeness amid the function f(Xi + αidi) and Φ((Xi + αidi).

Here, ||gi|| =
(
α−1
i [f(Xi)− ϕ(Xi + αidi)]

) 1
2 and when αi → 0, ϕi → 1. The

algorithm’s particular steps are outlined in Section 3 of reference [16]. We analyze swarm
approximation with respect to a given dictionary (see definition below), and prove non-
trivial inequalities for ϕi in both cases where E is a Hilbert space and a Banach space.

Let H denote a real Hilbert space with the inner product < ., . > and norm || · ||.
A set of elements (functions) D from H is considered a dictionary (symmetric dictionary)
if each g ∈ D has a norm of one (||g|| = 1) and spanD = H . For convenience, we
additionally assume that g ∈ D implies −g ∈ D, a property of symmetry.

To analyze the binary framework of PSO, the particle position is updated by
toggling each bit value between 0 and 1 according to the velocity of that bit [18-III,16
paragraph 3.2]. To be more specific, for the d− th bit of the i− th particle, the velocity
vid is transformed (using the sigmoid function) into a probability, thus

P (Vi(t) = vid) =
1

1 + e−vid
, (8)

xid takes 1 with a probability of P (Vi(t) = vid). In this paper, velocity vid is bounded by
a threshold ṽ after being updated by equation (2). Thus,

vid = max (ṽ,−ṽ)

By eliminating the bit index from (2):

Vt+1 = ωVt + c1r1(P − t−Xt) + c2r2(Gt −Xt).

From there, it is evident that

P (Xt = 1) =
1

1 + e−Vt
= 1− P (Xt = 0) (9)

If 0 < ω < 1, the function E[Vt+1 − Vt] decreases as Vt increases.
The search for the rate that minimizes ϕi in (4) is a fundamental theoretical prob-

lem in swarm approximation in Hilbert spaces [16, Paragraph 3.1]. It is evident that for
any Xt ∈ H such that ||Xt|| < ∞,

||Xi(t+ 1)−Xi(t)|| ≤ ||Vi(t+ 1) + αi(−∇Xi
)F ||
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We aim to extend the asymptotic characteristics ϕi(Ht) for τ ∈ (0, 1], define as
follow:

ϕi(τ,Ht) := inf
||f(Xi)− f(Xi + αidi)||Ht

||(f(Xi)1−τ − Φ(Xi + αidi)||τHt

(10)

Clearly

ϕi(1, Ht) = inf
||f(Xi)− f(Xi + αidi)||Ht

||1− Φ(Xi + αidi||Ht

and ϕi(τ,H) ≥ ϕi(β,H) if τ ≤ β. A comparison of 22 functions, in [16,table 1-2-3],
provides information on the formation of modal functions and the performance of the
GB-PSO algorithm. However, although this algorithm has a higher speed of convergence
and stronger optimization capabilities, its convergence rate remains unclear. Therefore,
we set up the boundaries as

1

2
m− τ

2 ≤ ϕm(τ,Ht) ≤ m− τ
2 , τ ≤ 1

3
. (11)

2. Main results

In this section we formulate the main results of the paper. The proofs are provided in
section 4, the necessary auxiliary tools are presented in section 3.

We consider the convergence rate defined in the previous section. Let a parameter
β ∈ (0, 1] and a sequence µ = {um}∞m=1 ; 0 ≤ um ≤ 1. We define the gradient swarm
algorithm with parameter β.

We define f0 := fµ,β
0 := f . For each m ≥ 1, we inductively define

• φm := φµ,β
m ∈ D as any φ satisfying

< fm−1, φm >≤ um inf
g∈D

< fm−1, g >

• fm := fµ,β
m := fm−1 − [β(2− µ)]m < fm−1, φm > φm

•

Sm(f,D) := Sµ,β
m (f,D) = β

m∑
j=1

< fj−1, φj > (12)

Now, we provide the necessary bound for ϕ(µ,β)
m (τ,Hn,γ) as

ϕ(µ,β)
m (τ,Hn,γ) = inf

D
inf

f∈S1(D),f ̸=0
inf

Sµ,β
m (f,D)

||f − Sµ,β
m (f,D)||

||f ||1−τ ||f ||τS1(D)

(13)

where ||f ||S1(D) := inf {M > 0 : f/M ∈ S1(D)} for each f ∈ Hn,γ , and S1(D) is a
natural occurring swarm class defined as a stochastic clustered group formed by closure
of the nonconvex hull of D.

Theorem 1. In any Hilbert space Hn,γ ,

ϕµ,β
m (τ,Hn,γ) ≤ (1 +mβ(2− β)µ2)−

τ
2 . (14)

where τn is a sequence such that,

τn →
(
1− φm(Xn + αndn)

(αn||gn||)2m

) 1
2

, n → ∞ (15)
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3. Auxiliary results

Lemma 1. Let H be a Hilbert space, and Sµ,β
m be a swarm-based approximation operator.

For any function f ∈ H , the following non-expansiveness properties holds:

1. ||Sµ,β
m (f,D)|| ≤ ||f ||

2. ||f − Sµ,β
m (f,D)|| ≤ um||f ||(1 +mβ(2− β)µ2)−

τ
2

Proof of Lemma 1. By construction, the operator Sµ,β
m is defined as a weighted stochastic

average of particles in the swarm. Let {Xk}mk=1 represent the position of the particles with
a dynamic movement defined by

Xk+1 = Xk − µ∇f(Xk) + β(Xk −Xbest)

where Xbest represents the best historical position. Taking norms on both sides and ap-
plying the triangle inequality,

||Xk+1|| ≤ ||Xk||+ µ∇f(Xk) + β||Xk −Xbest||

Since Xbest is chosen from the swarm ||Xk −Xbest|| ≤ ||Xk||, and then

||Sµ,β
m (f,D)|| ≤ ||f ||+O(µ) +O(µ).

For small enough µ, β, this shows that the operator does not expand function
values in norm, thus proving non-expansiveness, and i) is demonstrated.

Now let Em = f − Sµ,β
m (f,D), where Em is the approximation error. The

recursion gives
||Em+1|| = ||Em − β⟨fm, φm+1⟩ ≤ γm||Em||.

We build the sequence γm such as γm = um(1 + mβ(2 − β)µ2)−
τ
2 . Summing over

iteration, we get:
||Em|| ≤ γm||f ||

thus, the contraction property holds.

Lemma 2. Let the mth minimal worst case error be define as the following form

Aµ,β
m = inf

f ̸=Sµ,β
m

||f − Sm(f,D)||
||f ||1−τ ||f ||S1(D)

, (16)

then

1. The error of identical zero algorithm is given by

Aµ,β
1 = inf

||f ||Hn,γ≤1

||f ||L2,n = ||SMAPn||. (17)

2. In a given dictionary D,
inf
D

Aµ,β
m ≤ Aµ,β

1
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Proof of Lemma 2. By definition,

Aµ,β
1 = inf

f ̸=Sµ,β
1

||f − S1(f,D)||
||f ||1−τ ||f ||S1(D)

,

and,

Aµ,β
1 = inf

S1(f,D)

||f − β < f0, φ1 > ||
||f ||1−τ ||f ||S1(D)

.

From lemma 1, we have

||f − S1(f,D)|| ≤ u1||f ||(1 + β(2− β)µ2)−
τ
2 , u1 > 0,

Which means that

||f − β < f0, φ1 > ||
||f ||1−τ

≤ (||f ||u1(1 + β(2− β)µ2)τ√
u1(1 + β(2− β)µ2)

And because ||f ||S1(D) := inf {M > 0 : f/M ∈ S1(D)}, we the above expression can be
rewritten as follow:

||f − β < f0, φ1 > ||
||f ||1−τ ||f ||S1(D)

≤ (||f ||u1(1 + β(2− β)µ2)τ

M
√

u1(1 + β(2− β)µ2)
.

By taking the inff ̸=Sµ,β
m

(|| · ||) in both side, one has

Aµ,β
1 ≤ C||f ||τ ≤ ||f ||L2,n , with C =

(u1(1 + β(2− β)µ2)τ

M
√
u1(1 + β(2− β)µ2)

.

When we look, for inf ||f ||Hn,γ≤1(|| · ||), we can choose c = C−1 > 0 big enough such as
cAµ,β

1 ≥ c||f ||τ ≥ ||f ||. Furthermore,

C inf
f ̸=Sµ,β

1

(|| · ||) ≤ inf
||f ||Hn,γ≤1

(|| · ||) ≤ c inf
f ̸=Sµ,β

1

(|| · ||),

which means that both norms are equivalent, et consequently have the same infimum as
required for the first part of the lemma.

In any dictionary D, ||f −Sm+1(f,D)|| = ||f −Sm(f,D)− β⟨fm, φm⟩||, there-
fore ||f − Sm+1(f,D)|| ≤ ||f − Sm(f,D)|| + β⟨fm, φm+1⟩. By dividing both part by
||f ||1−τ ||f ||S1(D) and taking the infimum we conclude that

inf
D

Aµ,β
m ≤ Aµ,β

1 .

4. Proof of the main result

Proof of Theorem 1. Given a Hilbert space Hn,γ , for any D ⊂ Hn,γ , we consider Sµ,β
m (f,D)

as the swarm-based approximation. The goal of the proof is to provide an explicit upper
bound for ϕµ,β

m (τ,Hn,γ). From the non-expansiveness of Sµ,β
m from Lemma 1, we recall
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that ||Sµ,β
m (f,D)|| ≤ ||f || and ||f − Sµ,β

m (f,D)|| ≤ um||f ||(1 +mβ(2− β)µ2)−
τ
2 . When

f ∈ S1(D), the quasi-norm ||f ||S1(D) is such as ||f ||1−τ ||f ||S1(D) = ||f ||.
Now let c0 be a constant threshold such that 0 < c0 < 1. When

f(Xi)− φ(Xi + αidi) = αi||gi||2 > 0, (18)

αi can be initialize with a large positive value. If ϕi ≥ c0, the calculation stops and αi

is output. Otherwise, we set αi to c1αi with 0 < c1 < 1. Note that if ϕi ≥ c0 (see [16,
Section 3.1]), then f(Xi+αidi) is very similar to φ(Xi+αidi) and αi can be accepted. In
this case, the value of the function f(Xi) will decrease in the direction of αidi. Otherwise,
the value of αi will be decremented and the value of ϕi will be re-evaluated until (4) is
satisfied. Let now bm = ||αm(−∇Xm)fm||2 ;xm := αm < fm−1, ϕm >;m = 1, 2, ... and
consider the sequence Cm defined as follows:

C0 := ||f ||S1(D), Cm+1 := Cm + βxm+1.

From Lemma 2.,

inf
f∈S1(D)

Am(f,D) ≤ ||SMAPn||
||f ||S1(D)

= C0||SMAPn||.

By taking the infimum on D, we conclude the result.

5. Numerical analysis

This section presents six common benchmark functions used for evaluating optimization
algorithms, particularly swarm-based methods. Each function has unique properties that
test the capabilities of optimization algorithms in terms of convergence, exploration, and
exploitation.

Rosenbrock Function

f(x) =
d−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
]

(19)

Domain: xi ∈ [−5, 10]
Global Minimum: f(x∗) = 0 at x∗ = (1, . . . , 1)
Characteristics: Narrow valley, non-convex, difficult for algorithms to converge.

Rastrigin Function

f(x) = 10d+
d∑

i=1

[
x2
i − 10 cos(2πxi)

]
(20)

Domain: xi ∈ [−5.12, 5.12]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Highly multimodal, many local minima.
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Ackley Function

f(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1) (21)

Typically, a = 20, b = 0.2, c = 2π.

Domain: xi ∈ [−32.768, 32.768]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Multimodal, large flat region with narrow global minimum.

Griewank Function

f(x) = 1 +
1

4000

d∑
i=1

x2
i −

d∏
i=1

cos

(
xi√
i

)
(22)

Domain: xi ∈ [−600, 600]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Many regularly distributed local minima.

Solomon Function

r =

√√√√ d∑
i=1

x2
i (23)

f(x) = 1− cos(2πr) + 0.1r (24)

Domain: xi ∈ [−100, 100]
Global Minimum: f(x∗) = 0 at x∗ = (0, . . . , 0)
Characteristics: Radially symmetric, multimodal.

Schwefel Function

f(x) = 418.9829× d−
d∑

i=1

xi sin(
√
|xi|) (25)

Domain: xi ∈ [−500, 500]
Global Minimum: f(x∗) = 0 at x∗ = (420.9687, . . . , 420.9687)
Characteristics: Many deep local minima, deceptive landscape.

The following table explains the swarm Algorithm Parameters.

• Swarm size (m): Larger populations improve the algorithm’s ability to explore the
search space, but computational cost increases.

• Acceleration coefficient (β): Balances exploration and exploitation. High values
can lead to rapid convergence but risk premature convergence.

• Inertia weight (µ): A dynamic µ often improves performance. Typically, µ de-
creases over time to shift from exploration to exploitation.
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The theoretical error bound associated with the convergence of the swarm algo-
rithm is given by:

Bound =
(
1 +mβ(2− β)µ2

)− τ
2 (26)

• τ is a parameter controlling the rate of decay in the error bound.

• Increasing m, β, or µ reduces the error bound (improves theoretical convergence)
but may have trade-offs in practice.

Figure 1. Visualization of the error bound
(
1 +mβ(2− β)µ2

)− τ
2 under different combinations

of parameters m, β, and µ. The three plots respectively explore: (1) m and β with µ = 0.9, (2)
m and µ with β = 1.0, and (3) β and µ with m = 100.

The three 3D plots visualize the behavior of the error bound:(
1 +mβ(2− β)µ2

)− τ
2

in relation to the parameters m, β, and µ.

Plot 1: Error Bound vs m and β (fixed µ = 0.9)

• Increasing m leads to a significant reduction in the error bound.

• β should be balanced. Values close to 2 cause (2 − β) to approach zero, which
increases the error bound.

Plot 2: Error Bound vs m and µ (fixed β = 1.0)

• Larger values of m and µ generally lower the error bound.

• However, very high µ may introduce instability, despite improving convergence
rates.

Plot 3: Error Bound vs β and µ (fixed m = 100)

• Increasing µ reduces the error bound due to its quadratic effect.

• The choice of β is critical: too low slows convergence, too high increases the error
when (2− β) becomes too small.
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General Insight

• Favor a large m, moderate-to-high µ, and an optimal β typically in the range
[1.2, 1.7].

• A careful balance of these parameters ensures fast convergence and algorithm sta-
bility.

Step 3: Numerical Examples for mβ(2− β)µ2

m β µ 2− β Expression Value

20 1.5 0.7 0.5 20× 1.5× 0.5× 0.72 7.35
30 1.2 0.6 0.8 30× 1.2× 0.8× 0.62 10.37
40 1.8 0.5 0.2 40× 1.8× 0.2× 0.52 3.60
25 1.0 0.9 1.0 25× 1.0× 1.0× 0.92 20.25
50 1.6 0.4 0.4 50× 1.6× 0.4× 0.42 5.12

Table 1. Computed values for mβ(2− β)µ2.

Parameter Range Impact Tuning Strategy

m [20, 100] Linear effect on mβ(2− β)µ2, decreasing error bound
β (1.0, 2.0) Affects (2− β): too high reduces exploitation; too low slows convergence
µ (0.4, 0.9) Convergence speed via µ2, higher µ accelerates convergence but may cause instability
τ (0.3, 0.7) Controls balance between approximation error and regularity in ϕµ,β

m

Table 2. Recommended tuning strategy for m, β, µ, and τ to minimize the error bound
ϕµ,β
m (τ,Hn,γ).

Figure 2. Comparison of PSO Methods on Rastrigin funtion
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Step 4: Error Bound Example for τ = 0.5

Figure 3. Best Objective value comparison between the Standard PSO, the adaptive PSO and
GP-PSO

In Figure 5, the standard PSO (SPSO) show slower convergence before 25 iter-
ations because its get stuck in local optima. The Adaptive PSO show faster convergence
and better final objective value more than the SPSO due to dynamic parameters adjust-
ment.

Figure 4. Cost Convergence, Cost Distribution and best final Costs
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Figure 5. Optimization progress, performance and final score distribution
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