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Anticenter-Symmetric Bialgebras

Abstract

This paper develops a bialgebra theory for anticenter-symmetric algebras by introducing
the concept of an anticenter-symmetric bialgebra, equivalent to a Manin triple of anticenter-
symmetric algebras. A study of this framework leads to the anticenter-symmetric Yang-Baxter
equation in anticenter-symmetric algebras, analogous to the classical Yang-Baxter equation
in Mock Lie algebras and the associative Yang-Baxter equation.

An unexpected finding is that the anticenter-symmetric and associative Yang-Baxter
equations share the same form. Additionally, skew-symmetric solutions to the anticenter-
symmetric Yang-Baxter equation define anticenter-symmetric bialgebras. To advance the
theory, the paper introduces O-operators and pre-anticenter-symmetric algebras, which facil-
itate the construction of these solutions and provide a foundation for further exploration.
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1 Introduction

Mock-Lie algebras are commutative algebras characterized by their adherence to the Jacobi iden-
tity, with significant contributions to their study made by P. Zusmanovich in [14]. These algebras
have appeared under various names, reflecting diverse mathematical perspectives.

Their earliest mention was in [12], where an infinite-dimensional solvable but non-nilpotent
example was introduced, later reproduced in |13]. They are also referred to as “Jordan algebras
of nil index 3” in Jordan-algebraic literature, “Lie-Jordan algebras” in [11], and “Jacobi-Jordan
algebras” in recent studies [6] and [1]. The term “mock-Lie” originates from [9], where the operad
appears in a classification of quadratic cyclic operads. They possess two particularly noteworthy
features:

(a) Algebras associated with the Koszul dual of the Mock-Lie operad can be equivalently char-
acterized in three distinct ways, as detailed in [14] and [7].

(b) As observed in [11], Mock-Lie algebras can also be constructed from antiassociative alge-
bras, paralleling their derivation from associative algebras. This underscores a profound
relationship between Mock-Lie and antiassociative algebras.

Significant progress has been made in understanding the cohomology and deformation theories
of Mock-Lie algebras. A notable development is the introduction of a cohomology framework
based on two operators, referred to as zigzag cohomology, which was explored in [4] alongside a
detailed examination of low-degree cohomology spaces. Furthermore, [5] investigated Mock-Lie
bialgebras, the Yang-Baxter equation, and Manin triples, broadening the algebraic and structural
insights into these algebras. The study of Lie-admissible algebras has been of great significance,
particularly the bialgebraic exploration of left-symmetric algebras as detailed in [2]. More recently,
anti-flexible algebras, also known as center-symmetric algebras, have emerged as another class of
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Lie-admissible algebras, with their bialgebraic properties investigated by [§]. In addition, we have
recently introduced the concept of anticenter-symmetric Jacobi-Jordan algebras, which we refer
to more succinctly as anticenter-symmetric algebras [10]. These algebras belong to the category
of Mock-Lie admissible algebras.

The primary aim of our paper is to undertake an algebraic study of these structures; we
establishe a bialgebra theory for anti-center-symmetric algebras by defining the concept of an
anticenter-symmetric bialgebra, linked to a Manin triple of such algebras. This framework intro-
duces the anticenter-symmetric Yang-Baxter equation, paralleling the classical Yang-Baxter equa-
tion in Mock Lie algebras and the associative Yang-Baxter equation. Remarkably, the anticenter-
symmetric and associative Yang-Baxter equations share the same form. Skew-symmetric solutions
to the former directly define anticenter-symmetric bialgebras. To support this theory, we introduce
O-operators and pre-anticenter-symmetric algebras, providing tools for constructing solutions.

The paper begins in Section 2 with a review of the bimodules and matched pairs of anti-center-
symmetric algebras. Section 3 then focuses on the Manin triple of anti-center-symmetric algebras,
providing a deeper understanding of their bialgebraic structural aspects. Section 4 explores a
special class of anticenter-symmetric bialgebras, this leads to anticenter-symmetric Yang-Baxter
equation.

Section 5 develops the theory of O-operators of anticenter-symmetric algebras and pre-anticenter-
symmetric algebras. Finally, Section 6 concludes the paper with reflective remarks that summarize
the findings.

2 Bimodules and matched pairs of anticenter-symmetric al-
gebras

Definition 2.1 [10] (A,-), is said to be an anticenter-symmetric algebra if Va,y,z € A, the
antiassociator of the bilinear product - defined by (z, y, z )o1:=(x-y ) -z4+z- (y-2), is
symmetric in x and z, i.e.,

( z, Y, 2 )—1 = _( Z, Y, T )—1~ (21)
As matter of notation simplification, we will denote x - y by zy if not any confusion.

Definition 2.2 [10] Let A be an anticenter-symmetric algebra, V be a vector space. Suppose
Lr: A= gl(V) be two linear maps satisfying: for all x,y € A,

[lwary] = - [ly7rx] (2.2)

Loy + loly = —ryp — o7y (2.3)
Then, (1,7, V') (or simply (I,)) is called bimodule of the anticenter-symmetric algebra A.

Let (A,-) be an anticenter-symmetric algebra. For any z,y € A, let L, and R, denote the
left and right multiplication operators respectively, that is, L,(y) = xy and R,(y) = yx. Let
L,R: A— End(A) be two linear maps with © — L, and x — R, for any = € A respectively.

Example 2.3 Let (A,-) be an antisymmetric algebra. Then (L, R, A) is a bimodule of (A,-),
which is called the regular bimodule of (A4, ).

Proposition 2.4 Let (A,-) be an anticenter-symmetric algebra and V' be a vector space over K.
Consider two linear maps, l,7 : A — gl(V). Then, (I,r,V) is a bimodule of A if and only if, the
semi-direct sum A@V of vector spaces is turned into an anticenter-symmetric algebra by defining
the multiplication in A®V by Vri,x0 € A, v1,v0 €V,

(1 +v1) * (X2 +v2) =21 - X2 + (L, V2 + Ty V1),

We denote it by A lxl_,rl V or simply Ax~LV.
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It is known that an anticenter-symmetric algebra is a Mock Lie-admissible algebra ( [10]).
Proposition 2.5 Let (A,-) be an anticenter-symmetric algebra. Define the anticommutator by
[,y =x-y+y -z, VryecA (24)

Then it is a Mock Lie algebra and we denote it by (G(A),[, ]) or simply G(A), which is called
the the sub-adjacent Mock Lie algebra of (A, ).

Corollary 2.6 Let (A,-) be an anticenter-symmetric algebra and V' be a vector space over K.
Consider two linear maps, l,r : A — gl(V'), such that (I,r,V) is a bimodule of A. Then, the map:
l+r: A—gl(V) x>l 4+ ry, is a linear representation of the sub-adjacent Mock Lie algebra
of A.

Proof: Let (I,r,V) be a bimodule of the anticenter-symmetric algebra A. Then, Vz,y € A
le,ry] = —[ly, r2); Loy +luly = —ryry —7ys. Besides, it is a matter of straightforward computation
to show that [ 4+ r is a linear map on A. Then, we have:

[(+7)@), (+7r)W)] = [la+7a,ly+1y]
= [l ] [z, Ty] + [z, ly] + [Tmary]
= (o) ly] + [rz,7y]
= lply +lyly +rery +1y1s
= A{laly +rary} +{lyle +ryra}
= {loy +7ya} + {lyz + 72y}
= (H+7)ey+U+7)ye =1 +7) 20

Therefore, (I,r,V) is a bimodule of A implies that [ 4+ r is a representation of the linear represen-
tation of the sub-adjacent Mock Lie algebra of A. O

Theorem 2.7 [10] Let (A,-) and (B,o) be two anticenter-symmetric algebras. Suppose that
(la,74,B) and (I, rp, A) are bimodules of A and B, respectively, obeying the relations:

ra(z)(aob) +ra(lg(b)x)a+ ao (ra(x)b)

+Halrg(®)z)a+ (la(x)b) ca+1la(z)(boa) =0, (2.5)
ra(a)(@-y) +re(laly)a)r + z - (ra(a)y)
+H(ra(y)a)zr + (Is(a)y) -z +Is(a)(y - z) = 0, (2.6)

ao (la(x)b) + (ra(x)b)oa+ (ra(z)a)ob+la(lg(a)x)d
+ra(re(®)z)a +la(lg(b)x)a+bo (la(x)a) + ra(ra(a)z)b =0, (2.7)

- (Is(a)y) + (rs(a)y) -z + (rs(a)z) -y + ls(la(z)a)y

+re(ra(y)a)z +1s(laly)a)r +y - (Is(a)z) + rp(ra(z)a)y =0, (2.8)
for all x,y € A and a,b € B. Then, there is an anticenter-symmetric algebra structure on A ® B
given by:
(z+a)x(y+b) = (v-y+isla)y+rsd)r)
+ (aob+la(z)b+raly)a). (2.9)

We denote this anticenter-symmetric algebra by A DdlBl lg"”‘ B, or simply by A =<1 B.
Then (A, B,l4,7.4,l5,78) satisfying the above conditions is called matched pair of the anticenter-
symmetric algebras A and B.
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Definition 2.8 Let (I,7,V) be a bimodule of an anticenter-symmetric algebra A, where V is a fi-
nite dimensional vector space. The dual maps I*,r* of the linear maps [, r, are defined, respectively,
as: U*,r* : A — gl(V*) such that: for allz € A,u* € V¥ v eV,

FiA — (V)

AN Ve
x — I e« V — K (2.10)
ut o Lt - ¥
e = (Gutv) = (e L),
A — gl(V)
Ve — V*
x o Th, s V. — K (2.11)
ut o= riut
e v (rEut,v) = (Ut ).

Proposition 2.9 Let (A,-) be an anticenter-symmetric algebra and l,7 : A — gl(V') be two linear
maps, where V is a finite dimensional vector space. The following conditions are equivalent:

1. (I,r, V) is a bimodule of A.
2. (r*,1*,V*) is a bimodule of A.

Proof:
(1)=-(2) Suppose that (I,r,V) is a bimodule of (A, -) and show that (r*,*, V™) is also a bimodule of
(A, ). We have:
< y F Tyt v>
= (rput,v) + ((rarp)u®,v) = (ray(v), u*) 4 (ry(re(v)), u*)
= <(Txy +ryre)(v),u") = (—(lya + lyls)(v),u”)
= —(lya(v),u") = ((lyl)(v), u")
= — (") = ()" v)
= <f(l;m + 1)u”, v).
Therefore,
lyw + Ul = =1y, — 1oy, Va,y A (2.12)
(5 ryJu”sv)
— < Ju* v> + < @ )u*,v> = <l$(v),r;;u*> + (ryv, u*)
= (ry ( ( ), u") + (la(ry (v), u") = ([ry, lz]v, u”)
= (=lra Lylo,u”) = (=(ra(ly) + ly(r2))v, u)
= < (Lyry +rply)u” > = <—[l;,r;]u*,v>
Therefore

2yl = =[], Yo,y € A (2.13)
By counsidering the relations (2.12) and (2.13)), we conclude that
(r*,1*,V) is a bimodule of (A, -).

(2)=(1) The converse, (i.e., by supposing that (r*,*, V) is a bimodule of (A,-) then (I,r,V) is also
a bimodule of (A,-)), can be proved by direct calculations by using similar relations as for
the first part of the proof.

d
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3 Manin triple of anticenter-symmetric algebras

In this section, we first give the definition of Manin triple of an anticenter-symmetric algebra and

investigate its main properties.

Definition 3.1 A Manin triple of anticenter-symmetric algebras is a triple (A, AT, A7) equipped

with a nondegenerate symmetric bilinear form B ( ,
B(xxy,z) =B(x,y * 2), satisfying:

1. A=AT® A~
2. At and A~
3. At and A~

as K-vector space;

are isotropic with respect to B(,), that is B(AT; AT) =
Definition 3.2 Two Manin triples (A1, A}, Al , B

) on A which is invariant, i.e., Vz,y,z € A,

are anticenter-symmetric subalgebras of A;

BAT A7) =
) and (A2, AT, A5 ,B2) of anticenter-symmetric

algebras Ay and As are homomorphic (isomorphic) if there is a homomorphism (isomorphism)

¢ Ay — As such that: (A]) C AF,

(A7) C Ay, Bi(z,y) =

Ba(p(7), 0(y))-

In particular, if (A,-) is an anticenter-symmetric algebra, and if there exists an anticenter-

symmetric algebra structure on its dual space A* denoted (A*,

o), then there is a anticenter-

symmetric algebra structure on the direct sum of the underlying vector spaces of A and A* (see
Theorem [2.7)) such that (A® A%, A, A*) is the associated Manin triple with the invariant bilinear

symmetric form given by

%d(x+a*7y+b*)

=<z,b" >+ <y, a" > Vor,y € A;a",b" € A,

(3.1)

called the standard Manin triple of the anticenter-symmetric algebra A.

Theorem 3.3 Let (A,-) and (A*,

o) be two anticenter-symmetric algebras. Then,

the siztuple (A, A*, R*, L*; R, L) is a matched pair of anticenter-symmetric algebras A and
A* if and only if (A® A*, A, A*) is their standard Manin triple.

Proof:

By considering that (A, A*, R*, L*; R%, L%) is a matched pair of anticenter-symmetric algebras,
it follows that the bilinear product * defined in the Theorem is anticenter-symmetric on the
direct sum of underlying vectors spaces, A @ A*.

We have Va,y,z € A;a,b,c € A*.

Ba((z+a)*x(y+0b),z+¢) =

4+

By ((z +a), (y +b)* (2 +0¢))

Therefore, the following relation

Ba((z+ a) *

+ 0+ 1+ +

(y+0),(z+0¢)

(ry + Rs(a)y + Lo(b)x, ) + (z,a0 b+ R (2)b + L7 (y)a)
(zy,c) + (R5(a)y, ¢) + (Lo(b)x, ¢) + (z,a 0b) + (2, R (2)b)
5, L2 (5)a) = (24,) + {g: Ra(©)) + (2, Ly()) + (a0 )
(R (2),0) 4 (Ly(2), @) = (xy, c) + (y,coa)
<x,boc>+<z,a0b> (zx, by + (yz,a) .

(z,boc+ R'(y)e+ L*(2)b) + < yz + RL(b)z

Li(c)y;a > + (z,boc) + (z, R7 (y)e) + (z, L7(2)b)

(Ls(c)y, a)
< 2(),0)

o(0)z,a) +
z,bo¢) + (Ry(x),c) +
(@) + (y

(yz,a) + (R
(
(yz,a) +
(
(

(2, Ry(@)) + . Lo(a))
x,boc) + (xy, >+<ZI by + (yz,a)
20 ob) + {g,coa).
=Bq((z+a)(y+b)*(2+¢)) (3.2)

holds, which expresses the invariance of the standard bilinear form on A @& A*. Therefore, (A ®
A* A  A*) is the standard Manin triple of the anticenter-symmetric algebras A and A*. O
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Proposition 3.4 Let (A,-) be an anticenter-symmetric algebra. Suppose that there exists an
anticenter-symmetric algebra structure “o” on the dual space A*.
Then, (A, A*, R*, L*, R%, L) is a matched pair of anticenter-symmetric algebras if and only if for

any r,y € A,a € A*,
Ri(a)(z - y) + Ly(a)(y - ) + Ly(RI (z)a)y +y - (Ls(a)x) + RS (LI (z)a)y + (Rs(a)z) -y = 0, (3.3)
y- (Ri(a)z) + z - (Ri(a)y) + (Ls(a)z) -y + (Li(a)y) - @ (3.4)
FLI(LE (@)a)y + R (R (y)a)a + RE(R:(2)a)y + L(L7 (y)a)z = 0. '

Proof: Obviously, Eq. (3.3)) is exactly Eq. (2.6) and Eq. (3.4) is exactly Eq. (2.8) in the case
la=Rra=L"Ilp=1la- =R rg =14 = L5 Forany z,y € A a,b € A*, we have:

(R(a)(z-y),b) = (z -y, Ro(a)b) = (z -y,boa) = (L.(x)y,boa) = (y, L' (z)(boa));
(Ls(a)(y - 2),0) = (y - @, Lo(a)b) = (y - w,a 0 b) = (R.(x)y,a 0b) = (y, R (z)(a o b));
(Ls(RE()a)y, b) = (y, Lo (R (2)a)b) = <y7 (R (x)a) o b);

(y- (Ls(a)z),b) = (R.(L5(a)z)y, b) = (y, R (L5 (a)z)b) ;

(RS (L7 (x)a)y,b) = (y, Ro(L7(x)a)b) = (y,bo (L7 (x)a));

(R(a)r) -y, b) = (L.(R5(a)x)y,b) = (y, L7 (R5(a)x)b) .

Then Eq. . 2.5)) holds if and only if Eq. . 2.6)) holds. Similarly, Eq. . 2.7) holds if and only if Eq. .

holds. Therefore the conclusion holds.
Let V be a vector space. Let 0 : V®V — V ® V be the flip defined as

oclz®y)=y®z, Vr,yecV. (3.5)

Theorem 3.5 Let (A,-) be an anticenter-symmetric algebra. Suppose there is an anticenter-
symmetric algebra structure “o” on its dual space A* given by a linear map A* : A* @ A* — A*.
Then (A, A* R*, L* R, L%) is a matched pair of anticenter-symmetric algebras if and only if

A:A— A® A satisfies the following two conditions:
A(z-y)+0A(y-z) = —(c(id®L.(y)) + R.(y) ®id)A(z) — (0(R.(z) ®id) +id ®L.(z))A(y), (3.6)

(c(d®R.(y)) +idRR.(y) + o(L.(y) ® id) + L.(y) ® id) A(zx)

(—o(d @R (2)) — id 0 (z) — o (L (z) ®id) — L (z) @ id)Ay), (3.7)
for any x,y € A.
Proof: For any z,y € A and any a,b € A*, we have
(A(z - y),a®b) = (x-y,a-b),=(L5(a)(x-y),b),
(cA(y - z),a®b) = (y-z,boa) = (Ri(a)(y - z),b),
(o(id@L.(y))A(z),a ®@b) = (x,bo (L*(y)a)) = (RS (L (y)a)z,b),
(R.(y) ®id)A(z),a @ b) = (z, (R (y)a) 0 b) = (L(R*(y)a)z,b),
(o(R ( )@ id)A(y),a @ b) = (y, (R (2)b) 0 a) = (R:(a)y) -z, b).
((d&L.(x))A(y), a ®b) = (y,ao (LI (x)b)) = (x - (L(a)y),b).
Then Eq. is equivalent to Eq. . Moreover, we have
<U(id®R( NA(z),a®b) = (z,bo (R*(y)a)) = (R (R’ (y)a)x,b),
(([d®R.(y)A(z),a ®b) = (z,a 0 (R (y)b)) = ((Ls(a)z) - y,b),
(0(L.(y) ®id)A(x),a @ b) = (z, (L7 (y)b) o a) = (y - (R5(a)x),b),
(L.(y) ®id)A(z),a @ b) = (z, (L (y)a) o b) = (L5 (L' (y)a),b).
Then Eq. is equivalent to Eq. . Hence the conclusion holds. O
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Remark 3.6 From the symmetry of the anticenter-symmetric algebras (A,-) and (A*,0) in the
standard Manin triple of anticenter-symmetric algebras associated to By, we also can consider a
linear map v : A* = A* ® A* such that v* : A® A — A gives the anticenter-symmetric algebra
structure “” on A. It is straightforward to show that A satisfies Eqs. and if and only

if v satisfies
Y(aob)+ovy(boa) = (o(id@Lo(b)) + Ro(b) ®id)y(a) + (0(Ro(a) ®id) +id ®@Lo(a))v(b), (3.8)

(0(id ®Ro(b)) +id ®Ro(b) + 0(Lo(b) ® id) + (Lo(b) ® id))y(a)+
((Lo(a) ®id) + 0(Lo(a) ®id) + o(id ®Rs(a)) + (id ®Rs(a)))v(b) = 0,

for any a,b € A*.

+
t (3.9)

Definition 3.7 Let (A,-) be an anticenter-symmetric algebra. An anticenter-symmetric bial-
gebra structure on A is a linear map A : A —- A® A such that

1. A" A* @ A* — A* defines an anticenter-symmetric algebra structure on A*;
2. A satisfies Egs. (3.6) and (3.7).
We denote it by (A, A) or (A, A¥).

Example 3.8 Let (A, A) be an anticenter-symmetric bialgebra on an antcenter-symmetric algebra
A. Then (A*,v) is an anticenter-symmetric bialgebra on the anticenter-symmetric algebra A*,
where 7y is given in Remark[3.6

Combining Proposition [3.4] and Theorem [3.5] together, we have the following conclusion.

Theorem 3.9 Let (A,-) be an anticenter-symmetric algebra. Suppose that there is an anticenter-
symmetric algebra structure on its dual space A* demoted “o” which is defined by a linear map
A:A— AR A. Then the following conditions are equivalent.

1. (A A* A, A*) is a standard Manin triple of anticenter-symmetric algebras associated to

By defined by Eq. (3.1).
2. (A, A*,R*, L*, R, L) is a matched pair of anticenter-symmetric algebras.
3. (A, A) is an anticenter-symmetric bialgebra.

Recall a Mock Lie bialgebra structure on a Mock Lie algebra G is a linear map § : G - G R G
such that 6* : G* ® G* — G* defines a Mock Lie algebra structure on G* and J satisfies

dz,y] = —(ad(z) ® id + id ® ad(x))d(y) — (ad(y) ® id + id ® ad(y))d(x), Vz,y € G, (3.10)
where ad(z)(y) = [z,y] for any z,y € G. We denoted it by (G, 9).

Proposition 3.10 Let (A, A) be an anticenter-symmetric bialgebra. Then (G(A),d) is a Mock
Lie bialgebra, where § = A + gA.

Proof: It is straightforward. O

4 A special class of anticenter-symmetric bialgebras

In this section, we consider a special class of anticenter-symmetric bialgebras, that is, the anticenter-
symmetric bialgebra (A, A) on an anti-flexible algebra (A, -), with the linear map A defined by

A(z) = —(1d®L.(z))r — (R.(z) @ id)or, Vz € A, (4.1)

wherer € A® A.
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Proposition 4.1 Let (A, -) be an anticenter-symmetric algebra andr € AQA. Let A: A — ARA
be a linear map defined by Eq. (4.1). Eq. (3.6 holds if and only if

(L(y) @ R.(z) + R.(y) ® L.(z))(r + or) =0, Vz,y € A. (4.2)

Proof: Let r =), u; ® v; € A® A. Then, Eq. (4.1]) becomes

Az) = Z(*Uz‘ ® TV; — VT Uy,

)

and
oA(z) = Z(—xvi ® u; — u; @ v x).

‘We have:

A= Aly) +oAya) =D (—w @ (zy)oi — viley) @ u; — (yo)oi ® u; — u; @ vi(ya));

i

and
B=—(c(id®L.(y)) + R.(y) ®id)A(z) — (¢(R.(z) ®id) +id ® L.(z)) A(y)
= Z [ — (0(id® L.(y)) + R.(y) @ id) (—u; @ zv; — v;x @ u;)
— (0(R.(z) ®id) +id ® L.(z)) (—u; ® yv; — v;y ® ul)]
=A+ Z (yuZ R V; T + Uy @ TV; + Yv; Q U + VY Q :cul)
=A+ (L.(y) ® R(z) + R.(y) @ L.(2)) (r + or).
By setting B = A, Eq. is established. O

Proposition 4.2 Let (A, -) be an anticenter-symmetric algebra andr € AQA. Let A: A — ARA
be a linear map defined by Eq. (4.1)). Eq. (3.7)) holds if and only if

(R(z)®R.(y)+ R.(y) @ R(x)+ L.(x) ® L.(y) + L.(y) ® L.(z))(r + or) =0, Vz,y € A. (4.3)

Proof: In this proof, for simplicity, we take r = u; @ v; € A® A.
On the one hand, the left-hand side of Eq. (3.7) is given by:

A= (oc(id®R.(y) +id® R.(y) + o(L.(y) ®id) + L.(y) ® id)A(x)
= —(2v)y @ u; — wy QU x — u; @ (TV;)y — VT @ UY — TV;  Yu;
—u; @ Y(vix) — yu; @ xv; — Yy(v;z)  u;.

On the other hand, the right-hand side of Eq. (3.7) is:

B=(-0(id®R.(x)) —id® R.(z) — o(L.(z) ®id) — L.(x) ® id) A(y)
= (yvi)r @ u; + 4 @ vy + u; @ (Yvi)T + vy @ wx + Yyu; @ TU;
+ u; @ x(vy) + zu; @ yu; + x(vy) @ u;.

By setting A = B, we obtain:

UiY @ Vi + Vi Q Uiy + TV @ YU + YU Q T4
Fuir @ vy + vy Q uix + yv; @ xu; + ru; @ yu; = 0.

This establishes Eq. (4.3)). O
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Lemma 4.3 Let A be a vector space and A : A — A® A be a linear map. Then the dual map
A* A @ A* — A* defines an anticenyer-symmetyric algebra structure on A* if and only if
Ha =0, where

Ha = (A®id)A + ([d®A)A + ((0A) ®id)(cA) + (id ®@(cA))(cA). (4.4)
Proof: Denote by o the product on A* defined by A*. Specifically,
(aob,z) =(A"(a®Db),z) =(a®b,Ax)), VreA abe A"
For all a,b,c € A* and = € A, we have:

((a,b,¢),z) = ((aob)oc+ao(boc),x)

(

(A*(A* ®@id) + A*(id® A")) (a®@b®c), z)
(A®id)A+ (iId®@ A)A)(z),a @ b® c);
(— (COb)oa—CO(boa) x)
(
(
(

<_(C’ b’ Cl), >

(- A" (A*®id) - A*(i[d® A%))(c®b® a), z)
(= (A*0*)((A*0") @id) — (A*0™)(id ® (A*0™))) (a® bR ), z)
(= ((cA) ®id)(cA) — (id ® (cA))(0A))(z),a ® b c).

Thus, (A*, o) is an anticenter-symmetric algebra if and only if Hx = 0. d
Now, let (A, -) be an anticenter-symmetric algebra and let

r=Zui®vieA®A.

Define:
r12:Zui®vi®l, r13:2ui®1®vi, I‘23:21®ui®vi’

I'21:Z'Ui®ui®1, r31=Zvi®1®ui7 r32221®vi®u“

i
where 1 denotes the unit if (A4, ) has a unit. Otherwise, it is a symbol that serves a similar role
to a unit. The operation between two rs is then defined in an obvious manner. For example,

rjorys = E Ui+ U; Q@ V; Q@ Vj, T13T23 = E U; @ Uj Q V5 - Vj, Tagli = g U @u; - v QU  (4.5)
4,7 ,J %,

and so on.

Theorem 4.4 Let (A,-) be an anticenter-symmetric algebra andr € AQA. Let A: A— AR A
be a linear map defined by Eq. (4.1). Then, A* defines an anticenter-symmetric algebra structure
on A* if and only if, for any x € A, the following holds:

(id ®id ® L.(z))(M(r)) + (id ® id ® R.(z))(P(r))
+(L.(2) ®id ® id) (=N (1)) + (R.(z) ® id ® id)(—Q(x)) = 0, (4.6)

where:

M (r) =r93r12 + I21113 — I'i3Ta3, IN(r) =T31T21 — r'21T32 — I'a3l's,

P(r) = 113791 + r1ore3 — Iagr13,  Q(r) = rairs; — I3ira3 — I3alag.

10
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Proof. Let r =3, u; ® v; € A® A. Then:
(A®id)A + (id ® A)A)(z)
= Z (uj ® uiv; ® Tv; + vju; ® uj @ xv; + u; @ (V;2)v; @ u; + v;(ViT) ® u; @ U,

4,3
+ U @ Uy @ (20:)v; + Ui @ vj(20;) @ uj + VT ® uj ® uv; + VT @ Vju; @ uyj)
= (ld ®id® L.(Z‘))(I‘ggrlg) + (ld ®id ® L.(m))(rglrlg) — (R(x) ®id ® ld) (1"21I31)
- (ld ® id (39 L.(.’E))(rlgrgg) + (R (m) ® id (39 ld) (1‘31T23) + (R (LU) ® id X ld) (r32r21)

+ Z (uj ® (vir)vj @ u; + u; @ v (2V;) @ uy).
2]

Similarly:
(((cA) ®@id)(cA) + (Id @ (0A))(cA))(z)
= Z ((xvi)vj ®uj ® u; + uj @ vj(Tv;) @ u; + Uv; @ Uj @ VT + uj @ Vju; @ VX
1)
+ 2v; @ uiv; @ uj + TV ® uj ® vt + u; @ (0;T)v; @ Uy + U @ uj @ vi(vix))
= _(L (fL') ®id® id)(r31r21> - (ld ®Rid® R.(w))(r23r13) + (ld ®id ® R. (l‘))(rlgrgl)
+ (ld ® ld ® R ($))(r12r23) + (L(x) ® ld ® ld) (I‘211‘32) + (L(x) ® ld ® ld) (I‘231‘31)
+ Z (uj ® vj(zv;) @ u; + u; @ (viz)v; @ uy).
,J
By exchanging the indices ¢ and j, we obtain:
Z (uj @ (v;w)v; @ w; + u; ® v(Tv;) @ uj) + Z (uj @ vj(2v;) @ u; + u; ® (viz)v; ®uj) = 0.
i,j 4,

Thus, it follows that:

(L.(z) ® id ® id)(ra1r32 + ragrs; — I'sira1)

+ (id ® id ® L.(x))(ra3r12 + r21r13 — I'13T23)

+ (R.(z) ®id ® id)(r31r95 + r32r91 — r21T31)

+ (id ®id ® R.(z))(r13r21 + r12r2s — rasriz) = 0.

This establishes Eq. (4.6)). O
Remark 4.5 [§] For anyr € A® A, the following holds:
N(r) = —o13M(r), P(r)=012M(), Q(r)= —012013M (1),
where 012(rRYR2) =yRx Rz and o13(x QYR 2) = 2 Q Yy  x, for any x,y,z € A.

Combining Proposition Proposition Theorem [£.4] and Remark we arrive at the
following result.

Theorem 4.6 Let (A,-) be an anticenter-symmetric algebra andr € AQ A. Let A: A — A® A
be a linear map defined by Eq. (4.1). Then (A, A) is an anticenter-symmetric bialgebra if and only
if v satisfies Eqs. (4.2)), , and

((ld ®id ® L. (.’17)) + (R (CC) ®id® id)0'120'13

o o (4.7)
+(([d®id ® R.(z))o12 + (L.(z) ®id ® id)o13)) (M (1)) = 0,

where M(I‘) = I923T-12 + I'91T'13 — I'13-'23.

11
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As a direct consequence of Theorem [4.6] we have the following corollary.

Corollary 4.7 Let (A,-) be an anticenter-symmetric algebra andr € AQA. Let A: A— A® A
be a linear map defined by Eq. (4.1)). If, in addition, r is skew-symmetric and satisfies

I12r'13 — Iaaliz +r13ras = 0, (4.8)
then (A, A) is an anticenter-symmetric bialgebra.

Definition 4.8 Let (A,-) be an anticenter-symmetric algebra andr € A® A. Eq. (4.8) is called
the anticenter-symmetric Yang-Baxter equation (ACSYBE) in (A,-).

Remark 4.9 The term ”anticenter-symmetric Yang-Baxter equation” reflects its analogy with the
classical Yang-Baxter equation in a Mock Lie algebra (see (5]). Notably, the anticenter-symmetric
Yang-Bazxter equation in an anticenter-symmetric algebra, the anti-flerible Yang-Baxter equation
in an anti-flexible algebra, and the associative Yang-Bazter equation (see [5,|8]) in an associa-
tive algebra all share the same form as Eq. . Thus, these three equations exhibit common
properties.

At the end of this section, we highlight two properties of the anticenter-symmetric Yang-Baxter
equation. The proofs are omitted since they mirror the proofs in the case of the associative Yang-
Bazter equation.

Let A be a vector space. For anyr € A® A, r can be regarded as a linear map from A* to A

as follows:
(ryu* @ v*) = (r(u*),v"), Yu*,v* € A" (4.9)

Proposition 4.10 Let (A,-) be an anticenter-symmetric algebra andr € ARA be skew-symmetric.
Then r is a solution of the anticenter-symmetric Yang-Bazter equation if and only if v satisfies

r(a) -r(b) = r(R'(r(a))b+ L*(x(b))a), Va,be A*. (4.10)

Theorem 4.11 Let (A,-) be an anticenter-symmetric algebra and r € A® A. Suppose that v is
antisymmetric and nondegenerate. Then t is a solution of the anticenter-symmetric Yang-Bazter
equation in (A,-) if and only if the inverse of the isomorphism A* — A induced by r, regarded as
a bilinear form w on A (i.e., w(z,y) = t~ Lz, y) for any v,y € A), satisfies

w(@-y,z)+wly-z,z)+w(z z,y) =0, Vz,y,zeA (4.11)

5 (O-operators of anticenter-symmetric algebras and pre-
anticenter-symmetric algebras

In this section, we introduce the notions of O-operators for anticenter-symmetric algebras and
pre-anticenter-symmetric algebras, which are used to construct skew-symmetric solutions of the
anticenter-symmetric Yang-Baxter equation and, consequently, to construct anticenter-symmetric
bialgebras.

Definition 5.1 Let (I,7,V) be a bimodule of an anticenter-symmetric algebra (A,-). A linear
map T : V — A is called an O-operator associated with (1,7, V) if T satisfies

T(u)-Tw) =TT (w)v+r(TW)u), Yu,veV.

Example 5.2 Let (A,-) be an anticenter-symmetric algebra. An O-operator Rp associated with
the regular bimodule (L, R, A) is called a Rota-Baxter operator of weight zero. In this case,
Rp satisfies

Rp(z)-Rp(y) = Rp(Rp(x) -y +x- Rp(y)), Vr,yecA

12
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Example 5.3 Let (A,-) be an anticenter-symmetric algebra, and let v € A® A. If r is skew-
symmetric, then by Proposition r is a solution of the anticenter-symmetric Yang-Baxter
equation if and only if v, regarded as a linear map from A* to A, is an O-operator associated with
the bimodule (R*, L*, A*).

There is the following construction of (skew-symmetric) solutions of anticenter-symmetric Yang-
Baxter equation in a semi-direct product anticenter-symmetric algebra from an O-operator of
an anticenter-symmetric algebra which is similar as for associative algebras ( [3, Theorem 2.5.5],
hence the proof is omitted).

Theorem 5.4 Let (I,r,V) be a bimodule of an anticenter-symmetric algebra (A,-), and let T :
V — A be a linear map. Identifying T as an element in (AXp« 1+ V) D (AKX 1« V*), 1 =T —0(T)
is a skew-symmetric solution of the anticenter-symmetric Yang-Bazter equation in A X 1= V* if
and only if T is an O-operator associated with the bimodule (I,7,V).

Definition 5.5 Let A be a vector space with two bilinear products <,=: A® A — A. The pair
(A, <,>) is called a pre-anticenter-symmetric algebra if, for any x,y,z € A, the following
conditions hold:

(:&y,z)m = _(Z7ya$)’m
(x7y72)l = _(Zayvx)ra

where:
(.Y, 2)m = (= y) < z+x > (y < 2),

(@, y,2)1:=(x*xy) = z2+a > (y > 2),
(T,y,2)r = (x <y) <2z +x < (y*2),
and xxy=x <y+x > y.

Proposition 5.6 Let (A, <,>) be a pre-anticenter-symmetric algebra. Define a bilinear product
x: AR A— A by
rxy=x<y+x=vy, Vr,ye A (5.1)

Then (A, x) is an anticenter-symmetric algebra, referred to as the associated anticenter-symmetric
algebra of (A, <,>).
Proof: Set (z,y,2). = (x*y) *z+a % (y * z). For any z,y,z € A, we have:

(x,y,z)* = (ac,y,z)m + (x,y,z)z + (Iayaz)r = *(z,y,x)m - (Zayax)T - (Zayax)l - 7(Zay>$)*'

Hence, (A, *) is an anticenter-symmetric algebra. (|

Let (A, <,>) be a pre-anticenter-symmetric algebra. For any = € A, let L, (z), R<(x) de-
note the left multiplication operator of (A, <) and the right multiplication operator of (A, >)
respectively, that is, L. (z)(y) = = = y, R<(z)(y) =y <z, V z,y € A Moreover, let
L., R, : A— gl(A) be two linear maps with x — L, () and x — R (x) respectively.

Proposition 5.7 Let (A, <,>) be a pre-anticenter-symmetric algebra. Then (L_,R_,A) is a
bimodule of the associated anti-flexible algebra (A, *), where x is defined by Eq. (5.1).

Proof: For any z,y,z € A, we have

(L (z % y) + L (2) L (9))(2) = (% y) = 2+ 2 = (y = 2) = (2,9, 2),,

(=R<(z)R<(y) — R<(y*x))(2) = (z <y) =w—z =< (yxz)=—(29,2),

(L (2)B<(y) + B<(y) L (2))(2) = 2 = (2 <) + (2 = 2) <y = (2, 2,4)m,

(=L (y)R<(2) — R<(z)L (y))():*y>(Z<w)*(y>2)<x:*(y,z,z)m
)-

Hence (L., R_,A) is a bimodule of (A, *

13
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Corollary 5.8 Let (A, <,>) be a pre-anticenter-symmetric algebra. Then the identity map id is
an O-operator of the associated anticenter-symmetric algebra (A, ) associated with the bimodule

(L>1R<1A)'

Theorem 5.9 Let (I,7,V) be a bimodule of an anticenter-symmetric algebra (A,-). Let T : V —
A be an O-operator associated with (I,r,V'). Then, there exists a pre-anticenter-symmetric algebra
structure on V' given by

u=-v=0Tw)v, uw<v=r(TW)u, YuveV. (5.2)

Consequently, there is an associated anticenter-symmetric algebra structure on'V' given by Eq. ,
and T is a homomorphism of anticenter-symmetric algebras. Moreover, T(V) ={T(v) |v eV} C
A is an anticenter-symmetric subalgebra of (A, ), and there is an induced pre-anticenter-symmetric
algebra structure on T'(V') given by

T(u) =Tw)=Tw>v), Tu) <Tw) =T(u=<v), YuveV.

The corresponding associated anticenter-symmetric algebra structure on T(V'), as given by Eq. (5.1)),
is precisely the anticenter-symmetric subalgebra structure of (A,-), and T is a homomorphism of
pre-anticenter-symmetric algebras.

Proof: For all u,v,w € V, we have

(w,v,w),, = (wW>=v)<w+u> (v<w)="rT(w)(T(u ))v + (T (w))r(T(w))v
= —r(T)UT(w))o = UT(W)r(T(w))v = —(w,v,u),,
(u,v,w), = ([Wrv4+u<v)>-w+u> (v>=w)

UTUT (u)v + r(T(v)w)) + U(T )) (T(v)))w
(UT(u) - T'(v) + UT ()T (v)w = —(r(T(u)r(T(v)) — (T (v) - T'(u)w
Yw

—(r(TW)r(T(W)) —r(T(u > v+u=<0v))
<v)<u—w=<(u>v+u=<v)
) 7u)’r

—(w
= —(w
Therefore, (V, <, ) is a pre-anticenter-symmetric algebra. For T'(V'), we have
Tuw)«Tw)=Tu>v+u=<v)=T(uxv)=T(u) -T(v), Yu,ve V.
The rest is straightforward. O

Corollary 5.10 Let (A,-) be an anticenter-symmetric algebra. Then there exists a pre-anticenter-
symmetric algebras structure on A such that its associated anticenter-symmetric algebra is (A, -)
if and only if there exists an invertible O-operator.

Proof: Suppose that there exists an invertible O-operator 7' : V' — A associated to a bimodule
(I,7, V). Then the products “>, <” given by Eq. defines a pre-anticenter-symmetric algebra
structure on V. Moreover, there is a pre-anticenter-symmetric algebra structure on T(V) = A,
that is,

z-y=T>1Ux)T ), = =<y=TryT '(z), YVz,y € A

Moreover, for any z,y € A, we have
v y+a <y =TT ) +ry) T @) = T @) - T (y) = - y.

Hence the associated anticenter-symmetric algebra of (A, =, <) is (A, ).

Conversely, let (A, >, <) be pre-center-symmetric algebra such that its associated anticenter-
symmetric is (A, -). Then by Corollary the identity map id is an O-operator of (A, -) associated
to the bimodule (L., R, A). O

14
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Corollary 5.11 Let (A,-) be an anticenter-symmetric algebra and w be a nondegenerate skew-
symmetric bilinear form satisfying Eq. (4.11)). Then there exists a pre-anticenter-symmetric alge-
bra structure »=,< on A given by

wx=y,z2)=wly,z x), w=<yz) =wx,y-z2), Va,y,z € A, (5.3)
such that the associated anticenter-symmetric algebra is (A, -).
Proof: Define a linear map T : A — A* by
(T(z),y) = w(z,y), Vx,y € A.

Then T is invertible and 7! is an O-operator of the anticenter-symmetric algebra (A, -) associated
to the bimodule (R*, L*, A*). By Corollary there is a pre-anticenter-symmetric algebra
structure >, < on (A, %) given by

r=y=T'R*x)T(y), v <y=T'L*(y)T(z), Va,y € A,

which gives exactly Eq. (5.3)) such that the associated anticenter-symmetric algebra is (A,-). O

Finally we give the following construction of skew-symmetric solutions of anticenter-symmetric
Yang-Baxter equation (hence anticenter-symmetric bialgebras) from a pre-anticenter-symmetric
algebra.

Proposition 5.12 Let (A, =, <) be a pre-anticenter-symmetric algebra. Then

n

r= Z(ei ®e —e ®e;) (5.4)

3

18 a solution of anticenter-symmetric Yang-Baxter equation in A X R, Lr A*, where {e1,--- ,en}
is a basis of A and {e7,--- ,el} is its dual basis.

n
Proof: Note that the identity map id = ) e; ® ef. Hence the conclusion follows from
i=1

Theorem [5.4] and Corollary O

6 Concluding remarks

We established a bialgebra theory for anticenter-symmetric algebras, introducing the notion of
an anticenter-symmetric bialgebra and its equivalence to a Manin triple of anticenter-symmetric
algebras. A key result is the formulation of the anticenter-symmetric Yang-Baxter equation in
anticenter-symmetric algebras, an analogue to the classical Yang-Baxter equation in Mock Lie
algebras and the associative Yang-Baxter equation, with the unexpected finding that they share
the same formal structure.

We showed that skew-symmetric solutions to this equation define anticenter-symmetric bial-
gebras. Additionally, the notions of O-operators and pre-anticenter-symmetric algebras were in-
troduced as tools to construct such solutions, providing a foundation for further exploration of
anticenter-symmetric algebraic structures.
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