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Abstract

Let G = (V (G), E(G)) be a nonempty undirected graph. An independent edge dominating set is
an independent set of edges which is also an edge dominating set of G. In the study of Ontulan
and Balingit [12], they introduced a new approach of generating a unique topology from the family
of independent edge dominating sets of G, this is called the independent edge domination topology
on E(G), herein denoted as τEID(G). This paper focuses on the independent edge domination
topological space induced by the path graphs Pn, where n > 1. Moreover, some properties and
characterizations of the independent edge dominating sets and the corresponding independent
edge domination topology of path graphs are established.
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1 Introduction
Graph theory and topology are two fundamental branches of mathematics that play a significant role in
various applications, ranging from network analysis to computational topology. Graph theory studies
the relationships between discrete objects, primarily focusing on vertices and edges, while topology
examines properties of spaces that remain invariant under continuous deformations. The fusion of
these disciplines has led to the development of topological graph theory, which explores how graph
structures induce topological spaces and vice versa [7].

Several methodologies have been proposed to construct topological spaces from graphs. Some focus
on vertex sets, while others utilize edge sets. For instance, Macaso and Balingit [9] introduced the
block topology, generated by the family of vertex sets of the blocks of a graph. In the study of Hassan
and Abed [8], they associated a new topology with graphs that permit isolated vertices. In 1983,
Gervacio and Diesto presented another interesting way to constructing a topological space from a
given undirected graph by using closed neighborhood subsets of the vertex set of a graph [5]. Canoy,
Lemence, and Nianga also used techniques to investigate the construction of topologies induced by
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some special families of graphs and some unary and binary operations on graphs [3],[2]. Sari and
Kapuzlo presented another interesting approach in the same field of study by collecting the minimal
adjacency of vertices in a graph [13]. In 2018, Abdu and Kilicman [1] used the compatibility and
incompatibility of edges on a directed graph to generate the topologies on the set of edges.

Ontulan and Balingit [12] recently introduced a novel method for generating a unique topology through
the use of edges, known as the independent edge domination topology. The authors came up with
properties and a way to describe a breakdown of independent edge dominating sets as a subbase
for building an independent edge dominating topology. They also examine various characterizations
of the independent edge domination topology as induced by specific families of graphs.

This study expanded upon the independent edge domination topology resulting from path graphs.
The study established characterizations and properties for the specified topology in the path graph.
This study also presents a Python program that generates a list of the independent edge dominating
sets of the path graph Pn and a corresponding list of the open sets of the independent edge dominating
topology derived from those sets. The total count of independent edge dominating sets and the total
count of open sets of Pn for a given n is also provided.

2 Preliminary Notes
The fundamental definitions of graphs, topological spaces, and independent edge domination are
provided in this section. The definition of the fundamental concepts in graph theory and topology
used in this paper are provided in this section, aided with some illustration and examples.

Definition 2.0.1. [4] A graph G = (V (G), E(G)) is a finite nonempty set V (G) of objects called
vertices (the singular is vertex) together with a possibly empty set E(G) of 2-element subsets of
V (G) called edges. Here, V (G) is the vertex set of a graph G while E(G) is the edge set of the
graph G. The order of a graph G refers to the number of vertices in G, while the size (or length) of a
graph G refers to the number of edges in G. Two distinct vertices v1 and v2 are adjacent if v1, v2 ∈ G
and two edges are adjacent if they have a common vertex. A graph of size 0 is called an empty
graph. In any empty graph, no two vertices are adjacent. A nonempty graph then has one or more
edges. A graph G is connected if every two vertices of G are adjacent, that is, if G contains a u− v
path for every pair u, v of vertices of G. A graph G that is not connected is called disconnected.

Notation: Let G = (V (G), E(G)) be a simple graph of order n, where V (G) = {v1, v2, . . . , vn}.
Henceforth, as a convention, we denote [n] = {1, 2, . . . , n} and ei,j = vivj such that i < j, with
i, j ∈ [n].

Observe that the two edges are adjacent if they have a common vertex. With the above notation,
the following remark is immediate.

Remark 2.0.2. [12] Let G = {V (G), E(G)} be a simple graph. Two edges ei1,j1 and ei2,j2 of G are
adjacent if and only if {i1, j1} ∩ {i2, j2} 6= ∅.

Definition 2.0.3. [10] A set F of edges in a graph G is an edge dominating set if every edge not in
F is adjacent to some edge in F . A set F of edges is an independent edge set if no two edges in F
are adjacent. Consequently, an independent edge dominating set (IEDS) of G is an independent
set of edges which is also an edge dominating set. (The family of all IEDS of G is denoted by IDE

G).

Example 2.0.4. Let G be a graph shown in Figure 1. This graph G is labeled considering the notation
convention for denoting the vertices and edges. Note that two edges are adjacent if they shared a
common subscripts, that is, e1,2 and e2,4. Observably, the independent edge dominating set of G are
{e1,2, e3,4}, {e1,4} and {e2,4}.
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Figure 1: Graph G

Definition 2.0.5. [11] Let X be a set. A topology on a point set X is a collection τ of subsets of X
having the following properties:

i. ∅ and X are in τ .

ii. The union of the elements of any subcollection of τ is in τ ; that is, if {Uα}α∈A ⊂ τ then⋃
α∈A Uα ∈ τ .

iii. The intersection of the elements of any finite subcollection of τ is in τ ; that is, if U1, U2, . . . , Un ∈
τ then

⋂n
i=1 Ui ∈ τ .

A set X for which a topology τ has been specified is a topological space, denoted as the pair (X, τ).
A subset of X which is in τ is called a τ -open set. If X is any set and τ1 is the collection of all subsets
of X (that is, τ1 is the power set of X, τ1 = P(X)) then this is a topological space. τ1 is called the
discrete topology on X. At the other extreme is the topology τ2 = {∅, X}, called the indiscrete
topology or trivial topology on X.

Theorem 2.0.6. [11] In a discrete topological space (X,P(X)), every singleton set {x} is both open
and closed.

Definition 2.0.7. [6] Let (X, τ) be a topological space. Given any family Σ = {Aα : α ∈ A} of
subsets of X, there always exists a unique, smallest topology τ(Σ) ⊃ Σ. The family τ(Σ) can be
described as follows: It consists of ∅, X, all finite intersection of the Aα, and all arbitrary unions of
these finite intersections. Σ is called a subbasis for τ(Σ), and τ(Σ) is said to be generated by Σ.

Definition 2.0.8. Let G be a nonempty graph. The independent edge domination topology of G,
denoted by τEID(G) is the topology generated by the family IDE

G of all independent edge dominating
sets of G. The pair (E(G), τEID) is called the independent edge domination topological space of
G.

By direct application of Definition 2.0.7, the family of all independent edge dominating sets IDE
G

is equivalently equal to Σ, that is, Σ = IDE
G . Furthermore, the independent edge domination topology

is equivalently equal to τ(Σ), that is, τ(Σ) = τEID(G).

Theorem 2.0.9. [12] Let G be a nonempty graph. The topology τEID(G) is the indiscrete topology on
E(G) if and only if G has k ≥ 1 components, where each component is isomorphic to either P1 or P2,
and at least one component isomorphic to P2.

Example 2.0.10. Consider the graph G in Figure 1 and let E(G) = {e1,2, e1,4, e2,4, e3,4}. By Example
2.0.4 the IDE

G = {{e1,4}, {e2,4}, {e1,2, e3,4}}. By Definition 2.0.7 and Definition 2.0.8, the τEID(G) =
{∅, {e1,4}, {e2,4}, {e1,2, e3,4}, {e1,4, e2,4}, {e1,2, e1,4, e3,4}, {e1,2, e2,4, e3,4}, E(G)}.
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3 Main Results
This section presents the key findings of the study, focusing on the independent edge domination
topology induced by path graphs.

3.1 Independent Edge Domination Topology of Path Graphs
This subsection examines the nature of independent edge domination in path graphs. It formally
defines path graphs, introduces relevant notations, and establishes the conditions under which a set
of edges qualifies as an independent edge dominating set. The structure and size of its family of
independent edge dominating sets are presented.

Definition 3.1.1. [4] For the integer n ≥ 1, the path Pn is a graph of order n and size n − 1 whose
vertices can be labeled by v1, v2, . . . , vn and whose edges are vivi+1 for i = 1, 2, . . . , n− 1.

Notation: For the path graph Pn, we use the following notations: V (Pn) = {v1, v2, . . . , vn}, and
E(Pn) = {v1v2, . . . , vn−1vn} = {e1,2, . . . , en−1,n}.
Illustration: The complete graph P5 in Figure 2 is labeled using the abovementioned notation
convention.

v1 v2 v3 v4 v5
P5 :

e1,2 e2,3 e3,4 e4,5

Figure 2: Path Graph P5

Here, if ei,j ∈ E(Pn), then j = i+ 1.

Theorem 3.1.2. Let Pn be a path graph and S ⊆ E(Pn). S ∈ IDE
Pn

if and only if S is of the form
S = {ei1,j1 , . . . , eik,jk} such that i1 = 1 or 2 and ik = n − 2 or ik = n − 1 where 2 ≤ is − is−1 =
js − js−1 ≤ 3 for all 1 < s ≤ k.

Proof.
(⇐) Let S ⊆ E(Pn). Assume that S = {ei1,j1 , . . . , eik,jk}. Observe that the condition, 2 ≤ is−is−1 =
js − js−1 ≤ 3 for all 1 < s ≤ k and the fact that js = is + 1 and js−1 = is−1 + 1, imply that S
is independent, by Remark 2.0.2. Now consider an edge ep,q ∈ E(Pn) \ S. If ep,q = e1,2, then
ei1,j1 = e2,3 is in S, and is adjacent to ep,q. Similarly, if ep,q = e2,3, then ei1,j1 = e1,2 is in S, and
is adjacent to ep,q. Now, if ep,q = en−1,n, then eik,jk = ep,p−1 ∈ S, and, if ep,q = en−2,n−1, then
eik,jk = eq+1,q ∈ S. Lastly, if ep,q 6= ei1,j1 or ep,q 6= eik,jk , then this means that there exist 1 < s < k
such that ep,q is between eis−1,js−1 and eis,js . If ep,q is not adjacent to either eis−1,js−1 or eis,js , then
p− is−1 ≥ 2 and is−p ≥ 2 which imply that is− is−1 = js− js−1 ≥ 4, a contradiction to the definition
of S. Thus, pq is adjacent to either eis−1,js−1 or eis,js , and so S is an edge dominating set. Therefore,
S ∈ IDE

Pn
.

(⇒) Suppose S is not of the given form.
Case 1 : If ei1,j1 /∈ {e1,2, e2,3}, then e1,2 /∈ S is not dominated by any edge in S. Symmetrically, if

ik 6= n − 2 and ik 6= n − 1, then en−1,n /∈ S is not dominated by any edge in S. Thus,
S /∈ IDE

Pn
.

Case 2 : Suppose there exists 1 < s < k such that is − is−1 = js − js−1 6= 2, 3. If is − is−1 = 1, then
there exists an edge in S that shared a common vertex to one edge in S. By Remark 2.0.2,
S is not independent edge set. If there exists 1 < s < k such that is − is−1 = js − js−1 > 3,
then there exists an edge ep,q /∈ S, such that ep,q is not dominated by any edge in S. Hence,
S is not an edge dominating set. Thus, S /∈ IDE

Pn
.
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By the cases, if S is not of the given form, then S /∈ IDE
Pn

.

Corollary 3.1.3. If S ∈ IDE
Pn

, then l ≤ |S| ≤
⌊
n
2

⌋
, where

l =


n
3

, if n ≡ 0 mod 3

bn
3
c , if n ≡ 1 mod 3

dn
3
e , if n ≡ 2 mod 3

.

Proof. Assume the S ∈ IDE
Pn

. In view of Theorem 3.1.2, to maximize |S|, the distance of each
element in S must be 2, such that is − is−1 = js − js−1 = 2 for all s = 2, . . . , n. Hence, if n is even,

then |S| =
n

2
, and so, if n is odd, then |S| =

n− 1

2
. Thus, to generalize, |S| =

⌊
n
2

⌋
. Consequently,

to minimize |S|, the distance of each element in S, is 3 and so, is − is−1 = js − js−1 = 3 for all
s = 2, . . . , n. Hence, the following cases are observed:

Case 1 : If n ≡ 0 mod 3, then |S| = n

3
.

Case 2 : If n ≡ 1 mod 3, then |S| = n− 1

3
.

Case 3 : If n ≡ 2 mod 3, then |S| = n+ 1

3
.

Thus, to generalize, l ≤ |S| ≤
⌊
n
2

⌋
such that

l =


n
3

, if n ≡ 0 mod 3

bn
3
c , if n ≡ 1 mod 3

dn
3
e , if n ≡ 2 mod 3

.

Theorem 3.1.4. For path graph Pn with n ≥ 2,

|IDE
Pn
| =

bn
2
c∑

k=l

[(
k − 1
n− 2k

)
+ 2

(
k − 1

n− 2k − 1

)
+

(
k − 1

n− 2k − 2

)]

where l =


n
3

, if n ≡ 0 mod 3⌊
n
3

⌋
, if n ≡ 1 mod 3⌈

n
3

⌉
, if n ≡ 2 mod 3

.

Proof. The number of independent edge dominating set or order |S| = k can be counted using the
stars and bars method. Pn has n − 1 edges and need to select k non-adjacent edges, where 2
consecutively selected edges have distance of either 2 or 3.

Let bars represent the elements of S and stars represent the edges outside of S. The problem
reduces to counting the numbers of ways to arrange k bars between n− k− 1 stars such that no two
bars are adjacent, no three consecutive stars are adjacent, and there could only be 0 or 1 star before
the first bar and after the last bar.

Let x be the total number of stars before the first bar and after the last bar. Then x = 0, 1, 2.
If x1 is the number of stars between the first and second bars, x2 is the number of stars between
second and third bars, . . . , xk−1 is the number of stars between the (k − 1)th and kth bars, then
x+x1 +x2 + · · ·+xk−1 = n−k−1 stars. Note that 1 ≤ xi ≤ 2. Assign 1 star for each xi and choose
which among the xi’s will receive the remaining n− k − 1− (k − 1)− x = n− 2k − x stars.
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Case 1 : If x = 0, then there are n−2k stars to distribute among the k−1 positions. This is equivalent

to
(
k − 1
n− 2k

)
ways.

Case 2 : If x = 1, then there are n − 2k − 1 stars to distribute among the k − 1 positions which is

equivalent to
(

k − 1
n− 2k − 1

)
ways. Note that if x = 1, either there is one star before the first

bar or one star after the last bar. Hence, there are a total of 2

(
k − 1

n− 2k − 1

)
ways for this

arrangement.

Case 3 : If x = 2, then there are n − 2k − 2 stars to distribute among the k − 1 positions which is

equivalent to
(

k − 1
n− 2k − 2

)
ways.

Thus, there are a total of
(
k − 1
n− 2k

)
+2

(
k − 1

n− 2k − 1

)
+

(
k − 1

n− 2k − 2

)
ways to achieve the prescribed

arrangement. This is equivalent to the numbers of independent edge dominating sets of Pn having k
elements. Since l ≤ k ≤ bn

2
c with

l =


n
3

, if n ≡ 0 mod 3⌊
n
3

⌋
, if n ≡ 1 mod 3⌈

n
3

⌉
, if n ≡ 2 mod 3

,

by Corollary 3.1.3, one has

|IDE
Pn
| =

bn
2
c∑

k=l

[(
k − 1
n− 2k

)
+ 2

(
k − 1

n− 2k − 1

)
+

(
k − 1

n− 2k − 2

)]
.

Example 3.1.5. Consider the path graph P5 in Figure 2 and let E(P5) = {e1,2, e2,3, e3,4, e4,5}. By
Theorem 3.1.2, notice that e1,2, e3,4 ∈ E(P5), with a distance of |e1,2 − e3,4| = 2, that can dominate
the entire graph and they are independent edge, and so S = {e1,2, e3,4} is an independent edge
dominating set. Furthermore, here are the other independent edge dominating set, S2 = {e1,2, e4,5},
and S3 = {e2,3, e4,5}. In this case, P5 has 3 independent edge dominating sets.

By the Theorem 2.0.6, Theorem 2.0.9 and Definition 2.0.7, the following remarks are observed.

Remark 3.1.6. Let Pn be the path graph and A ⊆ τEID(Pn).

i. If n = 2, then τEID(P2) is the indiscrete topology on E(P2), given by τEID(P2) = {∅, E(P2)}
such that E(P2) = {e1,2}.

ii. If n = 3, then τEID(P3) is the discrete topology onE(P3), given by τEID(P3) = {∅, {e1,2}, {e2,3}, E(P3)}
such that E(P3) = {{e1,2}, {e2,3}}.

iii. If n ≥ 4, then τEID(Pn) is neither the indiscrete nor discrete topology on E(P4), given by
τEID(P4) = {∅, {e2,3}, {e1,2, e3,4}, E(P4)} such that E(P4) = {{e1,2}, {e2,3}, {e3,4}}. To see
this, if S ∈ IDE

Pn
such that e3,4 ∈ S, then e1,2 ∈ S. For if e1,2 /∈ S, then e2,3 ∈ S since e1,2 is

dominated by e2,3 only, and S is an independent edge dominating set, which is a contradiction
since e2,3 and e3,4 are adjacent. Thus, every independent edge dominating set containing e3,4
must also contain e1,2, and so every open set containing e3,4 must also contain e1,2. Hence
{e3,4} is not τEID(Pn)-open, and so, by Theorem 2.0.6, τEID(Pn) is not the discrete topology on
E(Pn).
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By the observation of the Remark 3.1.6 (iii) and by the reflectional symmetry property of Pn, the
first edge E1,2 and the last edge en−1,n of a path graph Pn are with the same feature. In this case,
the following remark is observed.

Remark 3.1.7. Every open set containing e3,4 must contain e1,2. Moreover, every open set containing
en−3,n−2 must also contain en−1,n.

With the Remark 3.1.7, one has the following generalization:

Lemma 3.1.8. Let Pn be a path graph with n ≥ 5. If for all ei,j ∈ E(Pn) such that i = {1, 2, . . . , n−
1} \ {3, n− 3}, then {ei,j} is τEID(Pn)-open.

Proof. Let n ≥ 5 and ep,q ∈ E(Pn). By Theorem 3.1.2, since 2 ≤ is+1 − is = js+1 − js ≤ 3
for all 1 < s ≤ k, S1 = {es,t, . . . , ep−3,q−3, ep,q, ep+3,q+3, . . . , es′,t′}, where es,t = e1,2 or e2,3 and
es′,t′ = en−2,n−1 or en−1,n, is an independent edge dominating set of Pn. Observe that S2 =
{ef,g, . . . , ep−2,q−2, ep,q, ep+2,q+2, . . . , ef ′,g′}, where ef,g = e1,2 or e2,3 and ef ′,g′ = en−2,n−1 or en−1,n,
is an independent edge dominating set of Pn such that es,t 6= ef,g and es′,t′ 6= ef ′,g′ . Thus,
S1 ∩ S2 = {ep,q} ∈ τEID(Pn). Hence, {ep,q} is an arbitrary, and so every {ei,j} ∈ E(Pn) is τEID(Pn)-
open. However, by Remark 3.1.7, {e3,4}, {en−3,n−2} are not τEID(Pn)-open.

Theorem 3.1.9. Let Pn be a path graph with n ≥ 5. A set A ⊆ E(Pn) is τEID(Pn)-open if and only if
A satisfies any of the following forms:

i. A = A′ ⊆ E(Pn) \ {e3,4, en−3,n−2};
ii. A = {e1,2, e3,4} ∪A′;
iii. A = {en−3,n−2, en−1,n} ∪A′; and

iv. A = {e1,2, e3,4, en−3,n−2, en−1,n} ∪A′,
where A′ ⊆ E(Pn) \ {e3,4, en−3,n−2}

Proof.
(⇒) Let Pn be a path graph with n ≥ 5 and A ⊆ E(Pn).

i. This immediately follows by Lemma 3.1.8 and Remark 3.1.7, and so A is τEID(Pn)-open.

ii. This immediately follows by (i) and Remark 3.1.7, and so A is τEID(Pn)-open.

iii. Similarly, immediately follows by (i) and Remark 3.1.7, and so A is τEID(Pn)-open.

iv. Consequently, by Remark 3.1.7 and immediately follows by (i), (ii), and (iii). So, A is
τEID(Pn)-open.

Therefore, the following forms are satisfied.
(⇐) If A contains e3,4 but not e1,2 or A contains en−3,n−2 but not en−1,n, then, by Remark 3.1.7, A is
not a τEID(Pn)-open set.

Theorem 3.1.10. For a path graph Pn with n ≥ 2,

|τEID(Pn)| =


2 , if n = 2

4 , if n = 3, 4

2n−2 + 2n−5 , if n ≥ 5

.

Proof. Let Pn be a path graph of order n ≥ 2.

Case 1 : If n = 2, then, by Remark 3.1.6 (i), |τEID(P2)| = 2.

Case 2 : If n = 3, 4, then, by Remark 3.1.6 (ii) and (iii), |τEID(P3)| = 4 and |τEID(P4)| = 4.

Case 3 : If n ≥ 5, then, by Theorem 3.1.9, consider the following counting:
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i. there are 2n−3 choices of subsets of E(Pn) for A′;

ii. there are 2n−4 choices of which do not contain e1,2 union of A′;

iii. there are 2n−4 choices of which do not contain en−3,n−2 union of A′; and

iv. there are 2n−5 choices of which do not contain both e1,2 and en−3,n−2 union of A′.

Hence, |τEID(Pn)| = 2n−3 + 2(2n−4) + 2n−5 = 2n−2 + +2n−5.

Example 3.1.11. Consider the path graph P5 in Figure 2 and let E(P5) = {e1,2, e2,3, e3,4, e4,5} of the
Example 3.1.5. Here are the independent edge dominating sets of P5:

S1 = {e1,2, e3,4};
S2 = {e1,2, e4,5}; and

S3 = {e2,3, e4,5}.
By Definition 2.0.7, the generated topology of P5 is τEID(Pn) = {∅, {e1,2}, {e4,5}, {e1,2, e3,4}, {e1,2, e4,5},
{e2,3, e4,5}, {e1,2, e2,3e3,4}, {e1,2, e3,4, e4,5}, E(P5)}. Observe that by Remark 3.1.7 is satisfied.

3.2 Python Program on Independent Edge Domination Topology of
Path Graphs

This subsection presents a Python program designed to construct independent edge dominating
sets and their associated topologies for path graphs, hence supporting the theoretical findings. The
method offers computational verification of the theoretical findings, facilitating practical investigation
of independent edge dominationtopology. The program illustrates the construction of independent
edge dominating sets, their enumeration, and the generating of topology derived from these sets.

1 #Generating the Independent Edge Domination Topology on Path Graph using Python
2 from intertools import combinations
3
4 print(”Proponent: JHON NECEIR S. ONTULAN”)
5 print(”Adviser: CHERRY MAE R. BALINGIT, PhD”)
6
7 def is independent edge set(edge set, edges):
8 for i in range(len(edge set)):
9 for j in range(i + 1, len(edge set)):
10 if set(edge set[i]) & set(edge set[j]):
11 return False
12 return True
13
14 def is edge dominating set(edge set, edges):
15 dominated set = set()
16 for edge in edge set:
17 u, v = edge
18 for e in edges:
19 e u, e v = e
20 if u in (e u, e v) or v in (e u, e v):
21 dominated edges.add(tuple(sorted([e u, e v])))
22 return len(dominated edges) == len(edges)
23
24 def generate independent edge dominating sets(n):

8
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25 edges = [(i, i + 1) for i in range(1, n)]
26 independent edge dominating sets = []
27 for size in range(1, len(edges) + 1):
28 for edge set in combinations(edges, size):
29 if is independent edge set(edge set, edges) and is edge dominating set(edge set,

edges):
30 independent edge dominating sets.append(tuple(sorted (edge set)))
31 return sorted(independent edge dominating sets, key=lambda x: (len(x), x))
32
33 def generate topology from subbasis(subbasis, universal set):
34 topology = set()
35 finite intersection = set()
36 for r in range(1, len(subbasis) + 1):
37 for subset in combinations(subbasis, r):
38 intersection set = set(universal set)
39 for s in subset:
40 intersection set &= s
41 finite intersections.add(frozenset(intersection set))
42 for r in range(len(finite intersections) + 1):
43 for subset in combinations(finite intersections, r):
44 union set = frozenset().union(*subset)
45 topology.add(union set)
46 topology.add(frozenset())
47 topology.add(frozenset(universal set))
48 return sorted(topology, key=lambda x: (len(x), sorted(x)))
49
50 try:
51 n = int(input(”Enter the number of vertices for the path graph P n (n ≥ 2): ”))
52 if n < 2:
53 raise ValueError(”n must be at least 2.”)
54
55 independent edge dominating sets = generate independent edge dominating sets(n)
56
57 print(f“\nIndependent Edge Dominating Sets for P {n}:”)
58 universal set = set()
59 formatted subbasis = []
60
61 for idx, edge set in enumerate(independent edge dominating sets, start=1):
62 formatted set = ”{ ” + ”, ”.join(f”e {{{i}{j}}}” for i, j in edge set) + ” }”
63 formatted subbasis.append(frozenset(edge set))
64 universal set.update(edge set)
65 print(f”{idx}: {formatted set}”)
66
67 print(f”\nTotal number of Independent Edge Dominating Sets for P {n}:

{len(independent edge dominating sets)}”)
68
69 topology = generate topology from subbasis(formatted subbasis, universal set)
70 print(f”\nIndependent Edge Domination Topology on E(P {n}):”)
71
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72 for idx, subset in enumerate(topology, start=1):
73 formatted topology set = ”{ ” + ”, ”.join(f”e {{{i}{j}}}” for i, j in sorted(subset)) + ” }”
74 print(f”{idx}: {formatted topology set}”)
75
76 print(f”\nTotal number of Open Sets: {len(topology)}”)
77
78 except ValueError as e:
79 print(f”Invalid input: {e}”)

INPUT and OUTPUT: Let n = 7, then

10

UNDER PEER REVIEW

SDI 09
Typewritten text
List 1 : Generating the Independent Edge Domination Topology on Path Graph using Python 



4 CONCLUSIONS

This paper investigates the independent edge domination topology of path graphs consequently
offering a formal mathematical foundation for understanding the structure of independent edge domi-
nating sets and their induced topologies. The results show the distinctive characteristics and signifi-
cance of independent edge domination in path graphs, hence extending the existing knowledge
of topological structures in graph theory. This paper provides a substantial contribution through a
Python program that systematically produces independent edge dominating sets and develops their
associated topologies. This computational tool validates theoretical conclusions and offers an efficient
method for examining larger network topologies that may be difficult to investigate manually. The
program offers an automated method for analyzing and displaying the topological features of path
graphs, serving as an essential tool for academics and practitioners involved in independent edge
domination.

Motivation and Novelty of the Study

The increasing need to understand the connection between graph theory and topology drives
this effort particularly in situations where structural connectivity and dominantioncharacteristics are
crucial. In network theory, optimization, and communication systems, independent edge dominationis
essential; nevertheless, its topological implications are still not sufficiently investigated. This work
presents the independent edge dominationtopology thereby linking combinatorial graph structures
with topological spaces and offers a fresh perspective on the properties and behaviors of these graphs
under topological constraints.

The formalization of independent edge dominance as a topological notion is novelty of this work.
This study advances the concept of dominationcharacteristics beyond traditional graph theory into
topology therefore facilitating a more thorough and methodical research. A significant progress has
been made in the inclusion of a Python program to computationally build and analyze independent
edge dominationtopologies because it both supports theoretical conclusions and facilitates actual
study and application of the suggested framework.
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