


BIOCHEMICAL ASSESSMENT OF AFRICAN CATFISH CLARIAS HETEROBRONCHUS FROM OLOBIRI AND WARRI RIVERS, NIGER DELTA, NIGERIA


ABSTRACT
Objective: This study set out to ascertain the biochemical state of the African catfish, Clarias heterobronchus, from the Oloibiri and Warri rivers in Nigeria's Niger Delta, both of which have been exposed to crude oil spills for 50 years. 
Methods: Fish samples (n=5) were obtained from the two rivers and also from a fish pond in Ibadan, Oyo State, Nigeria which served as referrence location. The physicochemical properties of the two rivers were examined as well as the concentration of heavy metals in the fish samples. The catfish's muscle, liver, gut, and gills were also examined for the activities of catalase, superoxide dismutase, glutathione S-transferase, glutathione, and malondialdehyde production. Both rivers' pH values fell below the threshold that various regulatory agencies have determined is acceptable.  
Results: The control water had a high dissolved oxygen (DO) concentration (6.69±1.15 mg/l), while the Oloibiri (4.50±0.50 mg/dl) and Warri (4.01±0.25 mg/l) rivers had lower DO concentrations. The two rivers had significantly greater amounts (p<0.05) of all the heavy metals evaluated than the control. Total hydrocarbon content (THC) concentrations in the control, Oloibiri, and Warri rivers were 9.52, 35.32, and 48.56 mg/l.In every tissue analyzed, the MDA levels of Clarias heterobronchus were significantly (P <0.05) higher in the fish from the Oloibiri and Warri rivers than in the control group. When compared to the control, the gills of fish from the Warri River increased by 222%, while those from the Oloibiri River increased by 184%. The organs of fish from the Oloibiri and Warri rivers had significantly higher levels of antioxidant enzymes (p<0.05). 
Conclusions: Overall, oxidative stress in key organs and tissues (muscle, liver, gut, and gills) indicates that Clarias heterobronchus from the Olobiri and Warrı rivers are physiologically stressed.  
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Introduction
Nigeria is among the world's top producers of oil. It exports over 1.8 million barrels a day and is rated first in Africa and sixth globally. The Niger Delta, which has the biggest wetland in the world along with vast freshwater swamps, forests, and a wealth of biological diversity, is where the majority of oil exploration activities are focused. The Niger Delta region is situated on Nigeria's South-South geopolitical zone and near the tip of the Gulf of Guinea on Africa's West Coast [1]. It is made up of nine oil-producing states (Ondo, Bayelsa, Abia, Cross River, Edo, Rivers, Akwa Ibom, Delta, and Imo) and has a total land area of about 75,000 km². With a vast network of more than 900 producing oil wells and a large amount of infrastructure associated to petroleum production, the area spans more than 800 oil-producing villages [2].
The Niger Delta has been experiencing the detrimental environmental effects of oil extraction since the 1950s, when oil was discovered in Nigeria. The Niger Delta region's life expectancy is below 50 or 60 years due to the severe environmental and human damage caused by oil spills [1]. Pipeline leaks, ruptures, unintentional discharges, engineering errors, vandalism, oil theft, and artisanal crude oil refining can all result in oil spills [1]. According to assessments, over 2,567,960 barrels of crude oil were spilled in 5733 incidents in the Niger Delta region between 1976 and 2001; of these, approximately 549,060 barrels were successfully recovered, while 1,820 barrels were lost [2]. The Niger Delta has seen numerous oil blowout disasters. In the Niger Delta region, oil spills are a source of heavy metal contamination in both terrestrial and aquatic habitats [3]. In the Niger Delta, oil spills are common, and the pollution they cause has harmed the region for decades, endangering the freshwater marshes, the marine environment, the soil, as well as endangering the health and well-being of the host people [2, 4-5]. 
Fishing is one of the traditional livelihoods that used to support the local economy in the Niger Delta region. Oil spills offshore have had a devastating effect on fishermen, who have been left without a substitute source of income [1]. Researchers are looking into how environmental containments affect fish [6-7], and they are paying more attention to how dangerous crude oil or refined petroleum is to fish [8-9]. Fish life is either directly or indirectly impacted by heavy metals, a crucial component of crude oil [19]. It is well recognized that a number of contaminants, such as crude oil and its byproducts, can cause stressors that harm aquatic life [10-12].
The Niger Delta region of southern Nigeria is home to the significant Oloibiri and Warri rivers. Due to the high levels of pollution brought on by the widespread presence and operations of oil and gas industries, as well as the careless release of industrial effluents and household garbage, they have drawn more attention over time [13-14]. According to Oluowo and Omoregie [15], heavy metal contamination is one of the main contaminants that has been found in water, sediment, and biota at levels higher than those that are considered concerning. Due to their widespread presence in the ecosystem and their capacity to bioaccumulate in living things to potentially dangerous levels, heavy metal pollution has been considered a major pollutant in the Warri River [16]. The survival and well-being of non-target creatures, such fish, can be impacted by prolonged exposure to elevated concentrations [17-18]. 
According to research, fish species that consume pollutants from the environment may trigger reactions that generate reactive oxygen species (ROS), which could result in oxidative stress [19]. An imbalance between an organism's antioxidant defense system and ROS generation is known as oxidative stress [20-21]. Proteins, lipids, and DNA are examples of biological macromolecules that can be attacked by reactive oxygen species in an organism [22-23]. Oxidative damage mostly affects structural and enzymatic proteins, impairing a variety of cellular processes. Malondialdehyde (MDA), a byproduct of lipid peroxidation, is also used as a biomarker to indicate severe oxidative damage in an organism [24]. Antioxidant enzymes are utilized by biological systems to detoxify and break down the detrimental effects of ROS [25]. Fish have antioxidant defense mechanisms that are both enzymatic (superoxide dismutase, or SOD) and non-enzymatic (reduced glutathione, or GSH) and found in almost every tissue [26]. Antioxidant systems have been shown to be effective biomarkers of oxidative stress and are crucial for fishes to maintain their redox status [27]. Heavy metals can cause oxidative stress and valuating fishes' antioxidant defenses and oxidative damage can reveal heavy metal contamination in the aquatic environment, as well as the extent of the fish population's reaction to heavy metals [13, 28]. 
Understanding the existing level of water contamination is essential from an economic and environmental perspective [29]. This significantly aids in the development of laws, rules, and management recommendations to restrict the amount of wastewater contaminated by heavy metals and oil spills [4]. Thus this study determined the biochemical state of the African catfish, Clarias heterobranchus, in the Oloibiri and Warri Rivers, which have been chronically exposed to crude oil spills for more than 50 years.


MATEIALS AND METHODS
Study Rivers
The Warri River is located in Southern Nigeria's Niger Delta, between latitudes 50211 and 60001N and longitudes 50241 and 60211E. It begins in the vicinity of Utagba-Uno and runs through Warri City's oil exploration districts, passing past numerous marketplaces, residential neighborhoods, and the parking lots and waste dumps of petroleum refineries before draining into the Atlantic Ocean. According to Aghoghovwia et al. [30], this river is one of the most polluted coastal rivers in Southern Nigeria because of the regular oil spills brought on by deliberate vandalism, aging infrastructure, mishaps, and unlawful bunkering. On Sunday, January 15, 1956, crude oil was initially discovered in Nigeria at Oloibiri, which is considered to be the first renowned location for this discovery. At 4°41′30.12 N 6°21′33.3 E, it is situated in the Niger Delta, approximately 45 miles (72 km) east of Port Harcourt in the Ogbia Local Government Area of Bayelsa State, Nigeria.

Chemicals and Reagents: 
Thiobarbituric acid, trichloroacetic acid, glutathione, epinephrine and additional chemicals were gotten from sigma, St. Louis, USA. All chemicals were of diagnostic grade.

Determination of the physicochemical properties of the two Rivers (Oloibiri and Warri Rivers) and the Control 
The physicochemical characteristics of the two rivers (Oloibiri and Warri Rivers) and the control were analyzed using standard procedures (APHA 2006).  pH, DO, BOD, THC, total dissolved solids, iron, zinc, copper, cadmium, lead, nickel, and manganese are among the physicochemical characteristics that were examined.

Animals and treatment
Five samples of catfish (Claritias heterobronchus) ranging in weight from 250 to 400 grams and measuring 25.8 to 30.5 centimeters in length were gathered from the Oloibiri and Warri Rivers in August and September of 2023. Fish from a pond in Ibadan, Nigeria, were used as control fish because they were free of any contaminants that would have an impact on their biochemical reactions.  Every catfish sample was brought to the lab in ice-cold containers (0–4°C), and they were all identified using the Idodo–Umeh (2003) method. The muscle, liver, intestine, and gills were removed from the fish during medullary transection, which was used to sacrifice it [13]. Different tissue homogenates were made in a cold sodium phosphate buffer (0.1M pH 7.4). The homogenates underwent biochemical tests after being centrifuged at 10,000g for 19 minutes at 40C.

Determination of Heavy Metal Concentration in the tissues of fish samples.
To determine the concentration of heavy metals (Mn, Pb, Ni, Zn, Cu and Cd) in fish tissues, Atomic Absorption Spectrophotometer (AAS, 2000 series) was used.

Biochemical Analysis
Determination of Catalase Activity
Catalase activity was measured using the method of Aebi [31]. The technique is based on the observation that when dichromate in acetic acid is heated in the presence of H2O2, it is reduced to chromic acetate, with perchromic acid forming as an unstable intermediate. Colorimetric measurements of the resulting chromic acetate are made at 570–610 nm. After heating the reaction mixture, chromic acetate is measured colorimetrically to determine the specific tone of the catalase preparation, which is achieved by adding the dichromate acetic acid mixture and the leftover H2O.

Determination of Superoxide Dismutase (SOD) Activity
The Misra and Fridovich [32] approach was used to measure the amount of SOD activity. Because superoxide dismutase may prevent epinephrine from autoxidizing at pH 10.2, this reaction serves as the foundation for a straightforward assay for the dismutase. The oxidation of epinephrine to adrenochrome was caused by the superoxide (O2) radical produced by the santhine oxidase process. The yield of adrenochrome produced per O2' increased as the pH and epinephrine concentration increased. According to these findings, there are at least two different ways that epinephrine is autoxidized, but only one of them involves a free radical chain reaction involving superoxide (O2) radicals, making it susceptible to SOD inhibition. The quantity of SOD required to provide a 50% inhibition of the oxidation of adrenaline to adrenochrome in a minute was measured and expressed as one unit of SOD activity.

Estimation of Reduced Glutathione (GSH) Level
The reduced glutathione (GSH) level was estimated using the Beutler et al. [33] method. The majority of cellular non-protein sulfhydryl groups are typically found in the reduced form of glutathione. Thus, this technique is predicated on the fact that adding 5,5-dithiobis-12-airobentic acid (Ellman's rengen) to sulihydryl compounds results in the production of a rather stable (yellow) color. The chromophoric product of the Ellman reagent reaction with 2-tutro-5-thiobenzorc acid, the reduced glutathione, has a molar absorption at 412 nm, which was measured in a colorimeter at 430 nm.

Estimation of Glutathione-S-Transferase Activity
The activity of glutathione-S-transferase was measured in accordance with Habig et al. [34]. The basic idea is that all known glutathione-5-tranferases have a comparatively high level of activity when 1-chloro-2,4,dinitrobenzene is used as the second substrate. As a result, 1-enloro-2,4,dinitrobenzene is used as the substrate in the standard assay for glutathione-S-transfease activity. This substance's maximal absorption moves to a longer wavelength when it is conjugated with reduced glutathione. The enzymatic reaction may be directly measured thanks to the rise in absorption at the new wavelength of 340 mm.




Protein Determination
The Biuret approach, as outlined by, was used to do this. The reagent was mixed with potassium iodide to stop the Cu ions from precipitating. In an alkaline solution, proteins combine with cupric ions to generate colored complexes measured at 540nm [35]. 

Assessment of Lipid Peroxidation (LPO)
The thiobarbituric acid reactive (TBAR) products found in the test sample were measured using Vashney and Kale's [36] method to assess lipid peroxidation. The results were represented as micromolar of malondialdehyde (MDA)/g tissue. The chromogenic reagent (2-Thiobabituric acid) and malondialdehyde, an end product of LPO, reacted in an acidic environment to produce a persistent pink chromophore with maximum absorption at 532 nm, which served as the basis for the experiment. It is easily extracted into butan-1-01 and other organic solvents.

Statistical Analysis
ANOVA and the LSD multiple comparison test were used to compare the mean and standard error of the mean (SEM) for the different parameters in order to look for statistically significant differences. A P-Value of less than 0.05 was considered to be substantially different.
RESULTS
Physicochemical properties of the two rivers (Oloibiri and Warri Rivers) and the Control
Table 1 displays the physicochemical characteristics of the two rivers in this study (the Oloibiri and Warri Rivers) as well as the Control. Both rivers' pH values fell below the threshold that various regulatory agencies have determined is acceptable.  The control water had a high dissolved oxygen (DO) concentration (6.69±1.15 mg/l), while the Oloibiri (4.50±0.50 mg/dl) and Warri (4.01±0.25 mg/l) rivers had lower DO concentrations. 

Table 1: Physicochemical properties of the brewery effluent with standard permissible values of some regulatory bodies
	Parameter
	Control
	Oloibiri
River
	Warri
River
	NESREA
(2011)
Limit
	USEPA
(2009)
Limit

	pH
	7.76±0.56a
	6.35±0.51b
	6.03±0.34b
	6-9
	6.5.-8.5

	BOD (mg/L)
	78.26±2.20a
	24.42±1.68b
	20.26±1.28c
	50
	250

	Conductivity (µS/cm)
	54.00±0.45a
	73.03±2.15b
	84.34±2.56c
	250
	250

	Dissolved Oxygen (mg/l)
	6.69±1.15a
	4.50±0.50b
	4.01±0.25b
	5.0
	5.0

	Total Dissolved Solids (mg/L)
	25.02±0.45a
	35.00±0.68b
	41.00±1.44c
	500
	500

	THC (mg/l)
	9.52±1.68a
	35.32±3.58b
	48.56±3.74c
	10.0
	11.0

	Iron (mg/L)
	0.23±0.01a
	0.45±0.02b
	0.50±0.03b
	-
	0.3

	Lead (mg/L)
	0.1±0.01a
	0.30±0.01b
	0.42±0.05c
	0.05
	0.02

	Copper (mg/L)
	0.32±0.14a
	1.32±0.26b
	1.44±0.34c
	0.5
	1.3

	Zinc (mg/L)
	0.76±0.02a
	2.03±0.20b
	2.38±0.52c
	-
	0.12

	Cadmium (mg/L)
	0.03±0.01a
	0.24±0.02b
	0.26±0.04b
	0.02
	0.002

	Manganese (mg/L)
	0.10±0.001a
	0.50±0.03b
	0.70±0.04c
	0.2
	0.05

	Nickel (mg/L)
	0.10±0.01a
	0.15±0.02b
	0.18±0.02c
	0.05
	0.005


Values are displayed as Mean ± SEM of three determinations. Values with dissimilar superscripts differ significantly (p<0.05).
Mean levels of heavy metals in the tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers 
The mean concentrations of heavy metals in the heart of Clarias heterobronchus from Oloibiri and Warri Rivers, as well as the control site, are displayed in Table 2. 
Cadmium (Cd), iron (Fe), zinc (Zn), nickel (Ni), lead (Pb), and manganese (Mg) were the seven heavy metals that were examined. The two rivers had significantly greater amounts (p<0.05) of all the heavy metals evaluated than the control. The concentration of all the higher metals in the Warri River was the greatest, exceeding both the USEPA and NESREA allowable limits. Total hydrocarbon content (THC) concentrations in the control, Oloibiri, and Warri rivers were 9.52, 35.32, and 48.56 mg/l.
Ni had the lowest mean concentration (0.02 mg/kg) in the liver of fish from the Oloibiri River, whereas manganese had the highest mean concentration (7.45 mg/kg) in the tissues of fish from the control location when compared to fish from the two rivers. While t was found in every tissue of fish samples from the two rivers, cadmium was not found in any of the tissues of fish from the control site. When comparing the tissues of fish from the two rivers to the control, the mean levels of Pb and Ni were significantly higher (p<0.05). 

Table 2: Mean levels of heavy metals in the tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers 

	Heavy 
Metals 
	Control
	Oloibiri
	Warri

	
	Muscle
	Liver
	Intestine
	Gills
	Muscle
	Liver
	Intestine
	Gills
	Muscle
	Liver
	Intestine
	Gills

	Iron
	0.24
	0.12
	0.12
	0.12
	0.25
	0.20
	0.22
	0.11
	0.26
	0.22
	0.24
	0.14

	Lead
	0.06
	0.07
	0.07
	0.00
	1.85 

	1.65
	0.25
	0.89
	1.96 

	1.68
	0.34
	0.92

	Cupper
	0.22
	0.23
	0.09
	0.37
	0.33
	0.25
	0.26
	0.36
	0.22
	0.18
	0.35
	0.16

	Cadmium
	0.00
	0.00
	0.00
	0.00
	0.15
	0.24
	0.06
	0.36
	0.19
	0.11
	0.08
	0.96

	Manganese
	6.81
	7.45
	4.96
	5.05
	0.05

	0.03
	0.05
	0.03
	0.32

	0.16
	0.32
	0.58

	Zinc
	0.12
	0.10
	0.07
	0.09
	0.74
	0.23
	0.77
	0.16
	0.94
	0.24
	0.80
	0.98

	Nickel
	0.07
	0.05
	0.09
	0.07
	0.13
	0.12
	0.13
	0.13
	3.78
	3.78
	4.77
	5.13



Catalase activity in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers 
Table 3 displays the CAT activity in specific tissues of African Catfish (C. heterobronchus) from the Oloibiri and Warri Rivers. 
Clarias gariepinus from the control location and the two rivers had CAT activity ranging from 1.20 to 3.48 µmol/mg protein/min in their muscle, liver, gut, and gills. Fish from the Warri River had the highest CAT activity (3.48) in their gills, while fish from the control site had the lowest (1.20). In comparison to the control, catalase activity was significantly higher (p<0.001) in all fish organs from the two rivers. The CAT activity in the gills, liver, and muscle of fish from the Warri River and Oloibiri was likewise significantly different (p<0.05), with the Warri River exhibiting the highest CAT activity.
Table 3: Catalase activity in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
Catalase µmol/mg protein/min
	Organs 
	Control
	Oloibiri
	Warri

	
	
	
	

	Muscle
	1.50 0.80a
	2.70 0.60b
	2.81 0.20c

	Liver
	1.96 0.51a
	 0.50b
	 0.32c

	Intestine
	1.20 0.41a
	 0.80b
	 0.20b

	Gills
	1.80 0.52a
	2.70 0.40b
	 0.70c


Values are shown as meanSEM of five replicates (n=5). Values with different alphabets differ considerably (p<0.05).  
Superoxide dismutase activity in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
The SOD activity in the different tissues of African catfish Clarias heterobronchus from the Oloibiri and Warri Rivers is displayed in Table 4.
The intestine of fish from the Oloibiri River had the highest SOD activity (2.40), whereas the gills of fish from the control site had the lowest mean (1.02). Fish from the two contaminated rivers had significantly higher (p<0.05) SOD activity in their organs than fish from the control site.


Table 4: Superoxide dismutase activity in various tissues of African catfish Clarias heterobronchus
SOD (units/mg protein)
	Organs 
	Control
	Oloibiri
	Warri

	
	
	
	

	Muscle
	1.10 0.60a
	1.68 0.23b
	1.80 0.31c

	Liver
	1.20 0.35a
	1.80 0.18b
	 0.60c

	Intestine
	1.47 0.21a
	 0.70b
	 0.53c

	Gills
	1.02 0.41a
	1.64 0.14b
	1.80 0.60a

	Values are given as meanSEM of five determinations. Values with different alphabets differ significantly (p<0.05).  




Reduced glutathione levels in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
Table 5 displays the concentrations of reduced glutathione (GSH) in the different tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers. Clarias gariepinus organs from the control site had substantially lower GSH levels than fish samples from the two rivers. The gills of fish from the control site had the lowest GSH mean (0.41). Compared to samples from the Oloibiri River, fish samples from the Warri River had considerably (p<0.05) greater GSH levels in every organ.

Table 5: Reduced glutathione levels in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
GSH (mg/gram tissue)
	Organs 
	Control
	Oloibiri
	Warri

	
	
	
	

	Muscle
	0.30 0.10a
	1.10 0.22b
	1.50 0.55c

	Liver
	1.60 0.12a
	1.80 0.54b
	 1.10c

	Intestine
	1.10 0.51a
	 0.32b
	 0.58c

	Gills
	 0.46a
	 0.31b
	 0.42c


Values are stated as meanSEM (n=5). Figures with different alphabets differ considerably (p<0.05).  

Glutathione S-transferase activity in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
Table 6 shows the activity of GST in various tissues of African catfish Clarias heterobronchus from Olobiri and Warri Rivers.  GST activities were highest in the intestine of fish from Warri Rver (4.62), while the gills of fish from the control site had the lowest GST activity (1.09). With the exception of the gills, GST activity was significantly higher (p<0.05) in all the organs of fish samples from Warri river compared to those from Oloibiri River.

Table 6: Glutathione S-transferase activity in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
GST (µmol/min/mg protein)
	Organs 
	Control
	Oloibiri
	Warri

	
	
	
	

	Muscle
	1.11 0.60a
	1.67 0.28b
	1.90 0.40c

	Liver
	2.02 0.30a
	2.90 0.12b
	 0.34c

	Intestine
	2.23 0.28a
	 0.51b
	 0.56c

	Gills
	1.09 0.35a
	2.25 0.24b
	1.95 0.21c


Values are presented as meanSEM (n=5). Numbers with different alphabets differ significantly (p<0.05).  

Lipid peroxidation levels (MDA) in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
The levels of lipid peroxidation in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers is shown in Table 7.
The malondialdehyde levels in the organs of Clarias gariepinus from the control site were between 10.53 (muscle), 19.32 (liver), 16.10 (intestine) and 14.00 (gills). These values were significantly increased (p<0.05) n all organs in the two rivers compared to the control.  Malondialdehyde levels were highest in the gills of fish from site Warri river, while the muscle of fish from the control had the lowest MDA (10.53).

Table 7: Lipid peroxidation levels (MDA) in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
MDA µmol/mg protein 
	Organs 
	Control
	Oloibiri
	Warri

	
	
	
	

	Muscle
	10.53 2.89a
	18.10 5.60b
	25.05 7.30c

	Liver
	19.32 3.75a
	28.15 4.30b
	32.20 3.85c

	Intestine
	16.10 5.26a
	36.98 3.50b
	40.24 4.91c

	Gills
	14.00 4.81a
	39.76 2.43b
	45.13 4.52c

	Values are stated as meanSEM (n=5). Numbers with different alphabets differ significantly (p<0.05).  



Protein levels in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers
The levels of Protein in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers is presented in Table 8.
Protein level in the muscle, liver, intestine and gills of Clarias gariepinus from control site and the two rivers ranged between 1.04 and 1.54 mg protein/ml. The highest concentration of protein (1/54) was in the liver of fish from Warri river while the least (1.04) was seen in the gills of fish from the control site. Protein levels was significantly increased (p<0.005) in all the organs (with the exception of muscle) of fish the two rivers compared to the control. 

Table 8: Protein levels in various tissues of African catfish Clarias heterobronchus from Oloibiri and Warri Rivers

Protein levels (mg protein/ml)
	Organs 
	Control
	Oloibiri
	Warri

	
	
	
	

	Muscle
	1.24 0.18a
	1.07 0.65b
	1.22 0.09a

	Liver
	1.28 0.31a
	1.44 0.24b
	1.54 0.21c

	Intestine
	1.12 0.01a
	1.18 0.06b
	1.12 0.47c

	Gills
	1.04 0.05a
	1.06 0.08b
	1.05 0.16b


Values are expressed as meanSEM (n=5). Values with different alphabets differ significantly (p<0.05).  


DISCUSSION
The aquatic ecosystem's biodiversity and productivity are impacted by water pollution [12]. A river or lake's physical and chemical characteristics are impacted by pollution, which then cascades down to harm the community, disturb the intricate food web, and make it harder to use the lake or river [4]. When values are compared to standard values, a physicochemical parameter analysis provides an accurate picture of the water's quality [37]. The solubility of heavy metals and other compounds is impacted by the somewhat acidic nature of the contaminated rivers, according to a comparison of the physicochemical parameters examined in water samples taken from the control site and the two rivers. Low pH also slows down the rate of photosynthetic activity and the absorption of carbon dioxide and bicarbonates. The amount of cations and anions in water is closely correlated with its conductivity, which is a measurement of its capacity to carry electric current [38]. The two rivers' water had higher electrical conductivity than the control. The concentration of total dissolved solids (TDS), or salts, which often consist of anions like sulfate, chloride, and bicarbonates as well as cations like potassium, magnesium, calcium, and sodium, has also been linked to electrical conductivity. The total hydrocarbon content (THC) of the water from the two rivers and the control clearly shows a significant difference (p<0.05). The presence of oil contamination is confirmed by the high THC levels in the rivers, which are greater than allowed limits.
Some trace elements, known as heavy metals, are necessary for the body's normal maintenance processes. However, due to their non-biodegradable nature, their presence in excess causes them to bioaccumulate and become poisonous [39]. The study's findings demonstrated that, in comparison to the control water, the two rivers had noticeably higher concentrations of heavy metals. The high concentrations of heavy metals in both rivers are concerning since they are not biodegradable but instead move up the food chain [40]. They also consistently confirm levels of crude oil pollution [41].  Heavy metals have the potential to harm fish critical organs at the organism level and reduce aquatic life's biodiversity at the population level in receiving water bodies [42, 43].  Numerous cellular processes, including growth, apoptosis, differentiation, proliferation, and damage-repairing mechanisms, have been demonstrated to be hampered by them. They produce toxicity by inactivating enzymes, producing ROS, and weakening antioxidant defense [21, 43, 44]. Certain macromolecules are selectively bound by some heavy metals [16].  For instance, ferrochelatase and aminolevulinic acid dehydratase interact with lead to reduce the biological activity of these macromolecules. Genomic instability has also been connected to cadmium [16].  
The amounts of heavy metals in the fish tissues in this investigation provide proof of contamination in the Oloibiri and Warri Rivers. Because fish gills serve as respiratory organs that absorb metal ions, the gills of fish captured at location 3 acquired noticeably larger quantities of the heavy metals. Since the gills have the thinnest epithelia and are in close touch with the contaminated water, metals can easily pass through them, unlike other fish organs [41]. Heavy metals may have accumulated in other heart problems through metal-binding proteins [45].
Fish from two rivers had higher levels of CAT in all of their organs than at the control location. This was most likely caused by the high concentrations of heavy metals in the organs, which activated antioxidant defenses to lessen biological stress. Other writers [27, 46] have reported similar findings. Fish organs from the two rivers had significantly higher SOD activity in this investigation; this is again related to the biological reaction to crude oil contamination [47].  Fish from the two rivers had considerably higher amounts of GSH and malondialdehyde (MDA) in their tissues, indicating that the heavy metals in the fish were successful in causing oxidative stress in the organs.
Crude oil and its byproducts are among the many contaminants that are known to cause stress conditions that harm aquatic life [10]. Following a spill, contaminants in the water may enter the bloodstream, travel through the body, and be absorbed by the gills. Additionally, the sensitive cells of the gill secondary lamellae may be harmed by excessive concentrations, which would negatively impact the essential processes of respiration and salt management. Because the majority of heavy oils and greases are insoluble in water, they stay on the water's surface and prevent oxygen from dissolving, which has an adverse effect on aquatic life. Because oil converts organic components into inorganic ones, it depletes the dissolved oxygen in water [48]. Because the respiratory system is unable to get enough oxygen from the water to meet their fundamental metabolic demands, the fish experience increased stress at reduced dissolved oxygen levels caused by the oil spill [11]. 
Although both rivers are experiencing crude pollution due to a series of crude oil spills that have occurred in the two areas over the last 50 years, the Warri River may have been suggested to have higher levels of pollution, which explains the significant difference in lipid peroxidation in the various tissues of Clarias heterobranches obtained from the Oloibiri and Warri rivers. The antioxidant enzyme response follows the same pattern.

CONCLUSION
The catfish Clarias heterobronchus from the two rivers are physiologically stressed, which is relevant to the study's goal. Significant organs and tissues (muscle, liver, gut, and gills) have elevated levels of lipid peroxidation, indicating the production of oxidative stress. The impacted organism is at risk for a variety of disease processes due to this lipid peroxidation process. In comparison to catfish from unpolluted areas, the data from this study generally support the claim that catfish exposed to a 50-year crude oil pollution still exhibit symptoms of cellular physiological stress. 
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