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Abstract
In this paper, we enumerate certain hypotheses regarding the Riemann zeta function. The
hypotheses are in the form of bounds on the norm of the tail of the sequence that determines
the Riemann zeta function and also an optimization problem involving Diophantine approximation.
We also relate these hypotheses with the Riemann and Lindelof hypotheses.
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1 Introduction
The study of consistent patterns observed in specific sub-domains of the Riemann zeta function
(Riemann [1859]) is one which has accumulated many different methods (Titchmarsh and Heath-
Brown [1986], Edwards [1974]). One is interested in deriving bounds of norms of sums of vectors
and also on a sum of norms, with it being possible that a combination of a wide number of associated
hypotheses may be stated. A particular phenomenon that we are interested in is the occurence of
concentration in the distribution over the unit circle, which corresponds to a complex variable and
the series generating the zeta function. The theorems in the paper prove some implications and
satisfiability of multiple hypotheses. Some results involve an optimization problem arising from a
general Diophantine approximation problem and hypotheses about dependence of the optimal value
of the program on a parameter. The prior literature on this subject of study, may be found in Mangoldt
[1905], Hardy [1914], Weyl [1916], Weyl [1921], Hardy and Littlewood [1921], Littlewood [1922],
Titchmarsh [1928], Conrey [2003], Lagarias [2002], Bump et al. [2000], Borwein et al. [2008], Platt
and Trudgian [2021], Nicolas [2021], Johnston [2022], Basu [2022], Basu [2023a], Basu [2023b],
Basu [2024], Maynard and Pratt [2024], Guth and Maynard [2024] and Tao et al. [2025].

2 Asymptotic considerations for the Riemann zeta function
In this section, we shall study the following topics.
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1) A Diophantine approximation problem in the form of an optimization problem and lower bound
the optimal value conditional on a hypothesis on it’s limit. As one scales over the size m of the
problem, we can show that there does not exist an upper bound that is the exponential of a power of
logarithm i.e. O(eln

k(m)) with k ∈ (0, 1). This will be related to an approximate functional equation for
the Riemann zeta function for the line σ = 1.

2) We will consider the validity of certain hypotheses concerning the Riemann zeta function in the
critical region i.e. 0 < σ < 1 and also in the situation when σ = 1. We will relate these hypothesis
with the Riemann hypothesis (Riemann [1859],Riemann [1859]), the Lindelof hypothesis (Lindelof
[1908]) and a strong version of the Lindelof hypothesis involving the tail of the absolutely convergent
series corresponding to the Riemann zeta function.

3) Finally, we will derive certain polynomial inequalities (of order four) in integers, which would then
be related to the Diophantine approximation problem.

4) All of the above problems will then related to the idea of searching for discrepancies creating in
series, such as those corresponding to the law of iterated expectations such as concentration (Basu
[2022], Basu [2023a],Basu [2023b], Basu [2024]) and Ω-phenomena (see chapter 8 of Titchmarsh
and Heath-Brown [1986]).

We will introduce some notation for asymptotics. Given a subset of the Euclidean space X ⊆ Rd1

and functions f, g : X → Rd2 we say f = O(g) if there exists a constant C > 0 such that
||f(x)|| ≤ C||g(x)|| for each x ∈ X. We say that f = Ω(g) if there exists an unbounded subset
X ′ ⊆ X and a constant C > 0 such that ||f(x)|| ≥ C||g(x)|| for each x ∈ X ′.

The Riemann zeta function corresponds to series that involves complex numbers of the form n−s,
in which s = (σ, t). The Riemann zeta function, for 0 < σ ≤ 1, is defined by the function

ζ(s) = (
1

1− 21−s
)×

∑
n≥0

Zn(s) (2.1)

in which Z0(s) = (1, 0); Zn(s) = 1
(2n+1)s

− 1
(2n)s

, for each n ∈ Z+. We are also interested in
properties of the following function.

ζ∗(s) =
∑
n≥0

Zn(s). (2.2)

The above series is absolutely convergent and one may derive the polar form of the individual
elements in the sequence Zn(s).

Z∗(σ, t,m) :=
∑

n≥m+1

||Zn(s)||. (2.3)

It will be useful to prove a theorem involving lower bounds for a sum of vectors in the complex plane.
For any z ∈ R2, denote as θ(z) ∈ [0, 2π), the angle corresponding to the complex number z.

Proposition 2.1. Suppose that θ′, θ′′ ∈ [0, 2π) are such that 0 ≤ θ′′ − θ′ ≤ π
2

. Suppose that
z1, z2, ..., zn are vectors in R2 such that θ(zm) ∈ [θ′, θ′′] for each m ∈ {1, 2, .., n}. Then,

||
n∑

m=1

zm|| ≥ cos(θ′′ − θ′)(

n∑
m=1

||zm||). (2.4)

Proof. We prove the theorem by induction. We first prove the result for two vectors. Suppose we
have z1, z2, all within an angle of θ′′− θ′. One notes that the set {z : θ(z) ∈ [θ′, θ′′]} is a convex cone.
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Then, by dropping a perpendicular from z1 + z2 on the line joining 0 and z2, say at point z′, then we
have that {0, z1 + z2, z

′} form a right angled triangle. Note that the angle between z1 and z2 is equal
to the angle from z2 to the altitude [z1 + z2, z

′] of the triangle (denoting [z′, z′′] to be the line segment
joining z′ and z′′). Define this angle to be θ′′′. Then, we have that θ′′′ ≤ θ′′ − θ′. The length of the
hypotenuse is the length ||z1 + z2||. By Pythagoras’s theorem,

||z1 + z2||2 = (||z2||+ cos(θ′′′)||z1||)2 + sin2(θ′′′)||z1||2 (2.5)

≥ cos2(θ′′ − θ′)(||z1||+ ||z2||)2. (2.6)

For the inductive step, we have z1, ..., zn−1 such that θ(zm) ∈ [θ′, θ′′] and m ∈ {1, ..., n − 1}. Then,
we may apply the above observation for two vectors and then the result follows.

Of course, by the symmetry of the unit circle, the above theorem also holds in the situation where
we have θ′, θ′′ ∈ [0, 2π) such that 0 ≤ θ′ + (2π − θ′′) ≤ π

2
and θ(zm) ∈ [0, π] ∪ [π′′, 2π).

In Basu [2024], a formula was derived for the norm ||Zn(s)|| by a half-angle formula for the sine
and cosine trigonometric functions.

||Zn(s)|| = (2n)−σ − (2n+ 1)−σ + 2(2n)−σ
∣∣∣ sin(0.5|t| ln(1 + 1

2n

)∣∣∣. (2.7)

This allow us to obtain the upper bound Z∗(σ, t,m) = O(h(σ, t,m)), where

h(σ, t,m) =

∫
(0, 1

m+1
)

ωσ−2 ln(1 + ω|t|)dν(ω). (2.8)

The measure ν denotes the Lebesgue measure on [0, 1]. The next theorem is a relatively simple
approximate formula for the Riemann zeta function.

Proposition 2.2. For each σ ∈ (0, 1], we have that

ζ(s) =

n∑
m=1

1

ms
+O(n1−σ) +O(h(σ, t, n)). (2.9)

Proof. The result follows because of an equality that involves multiplication by the term (1 − 21−s).
Note that

(1− 21−s)(

n∑
m=1

1

ms
) =

n∑
m=1

(−1)m+1

ms
+O(n1−σ). (2.10)

The O(n1−σ) term follows from a comparison with the integral
∫ 2n

n
x−σdx. Then, we prove the result

by applying the tail bound (Basu [2024]), the last term being O(h(σ, t, n)), which is also O( |t|
nσ ) for the

tail (see, for example Basu [2023a] for a geometric proof),

Before proceeding, we will introduce another notion in order to study sufficient conditions for Ω-
phenomena. For a complex variable s, we define the distribution µs on the unit circle S1 as follows.
For each measurable subset A ⊆ S1, we define

µs(A) =

∑
m≥0:θ(Zn(s))∈A ||Zn(s))||∑

m≥0 ||Zn(s))||
. (2.11)

We say that µs is concentrated if either there exist θ′, θ′′ ∈ [0, 2π) such that 0 ≤ θ′′ − θ′ ≤ π
2

and

µs({z : θ′ ≤ θ(z) ≤ θ′′}) > 1

1 + cos
(

θ′′−θ′
2

) (2.12)
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or there exist θ′, θ′′ ∈ [0, 2π) such that 0 ≤ θ′ + (2π − θ′′) ≤ π
2

and

µ({z : θ(z) ∈ [0, θ′] ∪ [θ′′, 2π]}) > 1

1 + cos
(

θ′+(2π−θ′′)
2

) . (2.13)

The following optimization problem is related to the notion of concentration above i.e. situations when
µs is concentrated. This is needed to get an upper bound on the sum of norms

∑m
n=1 ||Zn(s)|| by

applying the formula for the norm of Zn(s).

min
(t,(qn)mn=1)∈R×Zm−1

t

subject to : 2(2n)−σ
∣∣∣ sin(0.5t ln(1 + 1

2n

)∣∣∣ ≤ √
2− 1√
2m

for all 1 ≤ n ≤ m. (2.14)

t ≥ 100. (2.15)

Define t∗∗(m) to be the optimal value of the above optimization problem.

The following integer program related to Diophantine approximation (Schmidt [1996], Schrijver [1998],
Conforti et al. [2014], Boyd and Vandenberghe [2004]) allows one to deduce periodicities of concentrated
points and large norms in terms of an Ω-phenomenon.

min
(t,(qn)mn=2)∈R×Zm−1

t

subject to :
∣∣∣( ln(n)

2π

)
t− qn

∣∣∣ ≤ r

2π
for all 2 ≤ n ≤ m. (2.16)

qn ≥ 0 for all 2 ≤ n ≤ m. (2.17)
m∑

n=2

qn ≥ 1. (2.18)

t ≥ 0. (2.19)

Suppose that t∗(m, r) is the optimal value of the program. In this paper, we will consider the following
hypothesis concerning ζ, ζ∗ and the sequence Zn(s). Then, theorems are proved concerning the
implications and possibilities of situations when multiple hypotheses are satisfied.

Hypothesis 2.1. Suppose that 0.5 ≤ σ < 1. Then, there exist α ∈ (0, 1), k ∈ (0, 1) such that
Z∗(σ, t,m) = O((eln

k(|t|))m−α).

Hypothesis 2.2. Suppose that 0.5 ≤ σ < 1. Then, there exist α > 1 such that Z∗(σ, t,m) =

O( |t|
eln

α(m) ).

Hypothesis 2.3. There exist α > 1 such that Z∗(1, t,m) = O( |t|
eln

α(m) ).

Hypothesis 2.4. Suppose that 0.5 ≤ σ < 1. Then, for each ϵ > 0, there exists α ∈ (0, 1), such that
Z∗(σ, t,m) = O(|t|ϵm−α).

Hypothesis 2.5. There exists r̄ > 0 such that for each 0 < r ≤ r̄, there exists Q > 0, for which
t∗(m, r) = O(mQ).

Hypothesis 2.6. There exists r̄ > 0 such that for each 0 < r ≤ r̄, there exists Q > 1, for which
t∗(m, r) = O(eln

Q(m)).
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Hypothesis 2.7. For every 0 < r < 1, we have that limm→∞ t∗(m, r) = +∞.

Hypothesis 2.8. There exists Q > 0 such that t∗∗(m) = O(mQ).

Hypothesis 2.9. There exists Q > 1 such that t∗∗(m) = O(eln
Q(m)).

Hypothesis 2.10. We have that limm→∞ t∗∗(m) = +∞.

Hypothesis 2.11. (Riemann) Suppose that s = (σ, t) such that 0 < σ < 1. If ζ(s) = 0, then σ = 1/2.

Hypothesis 2.12. (Lindelof) Suppose that 0.5 ≤ σ < 1. Then, for each ϵ > 0, we have that ζ(s) =
O(|t|ϵ).

We prove the following theorems.

Proposition 2.3. Suppose that 0.5 ≤ σ < 1. Suppose that Hypothesis 2.1, Hypothesis 2.8 and
Hypothesis 2.10 are satisfied. Then, there exist countably many pairwise disjoint intervals {[tk, t̄k]}k∈Z+ ,
such that limk→∞ tk → +∞ and for each k and t ∈ [tk, t̄k], we have that µ(σ,t) is concentrated.

Proof. In this situation, as t∗∗(m) varies over m, we upper bound the sum of norms
∑m

n=1 ||Zn(s)|| <
1 and is bounded away from 1, while the tail Z∗(σ, t∗∗(m),m) = O((eln

k(m))m−α) converges to zero.
Since limm→+∞ t∗∗(m) = +∞, we may find. Hence, we may find an unbounded set of t-values such
that µ(σ,t)({(1, 0)}) > 0.5.

Proposition 2.4. Suppose that 0.5 ≤ σ < 1. Suppose that Hypothesis 2.2, Hypothesis 2.9 and
Hypothesis 2.10 are satisfied, in which Q < α. Then, there exist countably many pairwise disjoint
intervals {[tk, t̄k]}k∈Z+ , such that limk→∞ tk → +∞ and for each k and t ∈ [tk, t̄k], we have that
µ(σ,t) is concentrated.

Proof. The argument and conclusion are the same as in the previous theorem. Except, now we have

the tail bound Z∗(σ, t∗∗(m),m) = O( e
lnQ(m)

eln
α(m) ).

In the next three theorems, we will be interested in lower bounding the norm of the term
∑n

m=1 m
−s

rather than upper bounding the sum of norms
∑m

n=1 ||Zn(s)|| as in the context involving concentration
phenomena on points along the imaginary axis.

Proposition 2.5. Suppose that Hypothesis 2.7 is satisfied. Then, there exists 0 < r̄ < 1 such that
for every 0 < r ≤ r̄, there does not exist any k ∈ (0, 1) such that t∗(m, r) = O(eln

k(m)).

Proof. The result follows from the previous propositions 1.1 and 1.2 along with the behaviour of the
Riemann zeta function on the line σ = 1. The O(n1−σ) term is bounded. We may choose θ′, θ′′ such
that 0 < θ′ + (2π − θ′′) < π

2
and the value θ′ + (2π − θ′′) will determine the value of r̄.

Then, by the integer program, we may find a t-value such that the norm ||
∑n

m=1
1

ms || is Ω(ln(m)),
by Diophantine approximation, with t∗(m, r) varying over m and t∗(m, r) = O(eln

k(m)). The tail term
O( t

∗(n,r)
nσ ) converges to zero. This implies that ζ(1, t) = Ω(ln(|t|). However, this contradicts the fact

that ζ(1, t) = O( ln(|t|)
ln(ln(|t|)) ) (see Weyl [1921], Littlewood [1922] and Theorem 5.16 in Titchmarsh and

Heath-Brown [1986]).

Proposition 2.6. It is impossible that Hypothesis 2.4, Hypothesis 2.5, Hypothesis 2.7 and Hypothesis
2.12 are satisfied.
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Proof. We prove the theorem by contradiction. Suppose that the four hypotheses can be satisfied.
Suppose that 0.5 < σ < 1. Note that we have the lower bound on the norm of the term

∑n
m=1 m

−s +
O(n1−σ) in the approximate formula, which is Ω(n1−σ). This is because, by choosing θ′ < θ′′ such
that 21−2σ < θ′ + (2π − π′′) < π

4
, we lower bound the norm ||

∑n
m=1 m

−s|| as cos(θ′ + (2π −
π′′))(

∑n
m=1 m

−σ) by Proposition 1.1, while the O(n1−σ) is in fact less than 21−2σn1−σ. Then,

by Hypothesis 1.5 and Hypothesis 1.7, we have the
∑n

m=1 m
−s + O(n1−σ) is Ω((|t|

1−σ
Q ) and by

Hypothesis 1.4, there exists small ϵ > 0 such that Qϵ < α and the tail Z∗(σ, t∗∗(m),m) = O(mQϵm−α)
converges to zero. Then, by Hypothesis 1.12, by choosing ϵ < 1−σ

Q
, we obtain a contradiction.

Proposition 2.7. It is impossible that Hypothesis 2.3, Hypothesis 2.6, Hypothesis 2.7 and Hypothesis
2.11 are satisfied, in which Q < α.

Proof. The theorem is proved by the same argument as the previous theorem, by contradiction.
However, we consider complex variables (σ, t) on the line σ = 1. Suppose that four hypotheses
are satisfied. In the approximate formula, the lower bound on the term

∑n
m=1 m

−s + O(n1−σ) is
Ω(| ln

1
Q (|t|)|). However, by Hypothesis 1.11, we have that ζ(s) = O(ln(ln(|t|))) (see Littlewood

[1925] and Theorem 14.8 in Titchmarsh and Heath-Brown [1986]), which leads to a contradiction.

One may consider the following, more general version of the optimization problem related to
Diophantine approximation studied above. Suppose that a = (a1, a2, ..., an) is a vector of positive
real numbers a1, a2, ..., an > 0.

min
(t,(qj)

n
j=1)∈R×Zm−1

t

subject to :
∣∣∣ajt− qj

∣∣∣ ≤ r

2π
for all 1 ≤ j ≤ n. (2.20)

qj ≥ 0 for all 1 ≤ j ≤ n. (2.21)
n∑

j=1

qj ≥ 1. (2.22)

t ≥ 0. (2.23)

Then, for a vector of integers q = (q1, q2, ..., qn) ∈ Zn\{0}, we define the function

f(t; q) =

n∑
j=1

(ajt− qj)
2. (2.24)

The optimal value of f(t; q) at q is defined as

F (q) = min
t∈R

f(t; q). (2.25)

One may then explicitly derive the function F is closed form as a polynomial in q. This is done as
follows. Suppose that we have an optimizer t̂(q), then

f ′(t̂(q)) =

n∑
j=1

2aj(aj t̂(z)− qj) = 0. (2.26)

Hence,

t̂(q) =
< a, q >

||a||22
, (2.27)
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in which < a, q >=
∑n

j=1 ajqj is the inner product and ||a||2 =
√∑n

j=1 a
2
j is the Euclidean norm.

Hence,

F (q) = ||q||22 −
< a, q >2

||a||22
. (2.28)

Note that F (q) is quadratic in a and q. By Dirichlet’s approximation theorem, we have that

inf
q∈Zn\{0}

F (q) = 0 (2.29)

One may then perform continuous Diophantine approximation in t, by means of the following polynomial
inequalities for ε, δ > 0 i.e.

F (q) < ε (2.30)

and

(< a, q > aj − qi||a||22)2 < δ||a||42. (2.31)

3 Conclusion
This paper allows us investigate the properties of various hypotheses that may be stated in the context
of the Riemann zeta function. The behaviour in the region 0 < σ < 1 and also the region σ = 1 both
play a role in proving the results in this situation and other related situations. Perhaps interestingly, a
connection emerges with occurence of concentration phenomena infinitely often along the imaginary
axis. This would also be an example of a discrepancy created in the zeta series following from the
law of iterated expectations. Another connection is formed with asymptotics and bounds on specific
objects of interest.
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