
Abstract

This paper presents a comprehensive investigation into the norm attain-
ability of compact operators on infinite-dimensional Hilbert spaces, of-
fering novel spectral and geometric insights. We establish necessary and
sufficient conditions for norm attainment in terms of the spectral structure
of the operator, demonstrating that a compact operator T attains its norm
if and only if ∥T∥ is an eigenvalue of |T | =

√
T ∗T with a corresponding

eigenvector of unit norm. Our results extend to Schatten class operators,
highlighting the interplay between norm attainment, singular values, and
maximizing sequences. Furthermore, we explore norm attainment under
perturbations, revealing stability conditions and spectral dominance prop-
erties that ensure preservation of norm-attaining behavior. These findings
contribute to a deeper understanding of operator theory with applications
in quantum mechanics, signal processing, and functional analysis.
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Norm attainability plays a crucial role in operator theory, offering significant in-
sights into the spectral and geometric structure of bounded linear operators on
Hilbert spaces. The study of norm-attaining operators has a rich history, dating
back to classical results in functional analysis [5, 6], and continues to be an active
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area of research due to its connections with spectral theory, optimization, and
applications in various mathematical and physical disciplines [4, 14]. A bounded
linear operator T on a Hilbert space H is said to attain its norm if there exists
a unit vector x ∈ H such that ∥T∥ = ∥Tx∥. This property is especially sig-
nificant for compact operators, where spectral considerations are instrumental
in characterizing norm attainability [1, 2]. The interplay between norm attain-
ment and spectral properties of T raises fundamental questions about the role
of singular values, eigenvalues, and maximizing sequences in understanding op-
erator behavior [3, 8]. In this paper, we extend classical results by presenting
novel characterizations of norm attainment for compact operators in infinite-
dimensional Hilbert spaces. Specifically, we show that a compact operator T
attains its norm if and only if its largest singular value is an eigenvalue of the
absolute operator |T | =

√
T ∗T . This spectral characterization provides deeper

insights into norm-attaining vectors and maximizing sequences [7, 11]. Fur-
thermore, we explore the stability of norm attainment under perturbations, a
key aspect in numerical analysis and applications in physics and engineering
[9, 13]. Our results extend to Schatten class operators, revealing new insights
into their norm-attaining behavior and its implications in functional analysis
[10, 12]. Additionally, we examine the relationship between norm attainability
and compactness, leading us to investigate extensions to non-compact opera-
tors and norm attainability properties in Banach spaces [10, 15]. These findings
contribute to the broader understanding of norm-attaining operators and their
applications across diverse mathematical and applied fields.

Preliminaries

In this section, we establish the fundamental concepts and notations that will be
used throughout the paper. We review essential results from functional analysis,
operator theory, and spectral theory relevant to norm attainment.

Hilbert Spaces and Operators

Let H be an infinite-dimensional Hilbert space over C, equipped with the inner
product ⟨·, ·⟩, which induces the norm ∥x∥ =

√
⟨x, x⟩ for all x ∈ H. A bounded

linear operator T : H → H satisfies ∥T∥ = sup∥x∥=1 ∥Tx∥. A compact operator
T is one for which the image of the unit ball in H under T has compact clo-
sure. The class of compact operators includes Hilbert-Schmidt and trace-class
operators, which are significant in many applications.

Singular Values and Spectral Properties

For any compact operator T , its singular values are given by the eigenvalues
of the positive semi-definite operator |T | =

√
T ∗T . The sequence of singular

values sn(T ) is non-increasing and converges to zero if T is compact. The largest
singular value, denoted s1(T ) = ∥T∥, plays a crucial role in norm attainability.A
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key property of compact operators is that they possess at most countably many
nonzero eigenvalues, and any accumulation point of the spectrum (if it exists)
must be zero. For normal compact operators, the spectrum consists entirely of
eigenvalues.

Norm-Attaining Operators

An operator T is said to attain its norm if there exists a unit vector x ∈ H such
that ∥Tx∥ = ∥T∥. The study of norm-attaining operators is deeply connected
to the geometry of Hilbert spaces, the structure of eigenvectors, and the dis-
tribution of singular values. If T is compact, norm attainment is equivalent to
∥T∥ being an eigenvalue of |T |.

Schatten Classes and Perturbation Theory

The Schatten p-classes, denoted Sp, consist of compact operators whose singu-
lar values satisfy

∑
n sn(T )

p < ∞ for 1 ≤ p < ∞. These classes generalize
the Hilbert-Schmidt and trace-class operators and provide a rich framework
for studying norm attainment. Perturbation theory plays an essential role in
analyzing norm-attaining operators under small modifications. If T is a norm-
attaining operator, we explore conditions under which small perturbations T+S
retain norm attainability. This is particularly important in applications where
exact operator structures are subject to variations.

Main Results and Discussions

Theorem 1. Let T be a compact operator on an infinite-dimensional Hilbert
space H. Then T attains its norm if and only if ∥T∥ is an eigenvalue of |T | =√
T ∗T with an associated eigenvector of unit norm.

Proof. Suppose T attains its norm. Then there exists a unit vector x ∈ H such
that ∥T∥ = ∥Tx∥. By the polar decomposition theorem, we can write T = U |T |,
where U is a partial isometry with kerU = kerT . Thus, we have

∥T∥ = ∥Tx∥ = ∥U |T |x∥ = ∥|T |x∥.

Since ∥T∥ = ∥|T |x∥ and |T | is self-adjoint, it follows that x is an eigenvector of
|T | with eigenvalue ∥T∥. Conversely, suppose ∥T∥ is an eigenvalue of |T | with
a corresponding unit eigenvector x, i.e.,

|T |x = ∥T∥x.

Applying T , we obtain

∥Tx∥ = ∥U |T |x∥ = ∥U(∥T∥x)∥ = ∥T∥∥Ux∥.

Since x is an eigenvector of |T |, it follows that x is also a norm-attaining vector
for T . Hence, T attains its norm.
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Theorem 2. If T is a compact operator on a Hilbert space, then there exists a
unit vector x ∈ H such that ∥T∥ = ∥Tx∥ if and only if the eigenspace associated
with ∥T∥ in |T | is nontrivial.

Proof. Suppose T attains its norm, so there exists a unit vector x such that
∥T∥ = ∥Tx∥. Using the polar decomposition T = U |T |, we have

∥T∥ = ∥Tx∥ = ∥U |T |x∥ = ∥|T |x∥.

Since |T | is self-adjoint and compact, the spectral theorem implies that it has
an orthonormal basis of eigenvectors. The equation ∥T∥ = ∥|T |x∥ shows that x
is an eigenvector of |T | corresponding to ∥T∥, making the eigenspace associated
with ∥T∥ nontrivial. Conversely, if the eigenspace associated with ∥T∥ in |T | is
nontrivial, then there exists a nonzero vector x such that

|T |x = ∥T∥x.

Normalizing x so that ∥x∥ = 1, we apply T = U |T | to obtain

Tx = U |T |x = U(∥T∥x) = ∥T∥Ux.

Taking norms, we find
∥Tx∥ = ∥T∥,

which confirms that T attains its norm.

Theorem 3. For a compact operator T on H, the norm attainment of T is
equivalent to the existence of a singular value s1(T ) = ∥T∥ with an associated
singular vector satisfying Tx = s1(T )y for some unit vector y.

Proof. By the singular value decomposition (SVD), every compact operator T
on a Hilbert space has a decomposition

Txn = snun,

where {xn} and {un} are orthonormal sets of singular vectors, and {sn} is the
sequence of singular values arranged in descending order. If T attains its norm,
then there exists a unit vector x such that

∥T∥ = ∥Tx∥.

Since the singular values measure the action of T , the largest singular value
s1(T ) must satisfy ∥T∥ = s1(T ). This implies that x is a corresponding singular
vector and there exists a unit vector y such that

Tx = s1(T )y.

Conversely, if there exists a singular value s1(T ) = ∥T∥ with a singular vector
x, then

Tx = s1(T )y.

Taking norms, we obtain

∥Tx∥ = s1(T )∥y∥ = s1(T ).

Since s1(T ) = ∥T∥, it follows that T attains its norm.
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Theorem 4. If T is a self-adjoint compact operator, then T attains its norm if
and only if ∥T∥ is a spectral value of T , and there exists an eigenvector associated
with it.

Proof. Since T is a self-adjoint compact operator, its spectrum consists of eigen-
values that accumulate only at zero. Let λ1, λ2, . . . be the nonzero eigenvalues
of T (if any), ordered so that |λ1| ≥ |λ2| ≥ . . . . If T attains its norm, then
there exists a unit vector x such that ∥T∥ = ∥Tx∥. This implies that ∥T∥ is
the largest absolute eigenvalue of T with an associated eigenvector x satisfying
Tx = ∥T∥x. Conversely, if ∥T∥ is a spectral value of T and there exists an
eigenvector x such that Tx = ∥T∥x, then clearly ∥Tx∥ = ∥T∥, which shows
that T attains its norm.

Theorem 5. A compact normal operator T attains its norm if and only if ∥T∥
belongs to the point spectrum of T and has a corresponding eigenvector in H.

Proof. Since T is normal, we have T ∗T = TT ∗, and T is diagonalizable in
an orthonormal basis consisting of eigenvectors. The spectral theorem ensures
that T has a complete orthonormal set of eigenvectors corresponding to its
eigenvalues λn. If T attains its norm, then there exists a unit vector x such
that ∥Tx∥ = ∥T∥. Since T is normal, the spectral radius of T is equal to its
norm, meaning that ∥T∥ = sup |λn|. This supremum must be attained by some
eigenvalue λk, meaning there exists an eigenvector xk such that Txk = λkxk

and |λk| = ∥T∥, proving norm attainment. Conversely, if ∥T∥ belongs to the
point spectrum, then there exists a unit eigenvector x such that Tx = ∥T∥x.
This immediately implies that T attains its norm.

Theorem 6. For a compact operator T in a Hilbert space, T attains its norm if
and only if there exists a sequence of unit vectors {xn} such that limn→∞ ∥Txn∥ =
∥T∥ and {xn} converges weakly to a norm-attaining vector.

Proof. Suppose T attains its norm. Then there exists a unit vector x such
that ∥T∥ = ∥Tx∥. Define a sequence xn = x for all n, which trivially sat-
isfies limn→∞ ∥Txn∥ = ∥T∥ and weakly converges to x, ensuring norm attain-
ment. Conversely, suppose there exists a sequence of unit vectors {xn} such that
limn→∞ ∥Txn∥ = ∥T∥ and {xn} converges weakly to some vector x. Since T is
compact, it maps weakly convergent sequences to norm convergent sequences,
meaning that Txn → Tx in norm. Taking the norm limit on both sides,

∥Tx∥ = lim
n→∞

∥Txn∥ = ∥T∥.

Thus, x is a norm-attaining vector, proving that T attains its norm.

Theorem 7. If T is a compact operator with singular values {sn(T )}, then T
attains its norm if and only if ∥T∥ = s1(T ) and there exists a maximizing unit
vector x such that Tx = ∥T∥y for some unit vector y.
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Proof. Since T is compact, its singular values sn(T ) form a non-increasing se-
quence tending to zero. The operator norm of T is given by

∥T∥ = sup
∥x∥=1

∥Tx∥.

By the singular value decomposition (SVD), we can write T as

T =
∑
n

sn(T )un ⊗ vn,

where {un} and {vn} are orthonormal sequences in the Hilbert space. If T
attains its norm, there exists a unit vector x such that ∥T∥ = ∥Tx∥. This
means Tx must be aligned with a right singular vector v1 corresponding to
s1(T ). Thus,

Tx = s1(T )y,

where y is a unit vector. Conversely, if such a vector y exists, we obtain ∥Tx∥ =
s1(T ), proving that T attains its norm.

Theorem 8. Let T be a compact operator belonging to the Schatten p-class Sp

for 1 ≤ p < ∞. Then T attains its norm if and only if the largest singular value
s1(T ) is an eigenvalue of |T | and has a corresponding eigenvector.

Proof. Since T is in the Schatten p-class, its singular values satisfy∑
n

sn(T )
p < ∞.

The operator |T | =
√
T ∗T is self-adjoint and compact, with eigenvalues given

by the singular values of T . If T attains its norm, then there exists a unit vector
x such that

∥T∥ = ∥Tx∥ = s1(T ).

This implies that x is a right singular vector of T corresponding to s1(T ),
meaning s1(T ) is an eigenvalue of |T |. Conversely, if s1(T ) is an eigenvalue of
|T | with an associated unit eigenvector x, then

|T |x = s1(T )x.

Since T and |T | share the same singular vectors, we conclude that Tx = s1(T )y
for some unit vector y, meaning T attains its norm.

Theorem 9. If T is a compact operator on a Hilbert space, then T attains
its norm if and only if T ∗ attains its norm and their respective norm-attaining
vectors form a dual pair.

Proof. If T attains its norm, there exists a unit vector x such that ∥T∥ = ∥Tx∥.
Since T ∗ is compact, we consider the dual action:

∥T ∗∥ = sup
∥y∥=1

∥T ∗y∥.
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The norm of T ∗ is equal to the norm of T , and we can write

⟨Tx, y⟩ = ∥T∥⟨x, y⟩

for some unit vector y. This implies that T ∗ attains its norm at y with

T ∗y = ∥T ∗∥x.

Thus, x and y form a dual pair satisfying ⟨x, y⟩ = 1. Conversely, if T ∗ attains its
norm at some unit vector y, then the same argument applies in reverse, showing
that T attains its norm.

Theorem 10. Let T be a compact operator with a countable sequence of singular
values {sn}. If T attains its norm, then there exists a corresponding singular
vector in the range of T such that ∥Tx∥ = ∥T∥.

Proof. Since T is a compact operator, its singular values {sn} form a sequence
converging to zero. The norm attainment assumption implies that there exists a
unit vector x ∈ H such that ∥Tx∥ = ∥T∥. By the spectral theorem for compact
operators, the singular values of T correspond to the eigenvalues of |T | =

√
T ∗T ,

with associated singular vectors forming an orthonormal basis of H. Hence, the
unit vector x is a singular vector corresponding to the largest singular value
s1(T ) = ∥T∥, proving the claim.

Theorem 11. If T is a Hilbert-Schmidt operator on an infinite-dimensional
Hilbert space, then T attains its norm if and only if there exists a maximizing
sequence converging strongly to a unit norm vector.

Proof. Since T is a Hilbert-Schmidt operator, it belongs to the Schatten 2-
class and has a countable sequence of singular values sn(T ). By definition,
∥T∥ = sup∥x∥=1 ∥Tx∥. If T attains its norm, there exists a unit vector x ∈ H
such that ∥Tx∥ = ∥T∥, which implies x is a maximizing vector. Conversely, if
a maximizing sequence {xn} exists such that limn→∞ ∥Txn∥ = ∥T∥, then by
the compactness of T , a subsequence of {Txn} converges strongly, ensuring the
existence of a norm-attaining vector. This proves the equivalence.

Theorem 12. If T is a compact operator with finite rank, then T always at-
tains its norm, and the corresponding norm-attaining vector lies in the finite-
dimensional range of T .

Proof. Since T has finite rank, its image is a finite-dimensional subspace of H.
By the spectral theorem, T can be represented using singular value decomposi-
tion as T =

∑r
i=1 siui⊗vi, where {ui} and {vi} are orthonormal sets of singular

vectors and s1 ≥ s2 ≥ · · · ≥ sr > 0 are the singular values of T . The largest sin-
gular value s1 is attained by the corresponding singular vector v1, ensuring that
T attains its norm at x = v1. Since the image of T is spanned by {u1, . . . , ur},
the norm-attaining vector lies in the range of T .
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Theorem 13. A compact self-adjoint operator T attains its norm if and only
if its largest absolute eigenvalue is attained by an eigenvector of unit norm that
spans a one-dimensional eigenspace.

Proof. Since T is a compact self-adjoint operator, its spectrum consists of eigen-
values that accumulate only at zero. Let λ1 = ∥T∥ be the largest absolute
eigenvalue of T . If T attains its norm, there exists a unit vector x ∈ H such
that ∥T∥ = ∥Tx∥. Since T is self-adjoint, Tx = λx for some eigenvalue λ with
|λ| = ∥T∥. This implies that λ1 is attained by an eigenvector of unit norm.
Conversely, suppose that λ1 is an eigenvalue of T and there exists a unit eigen-
vector x such that Tx = λ1x. Then, we have ∥Tx∥ = |λ1|∥x∥ = λ1 = ∥T∥,
proving norm attainability. The condition that the eigenspace corresponding to
λ1 is one-dimensional ensures that no other vectors contribute to the maximum
norm, solidifying the uniqueness of norm attainment.

Theorem 14. For any compact operator T on a Hilbert space, there exists an
equivalent norm in which T attains its norm, and this norm can be chosen to
emphasize spectral dominance.

Proof. Since T is compact, its singular value decomposition exists, meaning
there is an orthonormal basis of singular vectors corresponding to its singular
values. Define an equivalent norm ∥ · ∥T on the Hilbert space such that it scales
the contributions of vectors in the direction of the singular vectors associated
with the dominant singular value s1(T ). Specifically, we can define a new norm
by

∥x∥T = sup
y ̸=0

|⟨Tx, y⟩|
∥y∥

.

This norm ensures that T attains its norm with respect to the chosen norm
structure. Since equivalent norms preserve boundedness and topological prop-
erties, the modified space remains a Hilbert space, and norm attainability follows
directly from the construction.

Theorem 15. A compact normal operator in a separable Hilbert space attains
its norm if and only if it has a spectral decomposition where the largest spectral
value corresponds to an eigenvector with norm one.

Proof. Since T is a compact normal operator, it admits a spectral decomposi-
tion:

T =
∑
n

λnPn,

where λn are the eigenvalues and Pn are the associated orthogonal projections
onto the corresponding eigenspaces. If T attains its norm, there exists a unit
vector x such that ∥T∥ = ∥Tx∥. Since T is normal, Tx must be a scalar multiple
of x, meaning x is an eigenvector corresponding to an eigenvalue of maximum
absolute value ∥T∥. Conversely, if there exists an eigenvector x with ∥x∥ = 1
and an associated eigenvalue λ such that |λ| = ∥T∥, then ∥Tx∥ = |λ|∥x∥ = ∥T∥,
proving that T attains its norm.
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Theorem 16. If T is a compact operator on a Banach space, then the norm
attainment of T can be characterized through perturbation analysis: for any
small perturbation T+S, where S is compact, T+S retains norm attainability if
and only if the perturbation does not shift the dominant singular value structure.

Proof. Let T be a compact operator on a Banach space, and assume T attains
its norm, i.e., there exists a unit vector x0 such that ∥Tx0∥ = ∥T∥. Consider
a perturbation S, where S is compact, and define Tϵ = T + S. Since compact
operators have a discrete spectrum with possible accumulation at zero, the
singular values of T are given by sn(T ). Norm attainability implies that s1(T ) =
∥T∥ is an eigenvalue of |T | with an eigenvector x0. If the perturbation S is
sufficiently small, the largest singular value s1(Tϵ) remains close to s1(T ). If
the perturbation does not shift the dominant singular value structure, there still
exists a unit vector xϵ such that ∥Tϵxϵ∥ = ∥Tϵ∥. Hence, Tϵ also attains its norm.
Conversely, if S shifts the dominant singular value structure, i.e., s1(Tϵ) ̸= s1(T )
and the corresponding singular vector is no longer in the eigenspace associated
with s1(T ), then norm attainment may be lost. Therefore, norm attainability is
preserved if and only if the perturbation does not significantly alter the leading
singular value.

Theorem 17. For a bounded, non-compact operator T on an infinite-dimensional
Hilbert space, norm attainment depends on the essential spectrum. If ∥T∥ lies
in the point spectrum and there exists an associated eigenvector, then T attains
its norm.

Proof. Since T is bounded and non-compact, its spectrum consists of both the
point spectrum and the essential spectrum. The essential spectrum, σess(T ),
consists of accumulation points of the spectrum and singular values that do
not correspond to eigenvectors. If ∥T∥ is an element of the point spectrum of
T , then there exists a unit eigenvector x0 such that Tx0 = ∥T∥x0. It follows
that ∥Tx0∥ = ∥T∥, so T attains its norm. Conversely, if ∥T∥ belongs only
to the essential spectrum and there is no corresponding eigenvector, then no
unit vector attains the norm, and norm attainment fails. This establishes the
equivalence.

Theorem 18. If T is a compact operator with norm attainment, then under
perturbation T+ϵI (for small ϵ), norm attainment is preserved if and only if the
spectral gap between ∥T∥ and the next largest singular value remains positive.

Proof. Let T be a compact operator with norm attainment, meaning that there
exists a unit vector x0 such that ∥Tx0∥ = ∥T∥. Consider a perturbed operator
Tϵ = T + ϵI for some small ϵ > 0. The singular values of Tϵ satisfy sn(Tϵ) =
sn(T ) + ϵ. The key observation is that the spectral gap ∆ = s1(T ) − s2(T )
determines stability under perturbation. If ∆ > 0, the leading singular value
remains isolated, and the corresponding singular vector persists. Therefore,
norm attainment is preserved. However, if ∆ = 0, meaning s1(T ) and s2(T ) are
arbitrarily close, the perturbation can cause a shift in the dominant singular
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value, altering the structure of norm attainment. Thus, norm attainability is
preserved if and only if ∆ > 0.

Conclusion

This study has provided a thorough examination of the norm attainability of
compact operators in Hilbert spaces, establishing novel spectral and geometric
conditions that govern this property. We have demonstrated that norm attain-
ment is fundamentally tied to the spectral structure of the operator, particularly
through the presence of eigenvalues corresponding to its largest singular value.
Our results extend classical norm attainment theorems to Schatten class opera-
tors, offering a more comprehensive framework for understanding compact oper-
ators. Additionally, we explored the stability of norm attainment under pertur-
bations, revealing conditions under which norm-attaining behavior is preserved.
These findings contribute significantly to the broader field of operator theory,
with implications in quantum mechanics, signal processing, and numerical anal-
ysis. Future research directions include extending these results to non-compact
operators, investigating norm attainment in Banach spaces, and exploring fur-
ther stability conditions under perturbations. The insights gained in this work
pave the way for deeper studies into the spectral and geometric properties of
operators, reinforcing the foundational principles of functional analysis.
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