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Abstract
Managing solid waste is a critical global issue that demands innovative strategies to enhance efficiency, sustainability, and environmental impact. Waste generation varies across sectors and regions, both in quantity and composition, making its management a critical environmental issue. The escalating decline of ecological quality directs the scientific community toward analyzing and optimizing waste management strategies. Artificial Intelligence (AI) has appeared to bring a revolution in this area by improving the processes of waste collection, segregation, recycling, and disposal. Various models and algorithms have been explored and evaluated for their potential to lead to more sustainable solid waste management (SWM) practices. AI-powered systems leverage data analytics, computer vision, machine learning, and automation to reduce landfill problems, lower operational costs, and support the circular economy. Advanced ML technologies, like deep learning and predictive analytics models, are being utilized for route optimization to ensure timely service delivery and adjust collection schedules accordingly. Smart bin systems equipped with sensors, IoT, and machine learning algorithms are enhancing waste collection and disposal efficiency. AI-generated predictive models significantly aid in waste management planning to adapt to changing waste generation patterns. Technologies like GPS and volumetric sensors, provide an encouraging solution to enhance the efficiency of waste collection systems, and waste-sorting robots can greatly improve the accuracy of waste segregation. Sensor-based waste monitoring tracks the amount of generated waste and identifies its sources in a given area. AI-powered surveillance cameras and drones can promptly detect illegal dumping, enabling authorities to respond swiftly.  Thus, SWM can be strengthened by utilizing AI technologies in intelligent waste sorting, recycling, and disposal, leading to more sustainable practices. However, despite the efficiency of AI in supporting SWM systems, high cost, inconsistent data quality, traditional mindset, operational difficulties, etc., pose a challenge to their widespread adoption. There is still a notable gap in its practical application and comprehensive evaluation.  To bridge this gap, targeted research on cost-effective solutions and real-world pilot projects is crucial, coupled with collaboration among technology developers, policymakers, and waste management professionals. This paper explores how AI can revolutionize waste management, leading to more efficient strategies and a cleaner future. 
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1.Introduction

Effective waste management is a growing concern in the pursuit of global sustainability. As resource conservation and sustainability gain escalating importance, the need for more efficient and innovative waste management solutions has emerged. Waste management aims to minimize the damaging impacts on the environment and public health. Recent research has also focused on how policy and governance influence the development of eco-friendly waste management strategies. Due to inadequate waste treatment practices and a shortage of public and community trucks and containers, people are often compelled to dispose of their waste in open fields. Illegal waste dumping can seriously harm the surroundings, and contribute to social problems. A lack of adequate funding and resources obstructs the establishment of an effective waste management system, resulting in illegal dumping and environmental deterioration [1].    
Despite the crucial role of waste management in public and environmental health, many existing practices are encountering limited efficacy, high costs, and adverse ecological impacts [2]. The World Bank has assessed a 70% increase in waste generation globally by 2050 if the current practice remains unchanged. The growing awareness worldwide has spurred interest in more effective waste management practices, emphasizing the need for novel approaches to handling this complex issue [3]. While traditional solid waste treatment methods have served society for a long period, they seem insufficient to face the complexity and scale of generated waste and need to be more efficient in the proper handling and disposal of waste. AI is emerging as a promising technology that streamlines waste management by enabling the monitoring of waste bins, predicting waste generation, and improving the performance of waste processing facilities. AI-powered waste management leverages machine learning, data analytics, and advanced algorithms to improve economic efficiency and reduce environmental issues. AI technologies like smart garbage bins, robots, and predictive models have potentially increased operational efficiency and minimized adverse ecological impact. It is critical in shaping sustainable waste management strategies, especially in the transition to a zero-waste circular economy, by integrating social, economic, and environmental considerations [4]. Growing research shows the potential of AI in waste management, yet its practical application is still in its inception [5], and addressing associated challenges like data quality, cost implications, and privacy concerns is required. These are some areas where AI can support solid waste management systems to achieve environmental sustainability:

2. Route Optimization:
AI transforms waste collection and management by making the process more efficient, cost-effective, and sustainable. The first prominent implementation of AI in SWM is waste collection processes. Effective waste collection helps to keep the environment cleaner and more hygienic by preventing overflow. Traditional waste collection practices often face inefficacy, such as irregular schedules and suboptimal routing [6]. AI-driven routing strategies need to be incorporated with existing waste management systems to maximize effectiveness. Route optimization through AI marks a breakthrough in waste management and logistics. It leverages data analytics and advanced algorithms to optimize transportation and delivery routes, reducing travel time and improving operational efficiency. The algorithms consider various factors, including historical waste generation patterns, real-time traffic conditions, and weather, to generate the most efficient collection routes [7]. Advanced machine learning technologies, like deep learning, are being used to assess large datasets, forecast traffic patterns, and adjust to changing conditions [8]. Predictive analytics models enable waste management authorities to predict demand and optimize collection schedules accordingly by forecasting waste generation patterns that rely on historical data and external factors [9]. Analyzing historical data on waste generation patterns and traffic conditions in different locations allows us to anticipate peak times, ensure timely service delivery, and adjust collection schedules accordingly. This limits fuel consumption, reduces labor costs, and decreases carbon emissions, thus contributing to environmental sustainability. Routes optimization also facilitates more stops within the same period, enhancing overall waste collection efficiency. AI systems enable real-time adaptive routing by calculating the shortest and most favorable route and responding to disrupted weather conditions, sudden road closures, and unexpected accidents. Routes can be optimized by prioritizing different waste categories or accommodating specific customer needs, such as expedited pickups for large events. Optimizing routes can shorten drivers' working hours, helping to lower labor-associated expenses. AI-powered SWM also fosters customer trust and satisfaction through timely and effective waste collection and provides real-time updates on collection schedules through notifications. Drivers and operators should be trained in utilizing AI tools and adapting to real-time routing changes. Thus, by utilizing AI technologies, waste management systems can swiftly adapt to changes, ensuring an efficient and timely waste collection service for society.
3. Smart Bin System:
A smart bin system is a modern waste management solution that utilizes sensors, IoT, and AI to enhance waste collection and disposal efficiency. Traditional garbage bins depend on manual inspections, periodic cleaning, and user-based waste sorting. These often lead to waste overflow due to the absence of tracking, resulting in inefficient collection, increased CO₂ emissions, and higher operational costs from unnecessary collection trips. Moreover, the overflow of the containers creates a breeding ground for disease-causing organisms and insects. Therefore, designing intelligent smart bins is critical for managing waste and achieving environmental sustainability. Smart waste bins are an advanced and efficient alternative to conventional bins, leveraging technology for automation, efficacy, and environmental benefits. In recent years, smart bins have procured significant attention due to their capacity to optimize waste collection [10]. Smart bins feature real-time waste level monitoring and dynamic collection based on fill status, ensuring effective waste management. Smart bin systems are embracing machine learning algorithms to improve accuracy in fill-level predictions and optimize waste collection operations [11]. Timely alerts and pickups prevent overflow and unnecessary waste collection trips, thus subsequently reducing costs and CO₂ emissions. Some models include automatic waste sorting, along with maintenance and cleaning notifications. Additionally, smart bins can send disposal reminders, offer incentives for responsible waste management, and generate reports for improved planning and decision-making. Equipped with smart sensors, these bins facilitate dynamic scheduling. Sensors primarily collect the information, which is then transmitted via the network. Smart bin systems have the potential to improve garbage collection efficiency, minimize disease transmission, and enhance the overall societal environment. The innovation and improvement of smart garbage bins have primarily focused on automatically detecting the fill level and promptly alerting users. Analyzing data from smart bins can reveal waste generation patterns across different areas, offering valuable insights for city planning. Nevertheless, the high cost of implementing smart garbage bins poses a challenge to their widespread adoption. To mitigate this, the government could introduce funding policies to lower costs, making smart bins more affordable and accessible to the public. Thus, prioritizing developing and adopting smart garbage bins is essential for a more sustainable, efficient, and healthier environment, making them a valuable investment for the future.
4. Waste generation prediction model: 
In recent years, research on waste generation prediction models has gained global attention, leading to various models to accurately forecast the amount of generated waste [12]. These models aid in predicting waste production, optimizing garbage collection schedules, preventing bin overflows, and ensuring timely disposal. Moreover, it analyzes waste composition trends, allowing for more effective recycling strategies. AI significantly improves waste prediction models by analyzing vast datasets and leveraging advanced techniques like machine learning, data analytics, and pattern recognition to aid in waste treatment planning and landfill management efficiency. Machine learning algorithms process population growth trends, historical data and environmental parameters to predict the complexity and amount of future waste. AI algorithms are considered the most advanced tools for accurately forecasting waste generation due to their exceptional capacities, such as processing data inputs, identify patterns, and making reliable predictions [13]. 
Waste collection is an increasingly vital industry, primarily managed by private companies that struggle with high transportation costs and inefficient resource utilization, as collection vehicles frequently service waste bins that are only partially full, leading to unnecessary fuel consumption and operational inefficiencies [14]. In cities with available historical data, records can be combined with various datasets to build a gradient-boosting regression model. For instance, a short-term waste generation prediction model was developed for New York, achieving an average accuracy of 88% [15]. In cities with limited historical data, a comprehensive method that incorporates all relevant predictive factors can be used to examine regional variations and their influence on waste prediction. By evaluating the model’s reliance on these factors, the effect of regional differences on urban waste forecasting can be analyzed [16]. AI models can estimate the volume of organic waste that could be transformed into energy, thereby helping in the optimization of waste-to-energy conversion systems. It can guide municipalities in proactive waste management and planning by analyzing patterns from community events or festivals. Policymakers should utilize predictive analytics to optimize resource allocation and develop forward-thinking waste management strategies. By taking proactive strategies, policymakers and waste management authorities can address future waste management challenges, particularly in fast-growing urban areas. The predictive models have a strong potential for enhancing waste management planning, enabling timely and efficient adaptation to evolving waste generation trends. 
5. Predictive Maintenance for Collection Vehicles:
AI-powered predictive maintenance is helping SWM by improving the lifespan and efficiency of collection vehicles. Companies managing urban solid waste collection must maintain their vehicle fleet in optimal condition to meet operational demands and sustain service quality and availability which is essential for keeping up with the escalating daily garbage collection needs effectively [17,18]. AI algorithms regularly monitor the waste collection vehicles' performance, engine health, and fuel utilization to enable predictive maintenance that reduces downtime and lowers operational costs. It can recognize patterns in vehicle wear and tear for improved maintenance schedules before breakdowns occur. This upgrades the reliability of garbage collection services by ensuring smooth operations and reducing unexpected breakdowns and repair expenses. Advanced technologies like GPS systems and volumetric sensors, provide an encouraging solution to augment the efficiency of waste collection systems. These innovations assist in optimizing fleet management, reducing transportation and expenses, and minimizing environmental effects such as emissions and noise pollution [19]. Because garbage collection vehicles run at low speeds and make various stops, they have a greater influence on traffic congestion, air pollution, and noise than other freight transport vehicles [20]. This highlights the importance of predictive maintenance and real-time monitoring in enhancing efficiency and minimizing environmental footprints.
6. Waste Segregation:
 Waste segregation is a critical step in the SWM, in which different kind of waste is categorized and separated for further treatment or recycling [21]. The rapid expansion of technology, urbanization, industrialization, increased consumerism, and disposable culture have led to a significant increase in complex waste. The running traditional waste treatment framework is ineffective in handling the trash generated daily. AI has made a substantial advancement in waste sorting and recycling. Machine learning greatly minimizes the need for manual sorting, reducing labor costs and enhancing the efficiency of recycling processes. Research has gained worldwide attention on initiating various practices of integrating waste-sorting robots into the current SWM system, such as using robots for waste segregation before it is dumped. Incorporating updated sensors and cameras for waste recognition, along with advanced AI algorithms for more accurate waste categorization is improving the accuracy and efficacy of garbage classification robots. Installing smart terminals in each trash bin enables real-time collection, analysis, and processing of data of various statuses. For instance, the system can find out whether a garbage bin is intact and utilize gas sensors to categorize waste into recyclable and non-recyclable classes [22], and hyperspectral imaging to identify the target region of interest [23]. Deep learning techniques, like instance segmentation, can precisely recognize the contours of all objects in an image including construction and demolition waste [24].
Proper garbage processing often requires a larger workforce, while automation enhances efficiency by optimizing technology and energy use, simultaneously reducing the risk of human disease. Therefore, trash-sorting robots can greatly improve the accuracy of waste classification and enhance waste management efficiency. However, due to their higher installation and maintenance costs, some believe that waste-sorting robots are impractical. Nonetheless, researchers are working on cost-effective solutions, such as using more affordable materials or designing robots adaptable to various environments.
7. Waste Monitoring 
Artificial intelligence possesses advanced perception capacities, enabling it to accurately identify and monitor the current ecological conditions to achieve good environmental management. AI sensors enable real-time monitoring of various parameters, allowing for more effective control of the waste treatment process. Sensor-based waste monitoring utilizes sensors to track the amount of generated waste, pinpoint its sources, and measure the efficacy of waste management practices in a given area. The rapid advancement of wireless sensor networks has led to extensive research on waste monitoring applications, primarily focusing on tracking garbage levels and using the network to notify users in real-time [25]. A smart garbage bin monitoring system utilizing a Zigbee network, with terminal nodes on the bins has been developed for detecting waste accumulation levels [26]. Various sensors like gas sensors for detecting hazardous gases, infrared sensors to assess carriage filling levels, and temperature, humidity, and sound sensors to track environmental conditions have been utilized effectively [27]. Additionally, a non-contact microwave sensor was introduced for in situ monitoring of nuclear waste glass melts in cold crucible induction melting furnaces. An electronic nose equipped with sensors can measure odor concentration in real-time, aiding in wastewater treatment [28].
AI-powered surveillance cameras and drones can instantly detect illegal dumping, enabling authorities to respond swiftly. Additionally, it can analyze satellite images to identify areas susceptible to illegal waste disposal. It can also oversee the recycling process, detecting anomalies like misclassified materials or contamination and notifying the appropriate personnel to take corrective action. AI can monitor environmental impact by tracking waste-related carbon footprints, aiding organizations in adopting greener waste management strategies. Additionally, AI-powered models can suggest policies to minimize waste generation and improve recycling efforts. 
8. Waste Recycling:
With the increasing waste, conventional recycling methods like landfilling and incineration are becoming increasingly unsustainable, highlighting the urgent need for innovative and novel approaches [29]. AI-powered solutions have gained worldwide attention to face these challenges through automation, machine learning, and data analysis to enable more precise and efficient recycling [30]. Recent works have shown that as compared to 30-40 items per minute for human workers, AI-powered machines can recycle up to 160 items per minute [31]. By analyzing operational data they offer valuable insights and recommendations for optimization [32]. 
As per the latest statistics, only 33% of global municipal solid waste is managed properly, while the rest is disposed of in unmonitored landfills or illegal dumpsites [33]. Integrating intelligent terminals into garbage bins allows the detection of bin status and utilizes gas sensors to distinguish between recyclable and non-recyclable waste [22]. Advanced AI algorithms help in recognizing and classifying various types of plastics, leading to easier-to-recycle waste. 
Pyrolysis of refuse plastics as a conversion technique can overcome severe environmental issues. ML techniques can be applied to predict the non-catalytic process outcomes of refuse plastic pyrolysis. Additionally, support vector machines have been extensively utilized in pyrolysis prediction work. Artificial neural network methods predict gasification products more efficiently than realistic gas balance models [34]. Integrating AI with blockchain technology improves transparency and traceability within the recycling supply chain and ensures proper processing and reuse of recyclable materials, minimizing waste leakage.
9. Waste to Energy:
Transforming waste into usable types of energy, such as heat, fuel or electricity is a key approach to waste management. It offers several benefits, including reducing landfill waste, decreasing greenhouse gas emissions, and generating electricity. AI-powered predictive models monitor waste structure and operational data to improve energy generation through incineration, gasification, pyrolysis, and anaerobic digestion. AI optimizes energy recovery by dynamically adjusting temperature, pressure, and other parameters in real time, improving overall efficiency. Biogas power generation is considered one of the most energy-efficient and ecologically favorable bioenergy production technologies, contributing to a circular economy [35,36]. Machine learning is integrated to optimize biogas production by identifying and analyzing key variables that influence output, streamlining complex calculations, and minimizing errors [37,38]. Machine learning and deep learning models are used to analyze and identify key variables that profoundly affect methane output. As AI advances, its integration with waste-to-energy systems will enhance sustainability and support a circular economy by optimizing the operations of transforming waste into a valuable energy source.
10. Improving public health and quality of life:
With the economy's rapid expansion, the amount of waste generated each year continues to rise, contributing to environmental challenges. In many growing cities, open dumping and overflowing bins have become a common sight, posing serious health risks to nearby residents and diminishing urban aesthetics. Hazardous and toxic waste at the municipal level further disrupts living conditions and overall quality of life, requiring careful management. AI-driven waste management systems help mitigate environmental pollution, enhance public health, and improve overall living standards. AI-powered systems can deal with poor waste treatment-associated risks by recognizing hazardous waste to process separately. Municipal solid waste processing can be improved in developing and developed countries by utilizing AI for treating waste, leading to more sustainable strategies [39].
AI minimizes gas emissions and fuel consumption by ensuring route optimization and smart scheduling. Researchers are investigating and upgrading the capacity of ML to locate and stop illegal dumping and also its ability to monitor and lower greenhouse gas emissions from waste management procedures. ML algorithms can forecast and lower emissions from landfills and incineration processes [40].  Techniques like support vector machines and random forests can analyze data to effectively identify carbon sources. Thus, integrating AI-based practices not only upgrades SWM but also supports human efforts to lower carbon emissions to improve quality of life and environmental health.
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	FIG 1. Applications of AI in waste management 

11. Conclusion
Efficient SWM is crucial for safeguarding public health, preserving natural resources, and ensuring environmental sustainability. By adopting innovative approaches and encouraging public participation, cities can improve waste management practices and promote a cleaner, healthier future. Utilizing AI to streamline and optimize SWM is essential in the present scenario and shows a transformative answer to modern waste challenges. Embracing AI in waste management is more than just an innovation; it is a necessity for developing smarter and greener communities.  By leveraging this technology, waste collection routes can be optimized, automated sorting can be implemented, and illegal dumping can be prevented resulting in more efficient resource utilization and a reduced environmental impact. An AI-powered predictive analytics platform can further help organizations in allocating resources and strategizing waste management processes effectively.
 More studies and innovations in AI technologies are vital to improving waste prediction, classification, and optimization models. Future research should focus on integrating ML with emerging technologies such as blockchain and IoT to develop comprehensive waste management solutions. An integrated effort among government, academia, industry, and the public is crucial for successfully implementing AI-powered strategies and fostering community engagement in sustainable SWM. Moreover, awareness campaigns and public education can play a vital role in lowering waste generation and encouraging people to adopt more sustainable practices.
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