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Abstract

The kink regression model assumes that linear regression forms are separately modelled on two
sides of an unknown threshold but still continuous at the threshold. This paper considers statistical
estimation for piecewise linear regression models which are widely used in various fields to cap-
ture nonlinear relationships between variables. The estimators for the kink locations and regression
coefficients are obtained by using the least squares method, a detailed explanation of the estima-
tion process is provided. Furthermore, the proposed methodology is validated through an illustrative
example using Monte Carlo random simulation, demonstrating its effectiveness in accurately cap-
turing nonlinear patterns and changes in the data.
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1 Introduction
In today’s life, data structure is becoming more and more complex. In many cases, the simple

linear model is not enough to describe the relationship between variables. More often than not, the
relationship appears nonlinear. Threshold regression models are very useful tools to describe this
nonlinear relationship by introducing one or more threshold parameters, also known as kink or change
points. Threshold regression models offer a flexible framework to model such relationships by allowing
different linear relationships in different intervals of the predictor variables. Threshold regression models
can take many forms, depending on what happens at the threshold. Figure 1 displays four types of
threshold effects: step, hinge, segmented and stegmented. Each type of threshold regression model
has been studied by many scholars and widely used in the economy, finance, medicine, and other
fields. The stegmented regression, as a special threshold regression model, specifically, there are jump
points and kink points in the regression model. The kink regression model with a single kink point
was first introduced by Lerman (1980). Hudson (1996) put forward the least square estimation of the
model in the linear regression model with a known single kink point, but the parameter estimation
is not accurate when the parameter is unknown. Fan and Li (2001) proposed a variable selection
method based on penalized least squares, introducing L1 regularization (LASSO) to address variable
selection in high-dimensional data. This method not only effectively reduces model complexity but also
improves prediction accuracy. Lee et al. (2011) proposed a general sup-likelihood-ratio test statistics
to detect threshold effects in regression models. This paper focuses on a specific type of piecewise
linear regression model that includes jumps in both the response function and its first-order derivative.
Hansen (2017) considered the kink regression model with an unknown threshold, and combined the
least squares estimation and grid search algorithm to estimate the regression coefficients and the kink
point.

However, the kink regression models with only one threshold point are always not sufficient in
practice. They may not capture multiple structural changes, which are quite common in many research
fields. Motivated by this limitation, a tremendous amount of attention has been focused on the kink

1



step hinge

segmented stegmented

Figure 1: Four types of Threshold regression model

regression models with multiple change points. Chan (1993) proved that the least squares estimator has
strong consistency in the discrete piecewise autoregressive model, and gave the convergence rate of the
parameter estimator. Bai and Perron (1998) proposed a multiple structural change detection method
based on least squares, capturing structural changes in data by introducing multiple kink points. This
method has achieved significant success in economic and financial applications, particularly in studying
economic cycles and financial market volatility, where structural changes are evident. Muggeo and
Adelfio (2010) studied a piecewise constant model in mean regression with multiple change points and
used the penalized method to select kink points. Shi et al (2020) considered the robust continuous
piecewise linear regression model with multiple change points and applied it to the body mass index
(BMI) and age relationship. Wan et al (2023) considered composite quantile estimation for the kink
model with longitudinal data.

In this article, we consider the piecewise linear regression models. The core idea of piecewise linear
regression models is to divide the interval of the predictor variable into several segments, where the
relationship between the response variable and the predictor variable is linear within each segment.
However, traditional piecewise linear models typically only consider jumps in the response function,
ignoring changes in its first-order derivative. The model proposed in this paper not only allows jumps
in the response function at certain points but also permits abrupt changes in its first-order derivative
at these points. This model is particularly suitable for describing systems that exhibit abrupt changes
at specific points, such as policy changes in economics or physical constraints in engineering.

The rest of this paper proceeds as follows. In Section 2, we introduce the piecewise linear regression
models, and its estimation procedures for the model we have proposed under two distinct scenarios. A
specific application is illustrated in Section 3. Section 4 concludes the paper.

2 Methodology and Simulation
Let Yi be a response variable of interest, and Xi be a univariate threshold variable, and Z be a p

dimensional random vector of additional covariates, i = 1, . . . , n. Considered the following regression
model

Yi = α0 + α⊤Zi + β0Xi +

q1∑
j=1

β1jI(Xi > δ1j) +

q2∑
k=1

β2k(Xi − δ2k)+ + εi = α0 + α⊤Zi + g(Xi) + εi (1)
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where x+ = xI(x > 0) and I(·) is the indicator function. In model (1), (X − δk)+ = (X − δk)I(X >

δk), g(x) is piecewise linear, q1 is the number of jumps in g(x), {δ1j , j = 1, . . . , q1} and {β1j , j =

1, . . . , q1} are the corresponding jump positions and jump sizes. q2 is the number of jumps in g′(x) and
{δ2k, k = 1, . . . , q2} and {β2k, k = 1, . . . , q2} are the corresponding jump positions and jump sizes. εi is
independent identically distribution random errors with mean 0 and unknown variance σ2. This paper
explores parameter estimation under two distinct scenarios: (i) when the number of jumps, denoted as
q1 and q2, is known a priori, and (ii) when the number of jumps is unknown and must be inferred from
the data, we will be discussed in detail.

The parameters of the model (1) can be estimated using the least squares method. Since both
the response function and its first-order derivative contain jumps, the parameter estimation process is
relatively complex. We will discuss parameter estimation under two scenarios: when the number of
jumps q1 and q2 are known and when they are unknown.

2.1 When q1 and q2 are Known
We generate independently and identically distributed sample {(Xi, Zi, Yi), i = 1, . . . , n} from the

model (1), we assuming that q1, q2 is known or fixed, β1j , δ1j , β2k, δ2k are assumed unknown. When
the number of jumps q1 and q2 are known, the least squares method can be directly used to estimate
the model parameters. The goal of the least squares method is to minimize the residual sum of squares:

S(θ) =

n∑
i=1

(Yi − α0 − α⊤Zi − g(Xi))
2

where θ = (α0, α, β0, {β1j}, {δ1j}, {β2k}, {δ2k}) represents all the parameters in the model. The result
of parameter estimation is

θ̂ = (XTX)−1XTY

where X = {1, Zi1, · · · , Zip, Xi, I(Xi > δ11), · · · , I(Xi > δ1qi), (Xi − δ21)+, · · · , (Xi − δ2q2)+}, Y =

(Y1, Y2, · · · , Yn)
⊤.

To evaluate the performance of the model, we can calculate mean squared error (MSE): MSE =
1
n

∑n
i=1(Yi− Ŷi)

2, where Ŷi are the fitted values obtained from the estimated model. The MSE provides
a measure of the model’s predictive accuracy, with lower values indicating a better fit to the data.

2.2 When q1 and q2 are Unknown
When the number of jumps q1 and q2 are unknown, it is necessary to first determine the number of

jumps before estimating the model parameters. We often use cross-validation methods to select model.
First, we define the sum of squared residuals S(θ):

Su(θ) =

n∑
i=1

Yi −

α0 + α⊤Zi + β0Xi +

q1∑
j=1

β1jI(Xi > δ1j) +

q2∑
k=1

β2k(Xi − δ2k)+

2

(2)

then setting candidate ranges for q1 and q2, we set q1 ∈ {0, 1, 2, . . . , q1,max}, q2 ∈ {0, 1, 2, . . . , q2,max}.
For each pair (q1, q2), fit the model and compute the model selection criterion, The specific steps are
as follows:
(1) Split the data into training and validation sets.
(2) For each pair(q1, q2), fit the model on the training set and compute the mean squared error(MSE)
on the validation set.
(3) Based on the model selection criterion, choose the (q1, q2)pair that minimizes the cross-validation
error. For the selected q1 and q2, construct the design matrix X, where is same as in section 2.1. Each
row of the design matrix corresponds to an observation i, and each column corresponds to a parameter
in the model, then we use the least squares method to minimize S(θ).
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Figure 2: Known Deltas (q1, q2 given)

(4) Output the estimated parameters. Return the estimated parameters θ̂.
(5) Calculate the MSE to evaluate model prediction accuracy.

3 Simulation Studies

To illustrate the estimation process, this section investigates the proposed estimation method
through Monte Carlo random simulation. To conduct the simulation, we consider the following lin-
ear regression model:

g(x) = 4x+ I(x > 0.25) + I(x > 0.75)− 8(x− 0.5)+ + 8(x− 0.75)+ =


4x, 0 ≤ x < 0.25

4x+ 1, 0.25 ≤ x < 0.5

−4x+ 5, 0.5 ≤ x < 0.75

4x, 0.75 ≤ x < 1

We generate n = 500 observations, and Xi is uniformly distributed over the interval [0,1], and the
random errors follow a normal distribution εi follows from N(0, 0.22).

When the number of jumps q1, q2 is given, the least squares method is employed for parameter
estimation, as detailed in Section 2.1. Figure 2 displays the scatter plot along with the fitted regression
curves. As anticipated, the function exhibits jumps at x = 0.25 and x = 0.75, and its first-order
derivative has jumps at x = 0.5 and x = 0.75, These observations align with the theoretical expectations
of the model. Furthermore, the parameter estimation results are obtained, yielding a MSE of 0.0384,
which indicates a relatively high level of accuracy in the model’s fit to the data.

When the number of jumps q1, q2 is unknown, the estimation method described in Section 2.2 is
employed. Figure 3 illustrates the scatter plot along with the fitted regression curves. From the results,
it is evident that the function exhibits jumps at x = 0.25 and x = 0.75, and its first-order derivative
has jumps at x = 0.5 and x = 0.75. These findings are consistent with the theoretical properties of the
model. Importantly, the proposed estimation method demonstrates strong performance in accurately
identifying both the locations and the number of change points. The MSE of 0.0424. further confirms
the robustness and precision of the estimation approach. From this example, it can be observed that
the estimated parameters closely match the true parameters, and the recovered function g(x) accurately
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Figure 3: Unknown Deltas (q1, q2 estimated)

captures the jumps and kinks in the true function. The model performs well in identifying the positions
and sizes of the jumps in both the response function and its derivative.

In this article, we study the piecewise linear regression model which includes jumps in both the
response function and its first-order derivative, we use the least squares method to estimate the model
parameters in two scenarios: when the number of jumps q1 and q2

These results suggest several promising directions for future research. The model could be fruit-
fully applied to various empirical domains where structural breaks are theoretically expected, such as
economic time series analysis, biological growth modeling, or engineering system monitoring. From
a methodological perspective, developing more computationally efficient algorithms, particularly for
high-dimensional extensions of the model, would significantly enhance its practical utility. Additional
theoretical work could establish formal conditions for the consistency of the jump point estimators and
derive their asymptotic distributions. Furthermore, extending the current framework to accommodate
other types of regression models or alternative estimation approaches would broaden the method’s
applicability to diverse statistical problems.
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4 Discussion and Conclusion

are known and when they are un-
known, and the estimation process is explained. The proposed methodology offers several advantages
over conventional piecewise regression models. First, by allowing for discontinuities in both the func-
tion values and their derivatives, our model can capture more complex patterns of structural change
commonly observed in real-world phenomena. Second, the least squares framework provides a compu-
tationally tractable solution while maintaining desirable statistical properties. Through a simulation
example, we have verified the model’s ability to capture jumps and kinks.
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