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Abstract

In this work, we firstly give integral representations of A-psi (or A-digamma) and A-zeta functions
and then obtain A-generalization of Binet’s first formula for the logarithms of A-gamma function
InTy(z) as

1 1
lnFA(a:)—<x—§> Inz —xzln X+ 5111(271')"'/ B et —1| ¢

oo|:1_1+ 1 :|e—t7)dt
0 t

for all positive real values of x and A. As immediate consequences, we get some completely
monotonicity properties on functions related to A-psi function and its derivatives defined by fi(x) =
PYa(z)+InA—Ilnz + i + ﬁ,fz(x) =lnx— i —In A —a(z), fa(z) = Pi(z) — i — ﬁ — 6%3 +
ﬁ, fa(z) =1+ # + # — 5\ () for all z, A > 0. At last, we obtain some mean inequalities on

A-psi function.
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1 Introduction

The gamma function, which is introduced by Euler, is defined by

F(w):/ t" e tdt
0

for x > 0. The logarithmic derivative of gamma function is called digamma (or psi) function and its

integral representation is given by
o] e—t e—tz
= - 1.1
vie) = [ ( t 1_et>dt (1.1)
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for z > 0.

Special functions are used in many mathematical subjects such as fractional calculus, inequalities
etc. (see Ata and Kiymaz (2022, 2025, 2024a); Ata et al. (2024b); Ata (2023, 2024)). Generalizations
of these special functions are also interested by many researchers (see Alzer and Jameson (2017);
Batir (2011); Chen and Batir (2012); Gautschi (1974); Alzer and Jameson (2017); Qi et al. (2005); Qi
(2010); Qi and Guo (2010); Guo and Qi (2013); Qi (2013); Guo and Luo (2015); Guo et al. (2015);
Qi and Guo (2017); Batir (2018); Ata and Kiymaz (2020); Ata (2022, 2018); Ata and Kiymaz (2024b);
Ata et al. (2024a)). For instance; in order to define tempered fractional integrals, authors give A-
generalized incomplete gamma function as follows:

Definition 1.1. (Fu and Du, 2021; Mohammed and Baleanu, 2020) For the real number = > 0 and
a, A > 0, A-incomplete gamma function can be defined by

Lx(z,a) = / t" e ML,
In 2022, Nantomah and Ege define the A-analogue of the gamma function
Definition 1.2. (Nantomah and Ege, 2022) A\-gamma function can be defined by

Na(z) = / " e Mt (1.2)
0

lim ATTRIET
k—oo z(z+ 1)(x+2)...(x + k)

forz > 0 and A > 0.
In the same paper, authors also give some properties on the A-gamma function.

Lemma 1.1. (Nantomah and Ege, 2022)

I'y(z) = M\ °T(z), (1.4)

(1) % (1.5)

Ty(z+1) ;F,\(x), x>0, (1.6)

Ta(k+1) % k € No, (1.7)

I (z)TA(1 — 2) ﬁ(m) z € (0,1), (1.8)

Tx(1+2)Tx(1 - ) #"ﬁm) z€(0,1), (1.9)

()T (m + %) 21*“\/%%, x>0, (1.10)
Ty(z+k

7}(1’(%) ) % x>0, ke N, (1.11)

1

2k -1 |«
Tk (xR

(1.12)

where (), = z(x 4+ 1)(x + 2) ... (z + k — 1) is Pochhammer symbol and m!! is double factorial of m.

In an usual sense, authors define A-analogues of beta and psi functions as follows:
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Definition 1.3. (Nantomah and Ege, 2022) \-beta function can be given by

Ca(z)Ta(y)
Ta(z+y)’

for x > 0 and y > 0. The function collide with classical beta function 5(zx, y) since

ﬂk(wvy) =

Da@)Ta(y) _ A T@)A T (y) _ T(@)C(y)
Da(z+y) A @EWT(z+y) T(x+y)

Definition 1.4. (Nantomah and Ege, 2022) A-digamma (or A-psi) function can be given by

Un(z) = %lnf,\(x) (1.13)

for x > 0. Some of the integral representations are

(@) = Eig;:—lm+w(ﬂc)
19 _ gt

BA(:E7 y) =

= ﬁ(m,y).

= —(InA+~v)+

s—

1—e

> xfl
= —(InA+7) +Z RS
0

n

where v = limn oo (3., £ —Inn) = 0.5772... is Euler-Mascheroni constant and ¢ (z) =

% InT'(z) classical digamma (psi) function.

By using the equation (1.6), authors obtain the recurrence formula for A-digamma function as

w(x+1):§+w(z). (1.14)

In the paper, authors obtain some well-known theorems, formulas, limit properties and inequalities on
these functions, such as in the next theorem, they give arithmetic and geometric mean inequalities
on A-gamma function for z and 1/z.

Theorem 1.2. Forx > 0,the inequalities

T (2)T'x (%) > A (e3), (1.15)
'a(z) + T (%) > ox3(et3) (1.16)

are satisfied. With equality when x = 1.

The interested readers can find more information about properties, inequalities and generalizations
of special functions in (Gautschi, 1974; Qi, 2010; Whittaker and Watson, 1996; Qi and Guo, 2010;
Batir, 2011; Chen and Batir, 2012; Guo and Qi, 2013; Qi, 2013; Guo and Luo, 2015; Guo et al., 2015;
Qi and Guo, 2017; Batir, 2018; Qi et al., 2005; Alzer and Jameson, 2017; Kim et al., 2018; Diaz and
Pariguan, 2007) and references therein.

Motivated by previous works, we introduce the definition of A-Hurwitz zeta function and Binet’s
first formula for logarithms of A-gamma function InT"5 (z).Then we give other integral representation
on \-psi function and some complete monotonicity properties on the function related to A-psi function
and its derivatives. As applications, we lastly obtain arithmetic, geometric and harmonic mean
inequalities on A-psi function between x and 1/z for all positive values of = and .
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2 Useful Lemmas and \-Analogue of Hurwitz Zeta Function

In this section, we give some properties that help us to prove our main results

Lemma 2.1. (Qi et al., 2005) For x > 0 and any non-negative integer n, the integral

1 1 oonfzt
o ; the Tdt

holds true.
Lemma 2.2. (Spiegel and Ribero, 1970, pg.98, eq. 15.71)

o _—at __ _—bt
In ¢ :/ £ ~° a
b ), '

In the next result, we obtain new integral representation of A-psi function:
Lemma 2.3. The \-psi function can be also given by

T A® du
— —u | == 21
Ya(z) /0 € (u+)\)z:| © (2.1)
= / 67u — % dj (22)
o | (x+1)"] u
T 1 dt
— _ = 2.
[l -l @9
for all positive real values of x and \.
Proof. By differentiating the A-gamma function with respect to = and using Lemma 2.2, we get
I'\(z) = / t" e M Intdt
0

oo oo _—u —ut
1 e ' —e
Tl ——dudt
0 0 u
oo oo yx—1_—At_—u z—1_—At_—ut
t e e " —t e e
/ / du dt
0 0 u
oo

_ / (67’“ /oo tzflef)\tdt _ /00 tzfle—t('lr‘r)\)dt) @
0 0 0 u

Now, let us denote the second integral in the parentheses by 7. Substituting t(u + \) = Av yields that

[es] s} z—1 x o
/ tacflefi(qu)\)dt — / Av ) e*/\u Adv _ A / ’Uwilei/\vd’l)
0 o u—+ A u+X  (ut+XN)* J,

= ﬁf,\(x)

Hence we get
/ o —u o z—1_—At A" du
= _71_‘ T .
e = [ (e [Tt ) |

Since the integral in the parentheses is equal to I'x (z), we get

- (e gipne) ¢
ne = e

as desired. 0

1

INE

~
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Next, we define the A-analogue of Hurwitz zeta function:
Definition 2.1. The A-Hurwitz zeta can be defined by

NEVEDY m (2.4)

n=0

for k > 1 and all positive real values of z and \.

We want to remark that taking = 1 leads us to A-Riemann zeta function (that is special case of
A-Hurwitz zeta function) as

= 1 = 1
G(Lk) = nz;;m = 712—:1 = 5 = Glk).
Furthermore, the A-psi function can be given by
n = 'nl o n
Wi (x) Z Hk = (~1)"nlga (2, n + 1).

0

Hence 4™ (1) = ¢x(n).

Lemma 2.4. The integral representation of \-zeta function can be given as

1 o =gt
G(z) = Tx(2) /0 er _1° (2.5)

Proof. Substituting u = nt in the integral representation of A-gamma function (1.2) leads us that

=] =)
/ (nt)zflef)\ntndt — / nzfltzflef)\ntndt
0 0

oo
_ nz / tz—le—)\ntdt
0

Z/ tasflefkntdt :/ tZ71 Zef)\ntdt
n=1"0 0 n=1

F)\((L')

n=1

Since Z e " is a geometric series and converges by the fact |r| =

. > 0, the sum is equal to
(&

T Hence the desired result concludes from the last equation. O

Taking derivatives of A-psi function by n-times with respect to x yields that

(n) n+1 G 1 n+1 - 1
) P S SV UL W S
> ™D e - OV e

= (=D)"Mnlea(z,n +1).

Taking z = 1 in the last equation leads that 1/;(")( 1) = (=1)"*'n!¢a(n + 1). Hence from Taylor series
expansion of A\-psi function at =z = 1, we get

™ (1)(z — ™ (1)(z -
Ia(z) = Zw D" Z¢ n"

= —InA—~y++ Z(—U"“Q(n +1)(z—1)"

n=1
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At last, by replacing « + 1 instead of z in the last equation, we obtain the power series of the A-psi
function as

Ualz+1)=—InA—y+> (=1 C(k)z" " (2.6)
k=2

for |z| < 1.

3 Main Results

Theorem 3.1. Binet's first formula for logarithms of A-gamma function InT'»(x) can be given by

1 1 M1t 1 1 Je®
lnFA(x)—(x—§>lnx—a:ln/\+§ln(2ﬂ')+/0 {i—g—l—et_l} ; dt (3.1)
and as an immediate consequence; the A-psi function can also be given by
]. & 1 1 —xt
wx(:v):lnxf;fln)dr/o (27615_1)6 dt (3.2)

for all positive real values of x and \.

Proof. By taking into account the singularity of the third equation in the Lemma 2.3 at ¢t = 0, we can

rewrite the equation as
r roo _—Au ¢S]
e du
=1 du — — .
w“>zﬂJZ w l MWHV}

Then substituting u = e* — 1 in the second integral leads us to

[ foo —Au ¢S] t
e e'dt
= I du — JE
¥ale) e /E u /1n(1+a> et (et — 1)]

[ oo —Au [eS) —xt
dt
= lim / € du—/ c — |-
£— /e u In(1+e) 1—e

In(1+4¢) —tdt € di
Since/ € g/ — —0ase— 0, we get
€ 3 In(1+¢) t

oo —Au o) —xt
Ya(z) = lim / € du —/ © Cftt
e € u In(1+¢) 1-e
In(1+¢) e—)\u 0o e—)\u oo e~ %t
= lim / du+/ du—/
e |: R U - U In(14e) 1 — et
0o —At —axt
= / €< . dt.
0 t 1—et

—At

co —t
Using the equation In A\ = / %dt yields that
0

N —t —xt
Yr(z) = / [e c _fte . t}dt
0

t 1—e—
oS} e—t _ e—At &) e—t e—xt
= ‘/0 fd”/o [T‘ﬁ}dt
)\ oo e—t e—xt d 33
n +/0 [t 176_t:| t (3-3)
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. . 1 1 [ _ 0 g—t_g—@ .
By using last equation (3.3), o = 5/ e “'dtand Inz = o %dt, we obtain
0
1 [e’s} 67mt 67t _ efa:t €7t efzt
= - — - e dt
Ua(z + 1) 1n>\+2z+lnx /O { 5 + r . +et—1
1 *fT1 1 1 ot
= Inz—1 — - - —= dt.
nr—InAtas /0 {2 t“Let—J6

. . . . 1 1 1 . . .
The integrand is continuous as ¢t — 0 and since 57 % +— is bounded as t — o, the integral is
et —

uniformly convergence for z > 0. By integrating from 1 to z, we obtain

11 1 Je™—et
2t

InCx(z+1)—InT'y = zlhz—z+1—(z—1)InA+ = lnm—|—/ {f— P ;
0 e -

. . . 1
Now using recurrence formula on A-gamma function in (1.6) and the equation I'y(2) = 2 leads us
that

lnPA+lnm—ln)\+21n)\:xlnx—m+1—(m—l)ln)\—i—%lnm
e— Tt _o—t
N P, petaey

xt

InTx(z) = (¢ — ) Inz—z—zn A+ 14 [7 [5—7—1—& 1] o —dt

et

SRR

For evaluating the second integral on the right side of the last equation, let us denote

Ty 1 1 et °r1 1 1 ] e t? . )
— Z_Z c = -z dt. Takin = 1/2in the
1 /0 {2 t+e"'71} dt and J = /0 {2 t+et71} . ing = /21

last equation yields that InT"»(1/2) = 1_ A + J — I and then using Ty <1) = %(lnﬂ —In))

2 2 2
leads usto J — I = (1 — In7). On the other hand, by substituting v = % in the integral I, we get
11 2 1 e t/?
I= -~ — -4 ———| ——dt. Hence, we find
/0 [2 t+et/2—1} t
<1 1 1 12 1 e /2
- = e T ) B 7
ST /0 [2 tTe—1 27 et/Q—l} t

¢S] 1 e—t/Q e—t/Qd &) e—t/Q 1 dt
= R t = _
/(; (t et — 1) t /0 ( 2 et — 1) t
By using the last equation and integral representation of I, we obtain
/oo 4/2 1 —t/2 et et dt
i —_ JF _
0 2 — 1 t et—1) ¢t
oo 7t/2 —
= }
oo e—t/2 _ "/2 —t —t
/ _d - |at
o dt 2t

J
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Hencewegetl =1 — %ln(er). So by writing the solution of integral I in the last equation, we find

1 1 M1 1 1 Je™
lnF,\(x)—(x—i)lnx—x—ajln)\—i—iln(%r)—i—/o [§_¥+et71} dt
for all , A > 0. By differentiating the last equation, one can obtain the equation (3.2). O

By using Theorem 3.1, we give the following completely monotonicity properties on the function
involving A-psi function and its first derivative:

Theorem 3.2. The functions

w,\(x)Jrln)\flneriJr 1213:2
Inz — % —In X —¥a(z)
w;(m)_%_fals?_éJr?)olxs
%+§ +6% — YA(x)

are completely monotonic for all z, A > 0.

Proof. Let us denote fi(z) = 1r(x) + InA —Inz + 5= + 15-». By using the definition of the A-psi
function (3.2) and Lemma 2.1, we get

1 1
filz) = ¢A($)+ln)\71nx+%+12x2

_ o° 1 1 1 t —xt
- /0 {t et—1 2+12]€ dt
/°° (12 — 6t + t*)e’ — (12 4 6t + t2) ot g
o 12t(et — 1) '
Since the nominator di(t) = (12 — 6t 4 t*)e’ — (12 + 6t + t*) > 0 and d:(0) = 0, we get that

(=1)" £ (z) > 0 as desired.
Now, let us define the function f2 by fa(z) = ¥a(2) + In A — Inz + 5. Then we obtain

fo(z) = Ya(z)+InA—Inz+ %

PRt = (t+2) _w
=) ey

Since da(t) = (2 — t)e! — (t +2) < 0 and da(0) = 0 for all ¢ > 0, we obtain (—1)"*' £{™(z) > 0 as
desired.
By differantiating the definition of the A-psi function (3.2), we get

/ 1 1 o t —xt
= — - — 1—- —
w@=g+ g [ (1m gty

for all z, A > 0. Then using the last equation and Lemma 2.1 yields that

o, 11 1 1
fs(z) = Ui() r 272 6x3+30m5

B /°° (t* — 60t 4 360t — 720)e’ — (t* — 60t> — 360t — 720) oty
0 720(et — 1)
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Since the nominator of the function ds(t) = (t* — 60t 4 360t — 720)e’ — (t* — 60t — 360t — 720)
is positive for all ¢ > 0, it concludes that (71)"f3")(:c) > 0 for all positive real value of = and any
nonnegative integer n.

At last, let us define the function f4 by fa(z) = i + —— + — —¢\(z). Then by using the derivative
of the A\-psi function (3.2) and Lemma 2.1, we obtain

falz) = /OOQ [(12 SO t)e Z (G 1)] ag,

12(et — 1)
Since the nominator of the function is the same as the function fi, we get that the function f, is also
completely monotonic for all z > 0 and n € Z* U {0}. O

As an immediate consequence of the previous theorem, we get the following double sided
inequalities on A-psi function and its first derivative.

Corollary 3.3. The following double sided inequalities

1 1 1
S —InA— — 4
Inzln A 52~ 1927 < Ya(z) <lnz—InA 5 (3.4)

1 1 1 1 , 1 1 1
et % T s SO < T ot (39

and
1 1 1 ” 1 1

ThE o 2 W@ <-E-E (36)

hold true for x > 0.

Theorem 3.4. For all positive real values of x and \, the function
z

Py (z) = ¢a(z) + ¥a (1) +2In )\ (3.7)

is concave.

Proof. Taking derivatives of the function Py yields that

R = @ - 0 (3)

xT

wio)+ 5o (1) + 2ot (2)

w4 Sk (3) + deok (3) + 2004 (1) + o't

x

Py (x)

=" P{ ()

By using the recurrence formulas ¢\ (z+1) = ¥} (x) — x% and ¢} (z+1) = ¥} (z)+ % and inequalities
(3.5) and (3.6), we obtain

x4P>/\'(m) = 228 +of (%) 2 [$2 + YA <% + 1):| + m4¢;\/(1:)

3 1 1 2 1 1 1
< I (_(1/x+1)2 - (1+1/w)3> 2 (x Tl Ta 412 6(1+1/x)3)

Al
€z 1'2 1'3

x 4 3 2
= —— 2 .
301 )° [3z" + 227 + 92" + 9z + 3]
Hence it is easy to see that since z*P{(z) < 0 = P{(z) < 0, the function Py is concave for
YV, A > 0. O
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Corollary 3.5. Forx € R™ — {1}, the inequality

Ua(z) + P (%) +2In A <2 (¥x(1) +1In ) (3.8)
is valid.

Proof. Using the concavity of the function P, in Theorem 3.4 leads us that the function P; is decreasing

for = > 0. Since Py(z) = v (z) — %w; @) — P{(1) = 0, we get that from P{(z) > Pi(1) = 0
for 0 < z < 1, the function Py increases and also from P (z) < P5(1) = 0 for 1 < z, the function Py
increases. Hence for x # 1 and z > 0, we find P\ (z) < Pa(1) = 2 (¥»(1) + In \) as desired. O

We want to note that since the classical psi function (z) at z = 1 is equal to —v, by using the
relation between classical and A-psi function ¥» (z) = — In A+ (x), we clearly see that for all positive
value of A, Py (1) = 2(¢a(1) +InX) = 2¢(1) = —y < 0.

Theorem 3.6. The inequality
[a(1+y) + I A[oa(l = y) + InA] < [$a(1) + In A)? (3.9)

holds true forvVy € (0,1).

Proof. Since for all A > 0, the A-psi function is completely monotonic on (0, o), there is a zo €
(0, 00) such that ¥»(x) + In A = 0 and on the other hand, from the first inequality (3.4), we get that
Ya(z) +InA >Inz — % ~ g2 = Y0 2 1,46321. Soify € [xo —1,1), then A(1 —y) +InA <0 <
¥a(1 4+ y) + In A. Hence we get desired result. Now if y € (0,20 — 1), then ¢x(1 —y) +In A < 0 and
PYa(l+y)+InX < 0. By using the power series on the A-psi function in the equation (2.6), we get the
following inequalities

0<—(r(14+y)+In)) <v =GRy + BBy
and

NgE

0<—(WUa(l-9y)+InX) < v+OQ2Qy+0B3B))> ¥y

Ed

= T O@+GET

< 7+ G+ GO

Thus these inequalities leads us to the following inequality

w N

(a1l +y) + A (A1 —y) +1InX) <77 = [((2)* = GB)Y* — G2)GB)Y +20:(3)%y"

Since ¢\ (2)% — ¢a(3) > 0, (A (2)¢(3) > 0 and 2¢A(3)? > 0, the inequality ¢»(2)¢A(3) > 2¢A(3)? is
valid. Hence we obtain that the inequality ¢ (2)¢x (3)y® > 2¢x(3)2y*. Thus the proof is completed. [

Theorem 3.7. Forz € R — {1}, the inequality

[¥a(z) +1In A] {w <1> —l—ln)\} < [a(1) +1nA]? (3.10)

T

holds true.

10
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Proof. If z > x, then the inequality is valid since |:1l}>\ (i) +In )\} <0< [a(z) +In Al
Now, let 1+y = x € (1, x0). By using the inequality i > 1 —y and monotonicity property of the A-psi
function (0, co), we find that the inequality

[a(l —y)+1In)] < [w; <%) +ln/\] <0

holds true. Hence from the last inequality and Theorem 3.6, we get
[wﬂxy+mA]Pu<%)4ﬁnA] - [¢m1+yy+mA]Pu(%)+4nﬁ
< [l +y) +InA[Ya(l —y) +1In )|

< [¥a(1) +1In AP

as desired.
If z € (0,1), then we take z = 1/ and use the method above for the result. O

Theorem 3.8. The inequality

2[4 (@) + I A] [ (3) +1n )]

L)+ s Yax) + P (%)—Fan)\

(3.11)

holds true for all positive real values of x.

Proof. By using the inequalities (3.8) and (3.10) and taking into account that the inequality (3.8) is
negative, we get

QWu@g+4nM[¢A<%)-+mA] < 2[ha(1) +In N?

2[¢x(2) + )] [x (5) +1InA] 2 [a (1) +In AP
Ya(@) +¥a (L) +2InA Ua(z) +¥a (L) +2In A
2 [a(1) + In A?
[¥A(1) + In A]?
[¥A(1) + In A]?

for all positive real values of x except for 1. The sign of the equality holds if and only if x = 1. O

4 Conclusion

In this work, we study the one of newest generalization of special function that is closely related
to fractional integral,. We give some definition of A-psi and A-zeta functions and obtain that some
functions involving A-psi function and its derivative are completely monotonic for all positive real
values of x and A. Some results in this paper may be used for refinements of some inequalities
and obtaining new results.
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