


Short Research Article
Discussion on Maximal Edge-Ideal in Graph Theory

Abstract: The exploration of width parameters within the fields of graph theory and algebra has garnered significant interest. Among these parameters, tree-cut decomposition stands out as a vital metric. The "Edge-Tangle" concept is intrinsically linked to the width parameter known as "tree-cut width" in graph theory. In this paper, we introduce a new definition termed Maximal Edge-Ideal for graphs and demonstrate their equivalence to Edge-Tangles.
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1. Introduction
1.1. Graph and Graph Parameters
A graph consists of vertices and edges [63]. Graphs are studied for applications in networks, artificial intelligence, and various other fields [65, 66]. A graph parameter is a numerical invariant measuring structural properties. In recent years, research interest in width parameters within graph theory and algebra has significantly increased [1-33]. These width parameters are metrics derived from tree-like structures, commonly studied through graph decompositions. Well-known examples of width parameters include tree-width, branch-width [12], path-width [10], proper-path-width [86-88], hypertree-width [47,48], superhypertree-width [52,53], cut-width [67,68], linear-width [5,14], modular-width [54,55], Boolean-width [56,57], Band-width [58,59,61], Twin-width [82-85], and clique-width [60,89,90].
A key topic of study in this field is the concept of obstructions, which play a crucial role in determining width parameters. Notable examples include tangles [17], brambles [75, 76], ultrafilters [17, 77], blockages [64], and linear tangles [8]. In particular, the concept of an edge-tangle is closely related to the width parameter known as tree-cut width in graph theory [1]. These concepts are frequently used in the analysis of efficient algorithms and the exploration of mathematical structures in graph theory.

1.2. Ideal in set theory and Graph Theory
In set theory, an ideal is a collection of subsets of a given set that is closed under taking subsets and finite unions while excluding the entire set. The complementary structure to an ideal is called a filter, and similar concepts have been explored in graph theory as well. The concepts of Ideals and Filters have been widely studied across various fields [69-74].  
The notion of maximality is frequently discussed in the context of ideals. A Maximal Ideal is an ideal that cannot be extended further without becoming the entire set. Its complement is called an Ultrafilter. These structures are known to possess various intriguing mathematical properties.

1.3. Our Contribution of this paper
This paper explains its contributions. As stated in the introduction, research on Ideals and Graph Width Parameters is significant. However, the relationship between Ideals and Graph Width Parameters has not been extensively explored.
In this paper, we introduce a new concept called Maximal-Edge-Ideal for graphs and demonstrate its connection to Edge-Tangles. Additionally, we briefly examine the maximality of Edge-Ideals and their structural similarities to traditional Ideals. Although the novelty of this work may be limited, we hope that it will make a modest contribution to the ongoing research on graph width parameters.

2. Definitions and Notations in this paper
This section provides the mathematical definitions of each concept. First, we briefly explain the notations used in this paper. Readers who wish to review the fundamentals of set theory and graph theory may refer to references [62,63] as needed.
 

Notation 1[62,63]: In this short paper, we use expressions like A ⊆ X to indicate that A is a subset of X, A ∪ B to represent the union of two subsets A and B, both of which are subsets of X, or A = ∅  to signify an empty set. Specifically, A ∩ B denotes the intersection of subsets A and B. A similar logic applies to A \ B. The powerset of a set A, denoted as 2A, is the set of all possible subsets of A, including the empty set and A itself.

    Notation 2[62,63]:  Let G be a finite and undirected graph. The notation V(G)  represents the set of vertices (nodes) in G, and  E(G)  represents the set of edges in  G . The expression G = (V, E) signifies that G is a graph defined by a pair of sets:  V for vertices and E for edges. In this paper, we focus on the properties of undirected, finite, and simple graphs.
Notation 3: A natural number is a positive integer used for counting and ordering [91]. In this paper, we utilize the natural number k.

Next, we briefly explain the definition of an edge-cut. This definition will be used later in the discussion of edge-tangles and edge-ideals.
[bookmark: _GoBack]   Definition 4 [1]: An edge-cut [A, B] of a finite and undirected G is an ordered pair of disjoint subsets of V(G) such that A ∪ B = V (G). And the order of an edge-cut [A, B] of G is the number of edges of G with one end in A and one end in B (cf: [1]).

  For clarity, an example is provided below.
   Example 5: Let finite and undirected graph G = (V, E) be defined as follows:
V = {a, b, c, d}, E = {{a, b}, {b, c}, {c, d}, {d, a}, {a, c}}
Define the subsets: A = {a, b} B = {c, d}.
These subsets satisfy:
A ∩ B = ∅ (they are disjoint), A ∪ B = V (their union covers all vertices).
According to Definition 4, the edge-cut [A, B] is the ordered pair (A, B) and its order is the number of edges with one endpoint in A and the other in B.
Now, inspect each edge:
· Edge {a, b}: Both endpoints are in A — not part of the cut.
· Edge {b, c}: b ∈ A and c ∈ B — included in the cut.
· Edge {c, d}: Both endpoints are in B — not part of the cut.
· Edge {d, a}: d ∈ B and a ∈ A — included in the cut.
· Edge {a, c}: a ∈ A and c ∈ B — included in the cut.
Thus, the edge-cut [A, B] contains the edges: {b, c}, {d, a}, {a, c}, and its order is 3 (since there are 3 edges crossing from A to B).

2.1 Ideals on Boolean Algebras
We provide an explanation of Ideals in Boolean Algebras. 

Definition 6: In a Boolean algebra (X,∪,∩), a set family I ⊆ 2X satisfying the following conditions is called an ideal on the carrier set X.
(IB1) A, B ∈ I  ⇒ A ∪ B ∈ I (Closure under Union),
(IB2) B ∈ I, A ⊆ B ⊆ X ⇒ A∈ I (Closure under Superset),
(IB3) X is not belong to I (Exclusion of the Universal Set).

In a Boolean algebras (X,∪,∩), A maximal ideal satisfies the following axiom (IB4):
(IB4) ∀A ⊆ X, either A ∈ I or X / A ∈ I

For clarity, an example is provided below.
Example 7: Let the finite carrier set be X = {1, 2, 3} and consider its power set 2X={∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. Define I = {∅, {1}, {2}, {1,2}}.
Verification.
· (IB1) Closure under Union:
· For instance, {1}∪{2}={1,2}∈I.
· Also, ∅∪{1}={1}∈I
· (IB2) Downward Closure:
· Any subset of an element of I is also in I. For example, since {1,2}∈I and {1}⊂{1,2}, we have {1}∈I.
· Clearly, ∅ is a subset of every element in I and is itself in I.
· (IB3) Exclusion of the Universal Set:
· The full set X = {1,2,3} is not in I.
Thus, I satisfies all the ideal conditions on the Boolean algebra (2X, ∪, ∩).
2.2　Edge-Tangle on the finite graph
We describe the concept of an edge-tangle in graphs. Below, we provide the definition of a tangle within graph theory. Edge-Tangles are renowned for their profound association with tree-cut decompositions [1]. These decompositions have been extensively studied by various researchers [24-31].

Definition 8 [1, 23]: Let G be a finite and undirected graph.  A edge-tangle E of order k is a set of edge-cuts of G such that the following hold. 
(E1) For all edge-cut [A, B] of G of order less than k, either [A, B] ∈ E or [B, A] ∈ E .
(E2) If [A1, B1],[A2, B2],[A3, B3] ∈ E then A1 ∪ A2 ∪ A3 ≠ G.
(E3) If [A, B] ∈ E, then G has at least k edges incident with vertices in B.

For clarity, an example is provided below.
Example 9: Let G = K8​, the complete graph on 8 vertices V(G)={v1,v2,…,v8}, and choose k=8.
Note that a complete graph Kn is a graph where every pair of distinct vertices is connected by an edge [79-82]. Select a fixed subset (our “central” region) as R={v1, v2, v3}.
We assume that in every edge-cut of G of order less than 8, the set R is not split (this is a natural assumption in highly connected graphs such as K8).
Define the edge-tangle of order 8 as:
E={[A,B]  :  [A,B] is an edge-cut of G with order<8 and R⊆B}.
That is, for every edge-cut [A,B] with fewer than 8 crossing edges, we “orient” it by declaring the side that contains R to be B.

Verification of Edge-Tangle Properties.
· (E1) Orientation of Small Edge-Cuts:
For every edge-cut [A,B] of order less than 8, because G is highly connected, the cut cannot split R (i.e. either R⊆A or R⊆B). By our rule, we include the separation for which R⊆B. Thus, exactly one of [A,B] or [B,A] belongs to E.
· (E2) Non-Covering Condition:
Suppose [A1,B1], [A2,B2], and [A3,B3] are in E. Then each Bi contains R. Hence, A1∪A2∪A3⊆V(G)∖R≠V(G), ensuring that the union of the “small” sides does not cover the entire vertex set.
· (E3) Connectivity Condition:
For any [A,B]∈E, since R⊆B and ∣R∣=3, consider a worst-case scenario when B=R. In K8​, each vertex has degree 7; hence, if B={v1,v2,v3} then the number of edges from B to A=V(G)∖B is ∣B∣×(8−∣B∣)=3×5=15, which is at least k=8.
Thus, E is an edge-tangle of order 8 on K8​.

3. Some Properties of Maximal Ideals of Edge-Cuts: Their Relation to Tree-Cut Decomposition
The definition of a Maximal Edge-ideal on the graph is given below. We naturally extend the definition from Boolean algebras to a set of edge-cuts. 

Definition 10: Let G be a finite and undirected graph. An Edge-ideal I of order k is a set of edge-cuts of G such that the following hold.
(I1)  [A2, B2] ∈ I, A1 ⊆ A2 , [A1, B1] of order less than k　⇒  [A1, B1] ∈ I,
(I2) [A1, B1] ∈ I, [A2, B2] ∈ I,  [A1∪A2, B1　∩ B2 ] of order less than k　
⇒  [A1 ∪ A2, B1　∩ B2 ] ∈ I,
(I3) If [A, B] ∈ I, then G has at least k edges incident with vertices in B.
(I4) If V(A) ＝ V(G), then [A, B] ∈I.

A Maximal Edge-ideal satisfies the following additional axiom (I5):
For all edge-cut [A, B]  of G of order less than k, either [A, B]  ∈ I or [B, A] ∈ I

For clarity, an example is provided below.
Example 11: Let G = K8​, the complete graph on 8 vertices V(G)={v1,v2,…,v8}, and choose k=8.
Note that a complete graph Kn is a graph where every pair of distinct vertices is connected by an edge [79-82]. Select a fixed subset (our “central” region) as R = {v1, v2, v3}.
Define I={[A,B]  :  [A,B] is an edge-cut of G with order<8 and R⊆B}.
This is exactly the same collection as the tangle E above, but we now view it as an “ideal” with additional closure properties.
Verification of Edge-Ideal Properties.
· (I1) Downward Closure:
If [A2,B2]∈I (so R⊆B2​) and A1⊆A2 ​, then the complementary side satisfies B1=V(G)∖A1⊇V(G)∖A2=B2​. Hence, R⊆B1 ​ and so [A1,B1]∈I.
· (I2) Closure under “Union”:
Let [A1,B1]∈I and [A2,B2]∈I. Then R⊆B1 ​ and R⊆B2 imply R⊆B1∩B2​. If the edge-cut [A1∪A2, B1∩B2] has order less than 8, then by definition it belongs to I.
· (I3) Connectivity Condition:
For any [A,B]∈I, since R⊆B and, as calculated earlier, even the smallest possible B (namely R) yields ∣R∣×(8−∣R∣)=3×5=15≥8, the condition that “G has at least k edges incident with vertices in B” is satisfied.
· (I4) Inclusion of Trivial Edge-Cuts:
By convention, if an edge-cut is “trivial” (for example, if A=V(G) so that B=∅), it is included in the ideal.
· (I5) Maximality:
For every edge-cut [A,B] of order less than 8, the highly connected nature of K8​ ensures that R is not split; that is, either R⊆B or R⊆A. In the first case, [A,B]∈I; in the second, its complement [B,A] satisfies R⊆A and would be in the ideal if we had chosen the opposite orientation. Thus, I is maximal in the sense that for every small edge-cut one of the two orientations is included.
Therefore, I is a maximal edge-ideal of order 8 in G.

Proving the Main Theorem of this paper, which establishes the　equivalence between Maximal Edge-ideal and Edge-Tangles.
Theorem 12: Let G be a finite and undirected graph. E is an edge-Tangle of separations of order k in graph if and only if E is a Maximal Edge-ideal of separations of order k in graph.
Proof. (⇒) Assume that E is an edge-tangle of separations of order k in G.
We show that E satisfies the axioms (I1)–(I4) for an edge-ideal and, moreover, the maximality condition (I5).
· (I1) Downward Closure: Let [A2, B2] ∈ E and suppose A1 ⊆ A2 with [A1, B1] an edge-cut of order less than k. By the tangle property (E1), either [A1, B1] ∈ E or [B1, A1] ∈ E.
· (I2) Closure under 'Union': Let [A1, B1] ∈ E and [A2, B2] ∈ E. If [A1 ∪ A2, B1 ∩ B2] is an edge-cut of order less than k, then [A1 ∪ A2, B1 ∩ B2] ∈ E.
· (I3) Connectivity Condition: If [A, B] ∈ E, then G has at least k edges incident with vertices in B.
· (I4) Inclusion of Trivial Edge-Cuts: If V(A) = V(G), then [A, B] is included in E.
· (I5) Maximality: For every edge-cut [A, B] of order less than k, either [A, B] ∈ E or [B, A] ∈ E.
Thus, if E is an edge-tangle, then E is a maximal edge-ideal.
(⇐) Conversely, assume that E is a maximal edge-ideal, that is, E satisfies axioms (I1)–(I4) and the maximality condition (I5). We show that E is an edge-tangle.
· Edge-Cut Orientation (E1): Axiom (I5) states that for every edge-cut [A, B] of order less than k, either [A, B] ∈ E or [B, A] ∈ E.
· Non-Covering Condition (E2): Suppose for contradiction that there exist edge-cuts [A1, B1], [A2, B2], [A3, B3] ∈ E such that A1 ∪ A2 ∪ A3 = V(G). This contradicts the connectivity condition (I3).
· Connectivity (E3): Axiom (I3) of the edge-ideal directly provides the connectivity requirement (E3).
Thus, E satisfies all the conditions for being an edge-tangle. This completes the proof of the Theorem.

Theorem 13:  Let G be a finite and undirected graph. The following holds.
(i) An Edge-Ideal I of order k in a graph G possesses the structure of an ideal analogous to ideals in Boolean algebras.
(ii) Moreover, a maximal Edge-Ideal satisfies the additional axiom (I5).

Proof: Each can be proved as follows. 
(i) Edge-Ideal as an Ideal Structure:
Downward Closure (I1): If [A2, B2] ∈ I and A1 ⊆ A2, then [A1, B1] ∈ I.
Closure under 'Union' (I2): If [A1, B1] and [A2, B2] are in I, then [A1 ∪ A2, B1 ∩ B2] ∈ I.
Connectivity Condition (I3): If [A, B] ∈ I, then G has at least k edges incident with vertices in B.
Trivial Edge-Cut Inclusion (I4): If V(A) = V(G), then [A, B] ∈ I.

(ii) Maximal Edge-Ideals Satisfy Axiom (I5):
By definition, a maximal Edge-Ideal is one that cannot be extended further without violating (I1)–(I4). For every edge-cut [A, B] of order less than k, if [A, B] is not in I, then its complement [B, A] must be in I.
Thus, a maximal Edge-Ideal not only has the ideal structure but also satisfies the additional maximality condition (I5). This completes the proof of the Theorem.

4. Conclusion and Future Direction of This Research
In this paper, we explored the characteristics of Edge-Ideals as an extension of traditional Ideals. As a future research direction, we aim to extend this concept to Hypergraphs[37-39], SuperHyperGraphs[34-36], Fuzzy Graphs[40-42], Neutrosophic Graphs[43-46], and Plithogenic Graphs[49-51], further investigating their properties and potential applications.
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