
MATHEMATICAL MODELING OF ECOLOGICAL CONSEQUENCES OF

CLIMATE-INDUCED PHENOLOGICAL SHIFTS ON

PREDATOR-PREY DYNAMICS

Abstract
Climate change is one of the most pressing challenges of the 21st century, with far reaching
consequences for ecosystems and biodiversity. Among the myriad impacts of climate change,
phenological shifts changes in the timing of biological events such as flowering, migration,
and reproduction are particularly significant. These shifts can disrupt the synchrony between
species interactions, especially in predator-prey relationships, which are fundamental to the
stability and functioning of ecosystems. This study seeks to address this issue by develop-
ing and analyzing mathematical models that capture the effects of phenological changes on
predator-prey interactions. The models incorporate time delays to represent phenological
mismatches and use delay differential equations (DDEs) to describe the dynamics of preda-
tor and prey populations. Through equilibrium analysis, stability analysis, and bifurcation
analysis, the study explores how varying degrees of phenological mismatch affect popula-
tion stability and ecosystem resilience. Numerical simulations demonstrate that longer time
delays can induce oscillations and destabilize the system, highlighting the importance of
considering time delays in ecological modeling. The findings of this research could inform
conservation strategies and ecosystem management practices in the face of ongoing climate
change, providing insights into mitigating the ecological disruptions caused by phenological
mismatches.
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1. Introduction

Climate change is one of the most pressing challenges of the 21st century, with far-reaching
consequences for ecosystems and biodiversity. Among its myriad impacts, phenological shifts
changes in the timing of biological events such as flowering, migration, and reproduction are
particularly significant [18]. For example, many plant species are flowering earlier in response
to warmer temperatures, while some migratory birds are arriving later at their breeding
grounds. These shifts can disrupt the synchrony between species interactions, especially
in predator-prey relationships, which are fundamental to the stability and functioning of
ecosystems. When predators and prey respond differently to changing environmental cues,
such as temperature and precipitation patterns, phenological mismatches can arise, leading
to reduced predation efficiency, altered population dynamics, and cascading effects through-
out the food web [14].

Understanding the ecological consequences of these phenological shifts is critical for pre-
dicting and mitigating the impacts of climate change on natural systems. While empirical
evidence from field studies increasingly highlights the prevalence of phenological shifts [17],
the long-term ecological consequences, particularly in predator-prey systems, remain poorly
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understood. For instance, studies have shown that mismatches in the timing of prey avail-
ability and predator foraging can lead to declines in predator populations, but the underlying
mechanisms and potential tipping points are not well characterized.

This research builds on the classic Lotka-Volterra predator-prey model presented by [10] and
incorporates Holling’s Type II functional response (a more realistic functional response) that
can maintain a stable equilibrium between predator and prey populations by balancing the
predation rate with the recovery capacity of prey populations [5]. The research extends to
incorporate time delays that represent phenological mismatches caused by climate change.
To address the issue of phenological mismatches,where the timing of predator and prey life
cycles becomes desynchronized, can lead to reduced predation efficiency, altered population
dynamics, and potential cascading effects throughout the food web [14], the study extends
these models by introducing time delays that represent the temporal decoupling of preda-
tor and prey life cycles caused by climate change. These mismatches are often driven by
differential responses of species to changing environmental cues, such as temperature and
precipitation patterns.

Therefore, mathematical modeling offers a powerful tool for exploring these complex dynam-
ics, allowing researchers to simulate scenarios of varying degrees of phenological mismatch
and quantify their impacts on population stability, coexistence, and ecosystem resilience [2,3].
The models may include factors such as species-specific responses to temperature, resource
availability, and the strength of trophic interactions. Through simulations and analytical
techniques, the study will explore scenarios of varying degrees of phenological mismatch and
their consequences for ecosystem dynamics.

This research is particularly timely, as empirical evidence from field studies increasingly high-
lights the prevalence of phenological shifts in response to climate change [15,17]. However,
the long-term ecological consequences of these shifts remain poorly understood. By bridging
the gap between empirical observations and theoretical ecology, this study will contribute to
a deeper understanding of how climate-induced phenological changes may reshape predator-
prey interactions and, by extension, the broader ecological community.

Ultimately, the findings of this research could inform conservation strategies and ecosystem
management practices in the face of ongoing climate change. By identifying key vulner-
abilities and potential tipping points in predator-prey systems, the study aims to provide
insights that can help mitigate the ecological disruptions caused by phenological mismatches
[4]. This could guide efforts to protect vulnerable species or restore ecosystem balance in
the face of ongoing climate change. This work underscores the importance of integrating
mathematical modeling with ecological theory to address the complex and interconnected
challenges posed by climate change.

2. Mathematical Modeling of Phenological Shifts in Predator-Prey Dynamics

The model describes the dynamics of a predator-prey system where climate-induced pheno-
logical shifts affect the timing of prey availability and predator activity. The prey popula-
tion (N(t)) and predator population (P (t)) are modeled using a system of delay differential
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equations (DDEs) to account for the time lags caused by phenological shifts. The model
incorporates the following key features:

� Phenological shifts: Changes in the timing of prey availability due to climate change.

� Time delays: Represent the mismatch between predator activity and prey availability.

� Functional response: Predation follows the Holling type II functional response.

The dynamics of the system are described by the following set of equations:

dN

dt
= rN(t)

(
1− N(t)

K

)
− αN(t)P (t−τ)

1+αhN(t)

dP

dt
= βαN(t−τ)P (t−τ)

1+αhN(t−τ) − dP (t) (1)

where:

� N(t): Prey population at time t.

� P (t): Predator population at time t.

� r: Intrinsic growth rate of the prey.

� K: Carrying capacity of the prey.

� α: Attack rate of predators on prey.

� h: Handling time of predators.

� β: Conversion efficiency of prey biomass into predator biomass.

� d: Death rate of predators.

� τ : Time delay representing the phenological shift (mismatch between predator activity
and prey availability).

2.1. Assumptions
The model is based on the following assumptions:

� Prey growth is logistic, with a carrying capacity K.

� Predation follows the Holling type II functional response.

� Phenological shifts introduce a time delay τ in predator activity relative to prey avail-
ability.

� The system is deterministic, ignoring stochastic environmental fluctuations.
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3. Model Analysis

3.1. Positivity and Boundedness of Solutions
These properties ensure that the model is biologically realistic and mathematically well
posed, making it suitable for studying the ecological consequences of phenological shifts in
predator-prey systems [5,8].

3.1.1. Positivity of Solutions of the Model
This model deals with interactions between two species in an ecosysytem. Therefore, the
associated state variables need to be shown that they are nonnegative for all time t ≥ 0.
The positivity of the model ensures that the prey population N(t) and predator population
P (t) remain non-negative for all t ≥ 0, given non-negative initial conditions. Therefore, we
need to show that if the initial conditions are non-negative, i.e., N(t) ≥ 0 and P (t) ≥ 0,
then the solutions N(t) and P (t) remain non-negative for all t ≥ 0.

Theorem: Given model equation (1) with initial conditions N(t) ≥ 0, P (t) ≥ 0, then the
solutions {N(t), P (t)} of the model remain positive for all time t ≥ 0 in the feasible region
Π.

Proof. Given the initial conditions N(t) ≥ 0, P (t) ≥ 0, it is easy to show that the solutions
of equation (1) will remain to be positive. This done by showing that when any variable
reaches zero of the system (1), its derivative is non-negative for all time t ≥ 0.
We investigate when each variable reaches zero and see if it can turn negative in order to
assess the system’s positivity as follows:

From the prey dynamics equation described by:

dN

dt
= rN(t)

(
1− N(t)

K

)
− αN(t)P (t− τ)

1 + αhN(t)
.

At N(t) = 0, the equation becomes:
dN

dt
= 0,

which means N(t) = 0 is an equilibrium point. If N(t) starts at 0, it remains 0, otherwise

for N(t) > 0, the growth term rN(t)
(

1− N(t)
K

)
ensures that N(t) remains positive as long

as P (t− τ) ≥ 0.

From the predator dynamics described by:

dP

dt
=
βαN(t− τ)P (t− τ)

1 + αhN(t− τ)
− dP (t).

when P (t) = 0, the equation becomes:

dP

dt
= 0,

which means P (t) = 0 is an equilibrium point. If P (t) starts at 0, it remains 0, otherwise for
P (t) > 0, the term βαN(t−τ)P (t−τ)

1+αhN(t−τ) ensures that P (t) remains positive as long as N(t− τ) ≥ 0.

Hence given non-negative initial conditions N(0) ≥ 0 and P (0) ≥ 0, the solutions N(t) and
P (t) remain non-negative for all t ≥ 0. This ensures the positivity of the model.
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3.1.2. Boundedness of Solutions of the Model
The boundedness of the model ensures that the prey and predator populations do not grow
indefinitely, reflecting the finite resources of the ecosystem.
Prey Population (N(t))
The prey population follows logistic growth with a carrying capacity K:

dN

dt
= rN(t)

(
1− N(t)

K

)
− αN(t)P (t− τ)

1 + αhN(t)
.

� In the absence of predators (P (t) = 0), the prey population grows logistically and is
bounded by K:

dN

dt
= rN(t)

(
1− N(t)

K

)
=⇒ N(t) ≤ K.

� With predators, the additional term αN(t)P (t−τ)
1+αhN(t)

represents predation, which reduces

the prey population. Thus, N(t) remains bounded by K.

Predator Population (P (t))
The predator population depends on the prey population and has a natural mortality rate
d:

dP

dt
=
βαN(t− τ)P (t− τ)

1 + αhN(t− τ)
− dP (t).

� The growth term βαN(t−τ)P (t−τ)
1+αhN(t−τ) is proportional to the prey population N(t− τ), which

is bounded by K.

� The mortality term −dP (t) ensures that the predator population cannot grow indefi-
nitely. Specifically, the predator population is bounded by:

P (t) ≤ βαK

d(1 + αhK)
.

Therefore, both the prey and predator populations are bounded:

� N(t) ≤ K (prey population is bounded by the carrying capacity).

� P (t) ≤ βαK
d(1+αhK)

(predator population is bounded by the available prey biomass and

mortality rate).

3.2. Equilibrium Points
The equilibrium points of the system are found by setting the time derivatives to zero:

dN

dt
= 0 and

dP

dt
= 0.

This gives the following system of equations:

rN

(
1− N

K

)
− αNP

1 + αhN
= 0 (2)

βαNP

1 + αhN
− dP = 0. (3)
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3.2.1. Trivial Equilibrium
The trivial equilibrium point (E0) is:

E0 = (N0, P0) = (0, 0).

This equilibrium represents the extinction of both prey and predator populations.
3.2.2. Predator-Free Equilibrium
The predator-free equilibrium (E1) is:

E1 = (N1, P1) = (K, 0).

This equilibrium represents the extinction of the predator population, with the prey popu-
lation at its carrying capacity.
3.2.3. Coexistence Equilibrium
The coexistence equilibrium (E2) is found by solving the system:

rN

(
1− N

K

)
− αNP

1 + αhN
= 0, (4)

βαNP

1 + αhN
− dP = 0. (5)

From the second equation, we obtain:

βαN

1 + αhN
= d.

Solving for N , we get:

N∗ =
d

α(β − dh)
.

Substituting N∗ into the first equation, we find:

P ∗ =
r
(
1− N∗

K

)
(1 + αhN∗)

α
.

Thus, the coexistence equilibrium is:

E2 = (N∗, P ∗).

3.3. Stability Analysis of Equilibrium Points
To analyze the stability of the equilibrium points, we linearize the system around each
equilibrium and compute the Jacobian matrix. The Jacobian matrix J of the system is
given by:

J =

(
∂f1
∂N

∂f1
∂P

∂f2
∂N

∂f2
∂P

)
, (6)

where:

f1 = rN

(
1− N

K

)
− αNP

1 + αhN
, (7)

f2 =
βαNP

1 + αhN
− dP. (8)
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The partial derivatives are:

∂f1
∂N

= r

(
1− 2N

K

)
− αP (1 + αhN)− αN(αhP )

(1 + αhN)2
, (9)

∂f1
∂P

= − αN

1 + αhN
, (10)

∂f2
∂N

=
βαP (1 + αhN)− βαN(αhP )

(1 + αhN)2
, (11)

∂f2
∂P

=
βαN

1 + αhN
− d. (12)

3.3.1. Stability of Trivial Equilibrium (E0)
At E0 = (0, 0), the Jacobian matrix becomes:

J(E0) =

(
r 0
0 −d

)
.

The characteristic equation is:

det(J(E0)− λI) = 0,

det

(
r − λ 0

0 −d− λ

)
= 0.

Expanding the determinant:(r − λ)(−d− λ) = 0.
The eigenvalues are:λ1 = r, λ2 = −d.

Stability Conditions: λ1 = r > 0: The prey population grows exponentially in the ab-
sence of predators. λ2 = −d < 0: The predator population decays in the absence of prey.
Therefore, since one eigenvalue is positive (r > 0), the trivial equilibrium E0 is unstable .

3.3.2. Stability of Predator-Free Equilibrium (E1)
At E1 = (K, 0), the Jacobian matrix becomes:

J(E1) =

(
−r − αK

1+αhK

0 βαK
1+αhK

− d

)
.

The characteristic equation is:

det(J(E1)− λI) = 0,

det

(
−r − λ − αK

1+αhK

0 βαK
1+αhK

− d− λ

)
= 0.

Expanding the determinant: (−r − λ)
(

βαK
1+αhK

− d− λ
)

= 0.

The eigenvalues are: λ1 = −r, λ2 = βαK
1+αhK

− d.

Stability Conditions:
- λ1 = −r < 0: The prey population is stable at its carrying capacity K.
- λ2 = βαK

1+αhK
− d: The stability of the predator population depends on the sign of this

eigenvalue.
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- If βαK
1+αhK

< d, then λ2 < 0, and the equilibrium is stable .

- If βαK
1+αhK

> d, then λ2 > 0, and the equilibrium is unstable .

Terefore, the predator-free equilibrium E1 is stable if: βαK
1+αhK

< d, and unstable otherwise.

3.3.3. Stability of Coexistence Equilibrium (E2)
The Jacobian matrix J(E2) at the coexistence equilibrium E2 = (N∗, P ∗) is given by: The
Jacobian matrix J(E2) is:

J(E2) =

(
r
(
1− 2N∗

K

)
− αP ∗

(1+αhN∗)2
− αN∗

1+αhN∗
βαP ∗

(1+αhN∗)2
0

)
.

The characteristic equation is:

det(J(E2)− λI) = 0,

det

(
r
(
1− 2N∗

K

)
− αP ∗

(1+αhN∗)2
− λ − αN∗

1+αhN∗
βαP ∗

(1+αhN∗)2
−λ

)
= 0.

Expanding the determinant:(
r

(
1− 2N∗

K

)
− αP ∗

(1 + αhN∗)2
− λ
)

(−λ)−
(
− αN∗

1 + αhN∗

)(
βαP ∗

(1 + αhN∗)2

)
= 0.

Simplifying:

λ2 −
(
r

(
1− 2N∗

K

)
− αP ∗

(1 + αhN∗)2

)
λ+

αβαN∗P ∗

(1 + αhN∗)3
= 0.

This is a quadratic equation of the form:

λ2 − Tr(J(E2))λ+ Det(J(E2)) = 0,

where:
- Tr(J(E2)) = r

(
1− 2N∗

K

)
− αP ∗

(1+αhN∗)2
is the trace of the Jacobian matrix at E2.

- Det(J(E2)) = αβαN∗P ∗

(1+αhN∗)3
is the determinant of the Jacobian matrix at E2.

The eigenvalues λ are found using the quadratic formula:

λ =
Tr(J(E2))±

√
Tr(J(E2))2 − 4Det(J(E2))

2
.

The eigenvalues determine the stability of the equilibrium point E2:
- If both eigenvalues have negative real parts , the equilibrium is stable .
- If at least one eigenvalue has a positive real part , the equilibrium is unstable .
- If the eigenvalues are purely imaginary , the system may exhibit oscillations (e.g., limit
cycles).

Stability Conditions:

For the equilibrium E2 to be stable , the following conditions must be satisfied:
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Tr(J(E2)) < 0.; This ensures that the real parts of the eigenvalues are negative.
. That is, for stability, we require:

Tr(J(E2)) = r

(
1− 2N∗

K

)
− αP ∗

(1 + αhN∗)2
< 0.

Det(J(E2)) > 0; This ensures that the eigenvalues are not purely imaginary and that the
system does not exhibit oscillatory behavior.
That is, for stability, we require:

Det(J(E2)) =
αβαN∗P ∗

(1 + αhN∗)3
> 0.

Interpretation of Stability Conditions:
Trace Condition:
- The term r

(
1− 2N∗

K

)
represents the growth rate of the prey population at the equilibrium.

- The term αP ∗

(1+αhN∗)2
represents the predation pressure on the prey population.

- For stability, the predation pressure must dominate the prey growth rate, ensuring that
the prey population does not grow uncontrollably.

Determinant Condition:
- The determinant Det(J(E2)) must be positive to ensure that the eigenvalues are not purely
imaginary.
- This condition is typically satisfied as long as N∗ > 0 and P ∗ > 0, which are biologically
realistic assumptions.

Therefore, the coexistence equilibrium E2 is stable if:

r

(
1− 2N∗

K

)
− αP ∗

(1 + αhN∗)2
< 0.

αβαN∗P ∗

(1 + αhN∗)3
> 0.

If either condition is violated, the equilibrium may be unstable or exhibit oscillatory be-
havior (e.g., limit cycles).

4. Bifurcation Analysis

Bifurcation analysis studies how the qualitative behavior of a dynamical system changes as
parameters vary. In this model, we focus on the time delay τ (representing the phenological
shift) and the predation rate α as key parameters using Python codes to generate the bi-
furcation diagrams [11, 12]. The analysis identified the bifurcation points where the system
undergoes significant changes, such as the emergence of limit cycles or the loss of stability.

4.1. Bifurcation with Respect to Time Delay τ

The time delay τ represents the mismatch between predator activity and prey availability
due to climate-induced phenological shifts. As τ increases, the system may undergo a Hopf
bifurcation, where the coexistence equilibrium E2 = (N∗, P ∗) loses stability, and a limit
cycle (periodic solution) emerges.
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A Hopf bifurcation occurs when the eigenvalues of the Jacobian matrix at E2 cross the
imaginary axis. For the system (1), the characteristic equation at E2 is:

det(J(E2)− λI) = 0

where J(E2) is the Jacobian matrix evaluated at E2. The characteristic equation for a delay
differential equation (DDE) typically takes the form:

λ2 + aλ+ b+ (cλ+ d)e−λτ = 0,

where a, b, c, d are coefficients derived from the Jacobian matrix.
To find the critical time delayτc, at which the system undergoes a Hopf bifurcation, we solve
for τ such that the eigenvalues λ are purely imaginary (λ = iω, where ω > 0).
Substituting λ = iω into the characteristic equation and separating real and imaginary parts,
we obtain:

−ω2 + aiω + b+ (ciω + d)e−iωτ = 0.

Solving this equation for ω and τ gives the critical time delay τc and the frequency ω of the
emerging limit cycle.
A bifurcation diagram was constructed by plotting the amplitude of the limit cycle (or the
stability of E2) as a function of τ . The following figure 1 shows the bifurcation with respect
to the time delay τ . The green lines represent stable equilibria, and the red lines represent
unstable equilibria.
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P
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Stable Equilibrium
Limit Cycle

Bifurcation Point

Figure 1: Bifurcation Diagram with Respect to τ

The figure shows:

� A stable coexistence equilibrium for τ < τc.

� A limit cycle (periodic solution) for τ > τc.

4.2. Bifurcation with Respect to Predation Rate α
The predation rate α determines the intensity of predator-prey interactions. As α increases,
the system may undergo a transcritical bifurcation, where the coexistence equilibrium E2

emerges or disappears.
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A transcritical bifurcation occurs when two equilibrium points exchange stability. In this
model, the coexistence equilibrium E2 emerges when:

βαN∗

1 + αhN∗ = d.

Solving for α, we obtain the critical predation rate αc:

αc =
d

βN∗ − dhN∗ .

For α < αc, the predator-free equilibrium E1 = (K, 0) is stable, and E2 does not exist. For
α > αc, E2 emerges and becomes stable, while E1 loses stability.
A bifurcation diagram was constructed by plotting the equilibrium populations N∗ and P ∗ as
a function of α. The following figure 2 shows the bifurcation with respect to the predation
rate α. The green lines represent stable equilibria, and the red lines represent unstable
equilibria.
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Coexistence Equilibrium
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Figure 2: Bifurcation Diagram with Respect to α

The figure shows:

� A stable predator-free equilibrium E1 for α < αc.

� A stable coexistence equilibrium E2 for α > αc.

4.3. Bifurcation Analysis Summary
The system may undergo bifurcations as parameters such as the time delay τ or predation
rate α vary. For instance:

� Hopf Bifurcation: A stable equilibrium may lose stability, leading to periodic solutions
(limit cycles) as τ increases.

� Transcritical Bifurcation: The coexistence equilibrium E2 may emerge or disappear as
parameters cross critical values.
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5. Numerical Simulations of Predator-Prey Dynamics

The parameter values used in the numerical simulations are based on standard ecological
modeling practices. Below is a table summarizing the parameters, their values, biological
meanings, and sources.

Table 1: Parameter Values and Their Descriptions

Parameter Value Biological Meaning Source/Reference
r 1.0 Intrinsic growth rate of the prey

population.
Common in Lotka-Volterra
models. See [10].

K 10.0 Carrying capacity of the prey popu-
lation.

Standard in logistic growth
models. See [1].

α 0.1 Attack rate of predators on prey. Typical value used in
predator-prey models.

h 0.1 Handling time of predators. See [6].
β 0.5 Conversion efficiency of prey

biomass into predator biomass.
Common in Holling Type II
functional response models.
See [7].

d 0.1 Mortality rate of predators. Typical value used in
predator-prey models.

τ 1.0, 2.0 Time delay (e.g., gestation period or
maturation time).

Common in predator-prey
models. See [9].

5.1. Justification of Parameter Values
The values for r, K, α, h, β, and d are chosen to reflect realistic ecological scenarios while
keeping the model simple and interpretable. The time delay τ is varied (1.0 and 2.0) to study
the effects of delays on predator-prey dynamics, which is a common approach in theoretical
ecology.
Below are the numerical simulations of the predator-prey dynamics for different parameter
values shown in figure 3 and figure 4.
Results for τ = 1.0
For a time delay of τ = 1.0, the system exhibits the following behavior:

� The prey population (N(t)) initially grows logistically, approaching the carrying ca-
pacity K = 10.0.

� The predator population (P (t)) grows in response to the increasing prey population,
but with a delay due to τ = 1.0.

� The system stabilizes into a steady state where both prey and predator populations
reach equilibrium values.

� Small oscillations are observed as the system approaches equilibrium, which is typical
for predator-prey systems with time delays.

Results for τ = 2.0
For a longer time delay of τ = 2.0, the system exhibits more complex dynamics:
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Figure 3: Predator-Prey Dynamics with τ = 1, r = 1, K = 10, α = 0.1, h = 0.1,
β = 0.5, d = 0.1
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Figure 4: Predator-Prey Dynamics with τ = 2, r = 1, K = 10, α = 0.1, h = 0.1,
β = 0.5, d = 0.1

� The prey population grows initially but experiences larger fluctuations due to the
increased delay in predator response.

� The predator population shows delayed growth and larger oscillations compared to the
case with τ = 1.0.

� The system takes longer to stabilize, and the amplitude of oscillations is larger, indi-
cating that longer delays can destabilize the system.

� In some cases, the system may exhibit sustained oscillations or quasi-periodic behavior,
depending on the parameter values.

5.2. Key Observations
It was noted that the time delay τ plays a critical role in determining the stability and
dynamics of the system. Shorter delays (τ = 1.0) lead to faster stabilization, while longer
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delays (τ = 2.0) can induce oscillations and destabilize the system. The predator population
is highly sensitive to the time delay, as it directly affects the predator’s ability to respond to
changes in prey availability. The system exhibits classic predator-prey oscillations, with the
amplitude and frequency of these oscillations increasing with the time delay.

6. Conclusion

This study developed a mathematical model to explore the ecological consequences of climate-
induced phenological shifts on predator-prey dynamics, incorporating time delays to repre-
sent mismatches in species interactions. The analysis revealed that longer time delays (τ)
lead to complex dynamics, including oscillations and potential destabilization of the sys-
tem, as demonstrated through Hopf and transcritical bifurcations. Numerical simulations
confirmed that shorter delays (τ = 1.0) allow the system to stabilize, while longer delays
(τ = 2.0) induce sustained oscillations, aligning with theoretical predictions. These find-
ings highlight the vulnerability of predator-prey systems to phenological mismatches and
underscore the importance of considering time delays in ecological modeling. By identify-
ing key tipping points and sensitivities, this research provides a foundation for conservation
strategies and ecosystem management practices aimed at mitigating the ecological disrup-
tions caused by climate change. The study bridges empirical observations with theoretical
ecology, offering insights into how phenological shifts may reshape species interactions and
ecosystem stability in a changing climate.
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