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ABSTRACT

In this paper, we present a mathematical model that incorporates Vaccination, Quarantine, and Treatment
compartments into the Covid-19 reinfection model among human populations. Specifically, the model
examines the impact of the disease on various population groups, including Susceptible (S), Vaccination
(V), Exposed (E), Quarantine (Q), Asymptomatic infected (A), Symptomatic Infectious (I), Treatment (T),
and Recovered (R) individuals. Emphasis is placed on the Positivity and Boundednes of solution of the
developed SVEQAITR model. Differential equation method is used to systematically analyze the Covid-19
reinfection SVEQAITR model. Results obtained clearly shows that the dynamics of the population under
study remains confined within the designated region, D. The non-negativity or Positivity solution also
buttresses that the SVEQAITR model consists solely of positive values which affirms that we are dealing
with human population.
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1 INTRODUCTION
Corona virus disease 2019 (COVID-19) is an infectious disease caused by Corona Virus 2 (SARS-CoV-2).
Covid-19 is known to have symptoms such as fever, cough, fatigue, loss of senses of smell and taste,
which can be extremely contagious and spread easily from person to person (Feng et al., 2020). It is
transmitted through respiratory droplets, most commonly when coughing, sneezing, or in conversation.
Most people infected with the Covid-19 virus experience mild to moderate respiratory illness, however
older people with medical problems such as cardiovascular disease, diabetes, chronic respiratory disease,
cancer, etc. are more likely to develop serious diseases (Kifle and Obsu, 2022). Scientists have proven
that the COVID-19 pandemic is a global health crisis because it has caused disruptions in healthcare,
economy, politics, society, and worldwide impact (Li et al. 2020). With the spread of the virus it is
important to understand how it transmits and the possibility of getting re-infected. It presents challenges
that require an understanding of different aspects of the disease. Although progress has been made in
terms of vaccination efforts and understanding how infections occur and spread, reinfection cases continue
to be a concern. These cases not only raise questions about how immunity lasts after an initial infection,
but also have implications for vaccination effectiveness and future management strategies (Bubar et al.
2020). According to Soni et al. (2024), infectious diseases such as Covid-19, Monkeypox, AIDS, and
Dengue pose global threats, which leads to serious health concerns. Despite the importance of vaccina-
tions, uncertainty and non-compliance with guidelines contribute to ongoing infections. Mathematical
modeling, especially deterministic epidemic modeling, has emerged as a crucial tool for understanding



and controlling the dynamics of infectious diseases. The study revealed that reinfection can occur in older
people, while the rate of transmission will be reduced in teenagers. The first case of COVID-19 with
reinfection is reported after two months of complete recovery from SARS-COV-2 infection (Hanif et al.,
2020). Due to the emergence of the omicron variant, several cases of reinfection are documented and it is
further documented that 35,670 out of 2,796, 982 individuals with confirmed laboratory SARS-COV-2
cases are found to have been reinfected (Atifa et al., 2022).
Mathematical modeling in science and engineering has a vital role to play in understanding the complex
behaviors of the problems arising in physical and biological modeling; see, for example, disease epidemi-
ology (Li et al., 2021a; Okuonghae and Omame, 2020), in fluid-related studies (Chu et al., 2021; Li et
al., 2021b). Observing from the above facts on the reinfection of COVID-19 cases, the world may face
a new number of infected cases and deaths. Before we formulate a new mathematical model to study
the impact of SARS-COV-2 on reinfection, we first highlight some mathematical models that addressed
COVID-19 infection. In 2024, Soni et. al. present a comprehensive analysis of Fomite factors and silent
spread: A VSEIQCR study of viral disease. Sharma and Sharma in 2023 presents a stability analysis
of an SIR model with alert class modified saturated incidence rate and Holling functional type II treatment.

The aim of this paper is to develop a mathematical model for COVID-19 with reinfection that incorpo-
rates Vaccination, Quarantine and Treatment compartments. We consider multiple factors, including viral
evolution, individual immunity response, antigenic variation, and a host of susceptibility. By integrating
biological and epidemiological data, mathematical models can account for these complex interactions
and provide insight into the potential impact of reinfection on overall disease transmission and control
strategies.
The organization of the paper is as follows: Section 2 elaborates on the methodology, describing the as-
sumptions and notation employed in constructing the model. It also presents the formulation of the model
through diagrams and differential equations. In Section 3, the Result Analysis of both the boundedness
and non-negativity solutons is presented, and it continues to Sections 4 and 5.

2 MATERIALS AND METHODS
In this paper, we study the epidemiology of Covid-19 with its reinfection using the Susceptible, Vaccinated,
Exposed, Quarantined, Asymptomatically infected, Symptomatically infectious, Treatment and Recovered
model. The results of the research will aid in predicting the risk factors affecting reinfection of Covid-19
and the optimum strategies to implement in order to prevent and control the spread and re-occurrence of
the virus.

2.1 Mathematical Modeling
This is a process of describing a real-world problem in mathematical terms, usually in a form of differential
equations. Using these differential equations will help to understand the original problem and also to
discover new features about the problem. This method of modeling the transmission of infectious diseases
was discovered by Bernoulli in 1760.
The two common types of mathematical modeling in this area are the Deterministic Model and the
Stochastic model.

2.2 Deterministic Model
This is a type of mathematical model that gives an exact value or accurately predicts certain characteristics
of an outcome as a function of parameters by using differential equations (Andrich, 2005). This model
describes the dynamic interrelations among the rates of change and population sizes for the transmission
process of an infectious disease using a compartmental approach.

2.3 DESCRIPTION OF THE SVEQAITR MODEL OF COVID-19 WITH REINFECTION
In applying the SVEQAITR model, we have succeeded in dividing the population into eight classes
namely; The Susceptible class (S);
The Vaccinated class (V);
The Exposed class (E);
The Quarantined class (Q);
The Asymptomatically Infectious Class (A);
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The Chronically Infectious Class (I);
The class undergoing treatment (T); and
The Removed class (R).

Susceptible class S consists of individuals who have yet to come in contact with the virus but are still
capable of contracting the disease.
Vaccinated class V consists of people who have been vaccinated.
The exposed class E consists of individuals who are in their latent period of infection. This implies that
they are the ones that have been infected with the virus but are incapable of spreading the virus.
Q Quarantine class consists of people who are already infected and are then isolated for a specified
duration of 14 days to prevent the spread of the disease and ensure the safety of people.
The Asymptomatically Infectious Class A contains individuals who are infected but do not show any
noticeable symptoms of the Covid-19 virus and are capable of infecting the susceptible class.
Chronically infectious class I consists of people who have tested positive for the Covid-19 virus, as the
symptoms clearly show.
The Treatment class T compartment contains people who are infected and infectious undergoing treatment.
The removed class R are those individuals that are permanently immune to the disease (either as a result
of the vaccine or recovery while in the acute stage of the disease).

2.4 Assumptions of the Model
This model works on the following assumptions:

1. That the rate of disease transmission from asymptomatic infected individuals are less than that of
the symptomatic infected and treated individuals A(t)< γ1(1− τ)A < γ2(1−ψ)I;

2. That the symptomatic infected and treated individuals experience additional disease-induced death
rate I(t)−δi,T (t)−δr;

3. That the asymptomatic infected disease-induced death rate δ is negligible;

4. All individuals are decreased by natural death rate N −µN;

5. Since there is currently no evidence that individuals develop permanent immunity against Covid-19.
Therefore, it is assumed that the recovered individuals become susceptible again at the rate of φ ;
(R−φr)

6. Quarantined individuals who do not show symptoms while in quarantine are transferred back to
susceptible class at rate σ(1−θ) i. e, (Q−σ(1−θ));

7. That the symptomatic infected individuals can either be treated or recovered; i. e, (I − γ2(1−ψ)I)
or (I − γ2ψI)

8. That the vaccinated individuals can become exposed to the disease at β2(1− ε), meaning that
vaccination wane after a short period of time thereby provides only partial protection against
Covid-19; i e, (V −β2(1− ε))

9. That recovered individuals can become re-infected again when they come in close contact with
asymptomatic, symptomatic and treatment class because of the inefficacy of drugs i.e, (R−φr).

10. That all parameters in the model are assumed to be positive or non-negative.
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Table 1. Description of variables and parameters in the Model.

PARAS DEFINITION
Λ Recruitment rates of humans into the Susceptible compartment
λ1 Force of infection from susceptible to exposed compartment
λ2 Force of infection from vaccinated to exposed compartment
β1 Effective contact rate from susceptible to exposed compartment
β2 Effective contact rate from vaccinated to exposed compartment
α1 Progression rate of exposed individuals into the quarantined class
α2 Progression rate of exposed individuals into the asymptomatic

infectious class
α3 Progression rate of exposed individuals into the symptomatic class
η Vaccinated rate
σ Rate of developing clinical symptoms during quarantine
φ Rate at which individuals lose immunity
θ Fraction of quarantine population that is treated
ε Infection reduction of vaccinated individuals
τ Proportion of asymptomatic who recover naturally
ψ Proportion of infectious who recover naturally
γ1 Exit rate from the asymptomatic class
γ2 Exit rate from the infected class
γ3 Recovery rate of treated individuals
µ Natural death rate of individuals in the population under study
δ Disease induced death rate

Fig. 1 represents the SVEQAITR model with vital dynamics.

Figure 1. A flow chart for SVEQAITR model of Covid-19 reinfection
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The Atifa et al. (2022) model is extended considering vaccination, quarantine, and treatment com-
partments, and it is assumed that quarantined individuals can be transferred back to the susceptible class,
vaccinated individuals who lose immunity can progress to the exposed class, and treated individuals
can recover or die as a result of the disease or a natural death, and using a deterministic compartmental
modeling approach to describe the disease transmission dynamics. The total population size is subdivided
into epidemiological subclasses: susceptible S(t), vaccinated V(t), exposed E(t), quarantine Q(t), asymp-
tomatic infectious A(t), symptomatic infectious I(t), treatment T (t) and recovered R(t).
The total population N(t) is then given by:

N(t) = S(t)+V (t)+E(t)+Q(t)+A(t)+ I(t)+T (t)+R(t) (1)

Individuals are recruited into the population at a rate ΛS . V is the vaccination class since Covid-19 is
biologically available, and then it is realistic to consider the vaccination class, η V is the transmission
rate from susceptible to the vaccination class. λ1S is the force of infection from susceptible to exposed
class while λ2V is the force of infection from vaccinated individuals to exposed class. β1(A+ I +T )S
and β2(1− ε)V are effective contact rates. ε represents the infection reduction of vaccinated individuals.
α1E is the rate of exposure to quarantine,α2E is the rate of exposure to asymptomatic, and α3E is the
rate of exposure to infectious class. The quarantined individuals increase as a result of the quarantining
of individuals of the exposed class at the rate α1E. Individuals who do not show symptoms while in
quarantine are transferred back to the susceptible class at a rate of σ(1− θ)Q, and individuals who
showed Covid-19 symptoms while in quarantine are moved to the infectious class at a rate of σθQ for
medical attention. Asymptomatic individuals are reduced by the natural death rate µ , but δ , which is
death due to the disease in this class, is assumed to be negligible, because individuals in this class do not
show Covid-19 symptoms but are fully infected. Those who develop Covid-19 symptoms are moved to
the symptomatic class at a rate of (1− τ), while a fraction τ may recover naturally from asymptomatic
infection and move to the recovered class R. Individuals exit the symptomatic infected class through the
natural death rate µ and through death due to the disease δ . The fraction of (1−ψ) is hospitalized for
treatment while the fraction ψ recovers naturally. Finally, hospitalized individuals (T) are treated and
recovered at a rate γ3. Individuals also leave the treatment class through a natural death rate µ and through
a death from the disease δ . We also consider that recovered individuals (R) die naturally µ and a fraction
φ becomes susceptible (S) again because individuals lose permanent immunity to Covid-19 and are prone
to reinfection. Considering the definitions, assumptions and interrelations between the variables and the
parameters, the basic dynamics of Covid-19 re-infection is illustrated as a flow diagram in Figure 1.

From Figure 1, the following system of differential equations are obtained:

dS(t)
dt

= Λ− (λ1 +η +µ)S+σ(1−θ)Q+φR (2a)

dV (t)
dt

= ηS− (λ2 +µ)V (2b)

dE(t)
dt

= λ1S+λ2V − (α1 +α2 +α3 +µ)E (2c)

dQ(t)
dt

= α1E −σ(1−θ)Q− (σθ +µ)Q (2d)

dA(t)
dt

= α2E − (γ1τ +µ)A− γ1(1− τ)A (2e)

dI(t)
dt

= α3E +σθQ− (γ2ψ +µ +δ )I + γ1(1− τ)A− γ2(1−ψ)I (2f)

dT (t)
dt

= γ2(1−ψ)I − (γ3 +µ +δ )T (2g)

dR(t)
dt

= γ1τA+ γ2ψI + γ3T − (φ +µ)R (2h)

From equation (2a) the Susceptible compartment, people are recruited at a rate of Λ, there is an
interaction with compartments Asymptomatic, Infectious and people on treatment, which is called the
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force of infection at the rate of λ1, η is the transmission rate from Susceptible to Vaccinated people, and
µ is the natural death rate of Susceptible people. People in the quarantine compartment who do not show
symptoms are transferred back to the susceptible compartment at a rate of σ(1−θ)Q, while people who
recover but over time lose immunity get reinfected again and go back to the susceptible compartment at a
rate of φ

From equation 2b (vaccination compartment), susceptible people enter this compartment at a rate of
η while λ2 exits the compartment into the exposed compartment and the natural death µ .
From equation (2c) (the exposed compartment), susceptible and vaccinated people enter this compartment
at the rate of λ1 and λ2 respectively, while some individuals exit the exposed compartment and enter into
quarantine, Asymptomatic and Infectious compartments at the rate of α1, α2, and al pha3 respectively
and of course natural death µ

3.1 Boundedness of the solution

D = {(S,V,E,Q,A, I,T,R) ∈ ℜ
8
+ ≤ λ

µ
} (3)

Theorem 1: There exists a domain in D in which the set of solutions {S,V,E,Q,A, I,T,R} is contained
and bounded (Daniel, 2020).
Proof: Given the solution set {S,V,E,Q,A, I,T,R}
N = S+V +E +Q+A+ I +T +R
The total derivatives of the human population are given by:

dN
dt

=
dS
dt

+
dV
dt

+
dE
dt

+
dQ
dt

+
dA
dlt

+
dI
dt

+
dT
dt

+
dR
dt

(4)

Therefore, substituting (2a) - (2h) in (4) we obtain dN
dt as;

dN
dt

= Λ−µ(S+V +E +Q+A+ I +T +R)−δ (I +T ),

= Λ−µN −δ (I +T )≤ Λ−µN

(5)

This implies that dN
dt ≤ Λ−µN

Rewriting (5) we have,

dN
dt

+µN ≤ Λ (6)

Solving (6) using integrating factor method (McDonald, 2004), we first of all find our integrating factor
(I.F) as follows:
Let I.F = e

∫
p(t)dt ; let p(t) = µ so that

I.F = exp
∫

µdt = eµt

Multiplying (6) by eµt

dN
dt

eµt +µeµtN ≤ Λeµt (7)

Rewriting (7) we will have;

d
dt
(Neµt)≤ Λeµt (8)
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Integrating (8) with respect to t we have;

N(t)eµt ≤
∫

Λeµtdt (9)

N(t)≤ 1
eµt

∫
Λeµtdt (10)

N(t)≤ Λ

eµt

∫
eµtdt

N(t)≤ Λ

eµt

[
1
µ

eµt +K
]

N(t)≤ Λ

µ
+Ke−µt

(11)

As t → ∞,N(t)≤ Λ

µ
.

Thus, all the solutions of the population are confined in the feasible region D. This shows that the solution
of model (2) exists and is given by D = {(S,V,E,Q,A, I,T,R) ∈ ℜ+8;N(t)≤ Λ

µ
}.

3.2 Non-negativity of Solution
Theorem 2: Given the initial data S(0) ≥ 0,V (0) ≥ 0,E(0) ≥ 0,Q(0) ≥ 0.A(0) ≥ 0, I(0) ≥ 0,T (0) ≥
0,R(0)≥ 0 of the model (2) are non-negative for all time t > 0 (Abioye et al 2021).
Proof: Let t1 = sup{S(0)> 0,V (0)> 0,E(0)> 0,Q(0)> 0.A(0)> 0, I(0)> 0,T (0)> 0,R(0)> 0}.
From (2a) of the model, we have ;

dS
dt

= Λ+φR+σ(1−θ)Q− (λ1 +η +µ)S (12)

Rewriting (12) we now have,

dS
dt

+(λ1 +η +µ)S = Λ+φR+σ(1−θ)Q (13)

Solving (13) using integrating factor we have,

d
dt

[
S(t)(e

∫ t
0(λ1+η+µ)dt)

]
= Λ+φR+σ(1−θ)Q

[
e
∫ t

0(λ1+η+µ)dt
]

(14)

Integrating from 0 to t1 we have,[
S(t1)

(
e
∫ t

0(λ1+η+µ)dt
)]

−S(0) = Λ+φR+σ(1−θ)Q
∫ t

0
i
[

e
∫ x

0 (λ1+η+µ)

]
dx (15)

multiply (15) through by e−
∫ t1

0 (λ1+η+µ)dt therefore,

S(t1) = S(0)
[

e−
∫ t1

0 (λ1+η+µ)dt
]
+e−

∫ t1
0 (λ1+η+µ)dt ×Λ+φR+σ(1−θ)Q

∫ t

0
i
[

e
∫ x

0 (λ1+η+µ)

]
dx≥ 0 (16)

Hence, S(t)≥ 0 for all time t > 0.
From (2b) of the model we have,

dV
dt

= ηS− (λ2 +µ)V (17)

Rewriting (17), we have

dV
dt

+(λ2 +µ)V = ηS. (18)
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Solving (18) using integration factor method we obtain the equation

d
dt

[
V (t)(e

∫ t
0(λ2+µ)dt)

]
= ηS

[
e
∫ t

0(λ2+µ)dt
]

(19)

and integrating (19) from 0 to t1 we have;[
V (t1)(e

∫ t1
0 (λ2+µ)dt

]
−V (0) = ηS

∫ t1

0

[
e
∫ x

0 (λ2+µ)dx
]

(20)

multiply through by e−
∫ t1

0 (λ2+µ)dt

V (t1) = v(0)
[
(e−

∫ t1
0 (λ2+µ)dt

]
+

[
(e−

∫ t1
0 (λ2+µ)dt

]
×ηS

∫ t1

0

[
e
∫ x

0 (λ2+µ)

]
dx ≥ 0 (21)

Hence, V(t) ≥ 0 for all time t > 0.

From (2c) of the model we have the following.

E(t1) = E(0)
[(

e−
∫ t1

0 (α1+α2+α3+µ

)
dt
]
+

[
(e−

∫ t1
0 (α1+α2+α3+µ)dt

]
λ1S

+λ2V
∫ t1

0

[
E(t)

∫ t1
0 (α1+α2+α3+µ)

]
dx ≥ 0

(22)

Hence, E(t) ≥ 0, for all time t > 0.

From (2d) of the model we have,

dQ
dt

= α1E −σ(1−θ)Q− (σθ +µ)Q (23)

we have,

Q(t1) = Q(0)
[

e−
∫ t1

0 (σ+µ)dt
]
+

[
e−

∫ t1
0 (σ+µ)dt

]
×α1E

∫ t1

0

[
e
∫ x

0 (σ +µ)

]
dx ≥ 0

(24)

Hence, Q(t)≥ 0, for all times t > 0

From (2e) of the model we have,

dA(t)
dt

= α2E − (γ1τ +µ)A− γ1(1− τ)A (25)

A(t1) = A(0)
[

e−
∫ t1

0 (γ1+µ)dt
]
+

[
e−

∫ t1
0 (γ1+µ)dt

]
×α2E

∫ t1

0

[
e
∫ x

0 (γ1+µ)
]
dx ≥ 0

(26)
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Hence, A(t)≥ 0, for all times t > 0.
From (2f) of the model we have,

dI
dt

= α3E +σθQ+ γ1(1− τ)A− γ2(1−ψ)I − (γ2ψ +µ +δ )I (27)

I(t1) = I(t0)
[
(e−

∫ t1
0 (γ2+δ+µ)dt)

]
+

[
(e−

∫ t1
0 (γ2+δ+µ)dt)

]
×α3E +σθQ+ γ1(1− τ)A

∫ t1

0

[
e
∫ x

0 (γ2+δ+µ)

]
dx ≥ 0

(28)

Hence, I(t)≥ 0, for all times t > 0.
From (2g) of the model we have,

dT (t)
dt

= γ2(1−ψ)I − (γ3 +delta+µ)T (29)

T (t1) = T (0)
[

e−
∫ t1

0 (γ3+δ+µ)dt
]
+

[
e−

∫ t1
0 (γ3+δ+µ)dt

]
× γ2(1−ψ)I

∫ t1

0

[
(e

∫ x
0 (γ3+δ+µ))

]
dx (30)

Hence, T (t)≥ 0, for all times t > 0.
From (2h) of the model we have,

dR(t)
dt

= γ1τA+ γ2ψI + γ3T − (φ +µ)R (31)

R(t1) = R(0)
[

e−
∫ t1

0 (φ+µ)dt
]
+

[
e−

∫ t1
0 (φ+µ)

]
× γ1τA+ γ2ψI + γ3T

∫ t1

0

[
e
∫ x

0 (φ+µ)

]
dx ≥ 0.

(32)

Hence, R(t)≥ 0, for all times t > 0.

Therefore, the solution (S,V,E,Q,A, I,T,R) of the Covid-19 reinfection model (2) with the initial
conditions of non-negativity (16),(21),(22),(24),(26),(28),(30),(32) in the feasible region D remains
non-negative in D for all t, t > 0

4 CONCLUSION
In conclusion, we have successfully developed a comprehensive COVID-19 reinfection model utilizing a
mathematical modeling approach. Throughout this study, we meticulously defined the model parameters
and variables, laying a solid foundation by clearly stating our assumptions. We rigorously demonstrated
the boundedness of the solution, proving that the dynamics of the population under study remains confined
within the designated region D. This aspect is critical because it ensures that the model is realism to reflect
the constraints of a real-world population. Furthermore, our analysis confirmed the non-negativity of the
model’s solutions, validated by the initial conditions, which affirms that the population consists solely of
positive values. This aspect is particularly important when addressing a human population, where it is
essential to acknowledge that the number of individuals cannot be negative. Ultimately, our systematic
approach not only improves understanding of COVID-19 reinfection dynamics, but also provides a robust
framework for future research and public health strategies aimed at managing this ongoing pandemic.

9/10



5 REFERENCE
1. Abioye, A. I., Olumiyiwa, P. J., Ogunseye, H. A., Oguntolu, F. A., Oshinubi, K., Adinoyi, I. A., and

Khan L. (2021): Mathematical Model of COVID-19 in Nigeria with Optimal Control. Result in
Physics, 28, 2211-3797.

2. Atifa, A., Khan, M. A., Iskaova, K., Al-Duais, F. S. and Irshad, A. (2022): Mathematical Modeling
and Analysis of the SARS-COV-2 disease with reinfection. Computational Biology and Chemistry,
98, 1-8.

3. Bernoulli, D. (1760): A pioneer of epidemiological modeling In book: A Historical Introduction to
Mathematical Modeling of Infectious Diseases (pp.1-20), 2017, DOI:10.1016/B978-0-12-802260-
3.00001-8.

4. Bubar, M., Kyle, R., Kissler, S. M., Lipsitch, M., Cobey, S., Grad, Y. H., and Larremore, D. B.
(2021): Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science
371, 916 – 921.

5. Chu, A. L., Hickman, M., Steel, N., Jones, P., Davey Smith, G., and Khandaker, G. (2021).
Inflammation and Depression: A Public Health Perspective.Brain, Behavior, and Immunity, 95, 1-3,
https://doi.org/10.1016/j.bbi.2021.04.015.

6. Daniel, J. (2020): Education and the COVID-19 pandemic. PROSPECTS, 49, 91-96, doi.org/10.1007/s11125-
020-09464-3.

7. Feng, L. X., Jing, S. L., Hu, S. K., Wang, D. F., Huo, H. F. (2020): “Modelling the effects of media
coverage and quarantine on the COVID-19 infections in the UK,” Mathematical Biosciences and
Engineering, vol. 17, no. 4, pp. 3618–3636.

8. Hanif, M., Haider, M. A., Xi, Q., Ali, M. J., Ahmed, M. U. (2019): A Review of the Risk
Factors Associated With Poor Outcomes in Patients with Coronavirus Disease. National Library of
Medicine, National Center for Biotechnology Information, DOI: 10.7759/cureus.10350.

9. Kifle, Z.S., and Obsu, L.L. (2022): Mathematical Modeling for Covid-19 transmission dynamics:
A case study in Ethiopia. Journal of Results in Physics, 34, 1-13.

10. Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., and Tong, Y. (2020): Early transmission dynamics in
Wuhan, China, of novel coronavirus–infected Pneumonia. N England Journal of Medicine.

11. Li, R., Han, Y., Huang, J., Shao, Q., Han, D., Luo, X., Qiu, J. (2021): Impact analysis of
environmental and social factors on early stage COVID-19 transmission in China by machine
learning. Environmental Research Volume 208, 112761.

12. McDonald, G.S (2004). Differential equation Integrating factor method. Pplato promoting physics
learning and teaching opportunities. 1-28.

13. Okuonghae, D., and Omame, A. (2020): Analysis of a mathematical model for COVID-19 popula-
tion dynamics in Lagos, Nigeria. National Library of Medicine, National Center for Biotechnology
Information. DOI: 10.1016/j.chaos.2020.110032.

14. Sharma, S., Sharma, P. K. (2023). Stability analysis of an SIR model with alert class modified
saturated incidence rate and Holling functional type-II treatment. Computational and Mathematical
Biophysics, 11(1), 20220145.

15. Soni, M., Sharma, R. K., Sharma, S. (2024). Fomite Factors and silent spread: a VSEIQCR study of
viral Disease. Journal of Nonlinear Analysis and Optimization: Theory and Applications (JNAO),
15(2), 1-21.

16. Soni, M., Sharma, R. K., Sharma, S. (2024). Prevention Strategies to Control an Epidemic using a
SEIQHRV Model. The Pure and Applied Mathematics, 31(2), 131-158.

10/10


