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Abstract: Matroid theory's principles align seamlessly with greedy algorithms, leading to their adoption as instrumental tools in numerous algorithmic applications. Reference [1] introduced the concept of filters and filter bases in the context of matroids. With such a foundation, one naturally hypothesizes the presence of an ultrafilter specific to matroids. This short paper is dedicated to navigating the landscape of ultrafilters in the world of matroids.
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1. Introduction
1.1. Matroid
In this paper, we explore the intricate realm of matroids. Matroids offer a discrete representation of phenomena observed in linear algebra, particularly linear independence and dependence. Their pivotal role in computer science is undeniable. Matroid theory's principles align seamlessly with greedy algorithms, leading to their adoption as instrumental tools in numerous algorithmic applications. The deep mathematical significance of matroids has catalyzed extensive research in the field, as evidenced by many references [1-16, 35-50, 64-71]. 

1.2. Filter and Ultrafilter
In parallel, the concept of filters (specifically, Ultrafilters) finds its origins deeply embedded in disciplines such as topology and algebra. An ultrafilter is a maximal filter on a set, essential in set theory and topology for rigorously handling limits, convergence, and compactness. Its unique properties make it crucial in non-standard analysis, model theory, and first-order logic, providing powerful tools for both mathematical and logical applications [17-34, 72, 73]. 
Due to their versatility, various related concepts to ultrafilters have been proposed. One such concept is the Quasi-Ultrafilter, which offers an axiomatic analysis of incomplete social judgments [51]. The weak filter (or weak ultrafilter) was introduced by K. Schlechta in the 1990s as a relaxed version of an ultrafilter. It serves as a powerful tool for interpreting defaults using a generalized "most" quantifier in first-order logic [52].

1.3. Our Contribution
Building upon this knowledge base, reference [1] introduced the concept of filters and filter bases in the context of matroids. With such a foundation, one naturally hypothesizes the presence of an ultrafilter specific to matroids. 
This short paper is dedicated to navigating the landscape of ultrafilters in the world of matroids. 
This short paper is structured as follows. Section 2 provides definitions of Matroids and Filters on Matroids, along with concrete examples. Section 3 examines the properties of Ultrafilters on Matroids. Section 4 explores the characteristics of Quasi-Ultrafilters and Weak-Ultrafilters on Matroids. Finally, Section 5 discusses future directions for this research.

2. Definition in this paper	Comment by Dr. Wanjara: Okay
In this section, we explain about definition in this paper. This definition is primarily based on references [1,2].

2.1. Basic Notation
  The basic notation used in this paper is outlined below. Readers interested in the fundamentals of set theory may refer to references [94–96] as needed.

Definition 1: In set theory, a set is a collection of distinct elements or objects, regarded as a single entity and typically represented using curly braces. In this paper, we consider only finite and undirected sets.
Definition 2: A subset is a set where all elements are also contained within another set. And the power set of a set is the collection of all possible subsets of that set, including the empty set and the set itself.
Notation 3: Boolean algebra (X, ∪, ∩) is a mathematical structure with a set X, union (∪), and intersection (∩), satisfying specific axioms for operations. In this paper, we use expressions like A ⊆ X to indicate that A is a subset of X, A ∪ B to represent the union of two subsets A and B (both of which are subsets of X), and A = ∅ to signify an empty set. Specifically, A ∩ B denotes the intersection of subsets A and B. Similarly, A \ B represents the difference between subsets A and B. 

2.2. Matroid and Filter
In this section, we provide definitions related to Matroids and Filters along with relevant concepts. Below, we present several definitions and examples.

Definition 4 [1,2]: A matroid, denoted by M, is defined as an ordered pair (X, O), where X is a finite and undirected set and O is a collection of subsets of X, called the open sets of M. These open sets satisfy the following properties:
1. The empty set is an open set.
2. The union of any open sets is an open set.
3. If O₁ and O₂ are open sets and an element e belongs to O₁ ∪ O₂, then there exists an open set O₃ such that (O₁ ∪ O₂) \ (O₁ ∩ O₂) ⊆ O₃ ⊆ (O₁ ∪ O₂) \ {e}.

We provide several concrete examples related to the above definition.
Example 5: Let X be any finite set and define the collection of open sets as
  O = {∅}.
Here, the empty set is open by definition, the union of open sets (in this case, ∅ ∪ ∅) is ∅, and property 3 is vacuously satisfied because there is only one open set. Thus, (X, {∅}) forms a (degenerate) matroid according to Definition.	Comment by Dr. Wanjara: Indicate the source reference of this example

Example 6: Let X = {a}. The power set of X is {∅, {a}}, but note that if we try to take O = {∅, {a}}, then property 3 fails. To see this, consider O₁ = ∅ and O₂ = {a}:	Comment by Dr. Wanjara: Indicate the source reference of this example
· O₁ ∪ O₂ = {a} and O₁ ∩ O₂ = ∅, so the symmetric difference is {a}.
· For the element e = a (which belongs to O₁ ∪ O₂), property 3 would require an open set O₃ satisfying
  {a} ⊆ O₃ ⊆ {a} \ {a} = ∅,
which is impossible.
Thus, for X = {a}, the only valid choice is to let
  O = {∅},
yielding the trivial matroid (X, {∅}).

Example 7: Let X = ∅. Since the only subset of the empty set is ∅ itself, define
  O = {∅}.
All conditions in Definition are satisfied (in a vacuous sense), so (∅, {∅}) is a valid matroid.	Comment by Dr. Wanjara: Indicate the source reference of this example

We now introduce the definition of a metric, following the approach in [1,2]. Note that a metric is a function that defines distances between elements in a set, satisfying non-negativity, symmetry, and the triangle inequality (cf. [97-99]). throughout this paper, we assume X to be the underlying finite set.
Definition 8 [1,2] (Metric on X): Let M = (X, S) be a matroid (where S denotes the collection of open sets). A metric on X is a function d : X × X → ℝ that satisfies the following properties:	Comment by Dr. Wanjara: Over reliance on references 1 and 2
1. Non-negativity: For all x, y ∈ X, d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.	Comment by Dr. Wanjara: Consider using roman numbers not numericals
2. Symmetry: For all x, y ∈ X, d(x, y) = d(y, x).
3. Triangle Inequality: For all x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z).

Here are the examples for a metric on X.
Example 9: Consider a set X = {a, b, c}. Let d be a function defined as follows:	Comment by Dr. Wanjara: Indicate the source reference of this definition 
d(a, a) = 0,d(a, b) = 2,d(a, c) = 3,d(b, b) = 0,d(b, c) = 1,d(c, c) = 0
This function d is a metric on X because:
· d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y.
· d(x, y) = d(y, x) for all x, y ∈ X.
· For all x, y, z ∈ X, d(x, y) + d(y, z) ≥ d(x, z). For example, d(a, b) + d(b, c) = 2 + 1 = 3 ≥ d(a, c) = 3.

We define a filter in matroid. This definition is primarily based on references [1,2]. Note that Co-filter in matroid is ideal in matroid.
Definition 10 [1,2]: Let M = (X,S) be a matroid and d be a metric on X. For a given real number r≥ 0, the set Bd(e,r) = { x ∈ X | d(x,e) < r }  is termed as the r-ball centered at e. A filter in M = (X, S) is a collection F = { Aα |α∈ Δ} of subsets of a finite set X that satisfy these properties:
(F1) Aα≠ ∅  for every α∈ Δ
(F2) For all α, β ∈ Δ , Aα ∩ Aβ∈ F.
(F3) If Aα∈ F and Aα ⊆ A ⊆ X,  then A ∈ F.

Here are the examples for filter.
Example 11: Consider the set X = {a, b, c} and the metric d defined as above. Let r = 2. The r-balls centered at each element are:	Comment by Dr. Wanjara: Indicate the source reference of this example
Bd(a, 2) = { a, b },Bd (b, 2) = { b, c },Bd (c, 2) = { c }
Now, consider a collection F = { A1, A2 } where:
A1 = { a, b },A2 = { b, c }
This collection F is a filter in M = (X, S) because:
· A1≠ ∅ and A2 ≠ ∅ (each Aα ≠ ∅ for every α ∈ Δ).
· A1 ∩ A2 = { b } ∈ F (the intersection of any two sets in F is also in F).
· If Aα ∈ F and Aα ⊆ A ⊆ X, then A ∈ F. For instance, A1 ⊆ { a, b, c } ⊆ X and { a, b, c }∈ F.

3. Main result: Ultrafilter on Matroid
In this section, we present the results of this paper. We consider about new notion of ultrafilter in M = (E, S). Ultrafilter in M = (E, S) is maximal filter in M = (E, S). We prove following theorem:

Theorem 12: Let M = (X,S) be a finite matroid and d be a metric on a finite set X. Ultrafilter F = { Aα |α∈ Δ}  in M = (X, S) satisfies following axiom
(F4) For all A　⊆ X,  either  A∈ F or X\ A　∈ F
Proof. Let F be an ultrafilter in M = (X, S). We want to show that for any subset A ⊆ X, either A is in F or the complement  X \ A  is in F. 
Let's consider an arbitrary subset A ⊆ X.
Case 1: A ∈ F  If A is already in F, then the condition of axiom (F4) is directly satisfied.
Case 2: A ∉ F   Assume, for the sake of contradiction, that neither A nor its complement X \ A  belong to F. 
Given that F is a filter, we want to consider another filter G that contains F as a subset and includes A.
To construct such a G, start with the collection: G' = F ∪ {A}. Extend G' by including all possible intersections of its elements until no more intersections can be added while maintaining the properties of a filter. This results in a filter G such that  F ⊆ G  and A ∈ G.
The existence of such a G is assured since F is not maximal with respect to A (from our assumption). However, this contradicts the definition of F as an ultrafilter (a maximal filter). Hence, our assumption is false.
Thus, if  A  ∉ F, then X\A  must be in F. This concludes the proof.  ■

From Theorem above, the following Definition can be redefined.
Definition 13: Let M = (X,S) be a matroid and d be a metric on X. For a given real number r≥ 0, the set Bd(e,r) = { x ∈ X | d(x,e) < r }  is termed as the r-ball centered at e. A ultrafilter in M = (X, S) is a collection F = { Aα |α∈ Δ} of subsets of a finite set X that satisfy these properties:	Comment by Dr. Wanjara: Indicate the source of this definition  if it is a standard one
(F1) Aα≠ ∅  for every α∈ Δ
(F2) For all α, β ∈ Δ , Aα ∩ Aβ∈ F.
(F3) If Aα∈ F and Aα ⊆ A ⊆ X,  then A ∈ F.
(F4) For all A　⊆ X,  either  A∈ F or X\ A　∈ F

4. Other concepts: Quasi Ultrafilter and weak Ultrafilter in matroid
In this section, we introduce two concepts: the Quasi-Ultrafilter and the Weak Ultrafilter. 

In reference [51], the idea of a Quasi-Ultrafilter is presented. This literature also delves into an axiomatic analysis of incomplete social judgments. The Quasi-Ultrafilter plays a crucial role in the proofs found in reference [51]. Furthermore, the Quasi-Ultrafilter serves as a fundamental tool for examining incomplete social judgments axiomatically (see [53-59]). We define Quasi Ultrafilter on matroid. 
Definition 14: Let M = (X,S) be a matroid and d be a metric on X. For a given real number r≥ 0, the set Bd(e,r) = { x ∈ X | d(x,e) < r }  is termed as the r-ball centered at e. Quasi filter F = { Aα |α∈ Δ} satisfies axioms (F1), (QF2), (F3). Quasi Ultrafilter satisfies axioms (F1), (QF2), (F3), (F4). Axiom (QF2) is following:
(QF2)α, β ∈ Δ, Aα ⊆ X ,  Aβ ⊆ X , Aα∉ F, Aβ∉ F  → Aα∪Aβ  ∉  F.

A weak filter represents a relaxed form of the traditional filter definition and is utilized in domains like logic, as cited in reference [52,60-63]. We define a Weak Ultrafilter with respect to a matroid.
Definition 15: Let M = (X,S) be a matroid and d be a metric on X. For a given real number r≥ 0, the set Bd(e,r) = { x ∈ X | d(x,e) < r }  is termed as the r-ball centered at e. Weak filter F = { Aα |α∈ Δ} satisfies axioms (F1), (WF2), (F3). Weak Ultrafilter satisfies axioms (F1), (WF2), (F3), (F4). Axiom (WF2) is following:
(WF2) For all α, β ∈ Δ , Aα ∩ Aβ ≠  ∅.	Comment by Dr. Wanjara: Indicate the source of this definition	Comment by Dr. Wanjara: Indicate the source of this definition

We briefly examine the properties of Maximal Quasi-filters and Maximal Weak-filters in the following theorem.
Theorem 16: Let M = (X,S) be a matroid and d be a metric on a finite set X. Maximal Quasi-filter/Maximal Weak-filter F = { Aα |α∈ Δ} in M = (X, S) satisfies following axiom (F4) For all A⊆ X, either A∈ F or X\ A∈ F
Proof. Let M=(X,S) be a matroid and let d be a metric on the finite set X. Assume that F is a maximal quasi-filter (or maximal weak-filter) on M; that is, F satisfies the filter axioms (F1) and (F3) together with either (QF2) (in the quasi-filter case) or (WF2) (in the weak-filter case), and no proper extension of F satisfies these axioms. We want to prove that F also satisfies axiom (F4):
(F4) For all A⊆X, either A∈F or X∖A∈F

Let A⊆X be an arbitrary subset. There are two cases to consider:
· Case 1: A∈F
In this case, (F4) is trivially satisfied.
· Case 2: A∉F
We now show that under this assumption, it must follow that X∖A∈F.

Assume, for the sake of contradiction, that A∉F and also X∖A∉F.
Since F is a filter (satisfying (F1) and (F3)) but neither A nor X∖A is in F, consider the possibility of extending F by adding A to it.
Define a new collection G′=F∪{A}.
Then, by applying the closure property required by axiom (F3) (i.e., if B∈F and B⊆C⊆X, then C must be in the filter), along with the properties (QF2) or (WF2) as appropriate, one can generate a new quasi-filter (or weak-filter) G that includes all sets from G′ and is closed under the necessary operations (for example, taking intersections or unions as required).
By construction, G is a filter that properly extends F because A∈G while A∉F. This contradicts the maximality of F, which by definition cannot be extended any further while preserving the filter properties.
The contradiction shows that our assumption in Case 2 (that both A∉F and X∖A∉F) must be false. Therefore, if A∉F, it must be that X∖A∈F.
Thus, for every subset A⊆X, either A∈F or X∖A∈F. This completes the proof of axiom (F4) for any maximal quasi-filter (or maximal weak-filter) F on M. This concludes the proof.  ■

5. Conclusion and Future Work
This paper investigates the role of ultrafilters in the context of matroids, analyzing their structural properties and characterizing their behavior within the matroid framework.
For future research, we plan to explore the concept of ideals in matroids, which function as co-filters in this setting. Additionally, we aim to extend the notion of ultrafilters in matroids to Fuzzy Sets[75-77], Hyperfuzzy Sets[78-80], Neutrosophic Sets[81-83], HyperNeutrosophic Sets[84-86], Plithogenic Sets[87-90], and HyperPlithogenic Sets[91-93], examining their properties and potential applications.
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