
Performance assessment of queuing networks with intermittently accessible

servers, failed servers, corrective maintenance, feedback, and customer

abandonment.

Abstract
The objective of this work is to evaluate the performance of M/M/K (K>2) multi-

server queuing networks with intermittently accessible servers, failed servers, corrective

maintenance, feedback, and customer abandonment. As the model is more complex to

analyze numerically, we proceeded by the algorithmic method. First, we used the PSO

algorithm to minimize operational costs by dynamically adjusting the λ arrival rate, the

µ service level and the number of K servers then in a second step, we used the PSO

algorithm to minimize the average waiting time and abandonment rate in order to max-

imize customer satisfaction. This can therefore be beneficial to both the operator and

customers.
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1 Introduction

Queuing systems with heterogeneous servers, customer feedback and abandonment have several

applications, including manufacturing systems, computer systems, telecommunications systems,

etc.

Several recent studies have dealt with queue models with heterogeneous servers, feedback and

customer abandonment.

Agassi Melikov and Sevinj Aliyeva [1] studied a system with heterogeneous servers, a Markov

modulated Poisson flow and instantaneous feedback. They used approximate algorithms to

obtain steady-state probabilities of models with finite and infinite queues and presented results

from numerical experiments.

Seenivasan [5] analyzed the performance of two heterogeneous server queue models with one

server that can be accessed intermittently. By introducing the bivariate process, he obtained

steady-state probabilities using the matrix geometric method. Some numerical results were

obtained.

Seenivasan [7] studied a queue model with single working holidays and disasters in which he
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considered a system with a single holiday and different service levels. He used the matrix

geometric method (MGM) to obtain steady-state probability vectors.

Toky Basilide Ravaliminoarimalalason [6] used game theory to optimize resource sharing in

queue networks based on customer aspirations. She used analytical methods and algorithms

for static and dynamic models applicable to distributed systems such as cloud computing.

K. Divya [10] studied a model of queues with 2 heterogeneous servers with feedback, one of

which is accessible intermittently and the other is assumed to always be accessible without

disturbances. He used the matrix geometry method to determine the probability vectors that

allowed him to evaluate metrics such as server state probabilities and the average number of

customers in the system.

In order to fill the shortcomings of this recent work, we will proceed as follows:

• first, we will introduce intermittencies or periods of downtime for the server that is as-

sumed to be always accessible, provide a detailed analysis of performance metrics and

explore strategies to optimize this performance, add a component to model customer im-

patience and evaluate by numerical illustration, the influence of parameters on system

performance.

• second, we will extend the model to include a variable number of servers by integrating

optimization algorithms to minimize operational costs or maximize customer satisfaction.

1.0.1 Model construction

Consider a system of queues of 2 heterogeneous servers with feedback and customer abandon-

ment. Customers arrive in the system through a Poisson process of λ rate. The service levels

for servers 1 and 2 are µ1 and µ2 respectively and follow an exponential distribution. Server 1

is prone to γ1 rate failures and benefits from ρ1 rate corrective maintenance. Server 2 is either

idle or intermittently accessible. Customers enter the system based on the status of the servers,

i.e. whether they are active or inactive or intermittently accessible. Inactive Server 2 can either

become active to provide service at a rate η0, or enter a period of intermittent accessibility

to provide a service at rate η1. After receiving service, a dissatisfied customer may decide to

request additional service with a θ rate (feedback) or permanently abandon the system with a

θ = 1− θ rate.

The state of the system is described by: S(t) = (N(t), S1(t), S2(t)) with:

• N(t), the number of customers in the system.

• S1(t) describes the state of server 1 and:
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S1(t) =



0; inactive i.e. no customer in service

1; active, i.e. serving a customer

2; i.e. down

3; i.e. under corrective maintenance
• S2(t) describes the state of server 2 and:

S2(t) =


0; inaccessible i.e. cannot serve a customer

1; accessible i.e. can serve a customer
Hence the state space is:

Ω = {(N,S1, S2) : N ≥ 0, S1 ∈ {0, 1, 2, 3} , S2 ∈ {0, 1}}

Internal transition graph for server 1 (subject to failures with corrective mainte-

nance)

The graph shows that server 1 goes from the active state (S1 = 1) to the failed state with a

failure rate of γ1 then from the failure state to the corrective maintenance state (S1 = 3) with

a rate of ρ1 and then from the corrective maintenance state (S1 = 3) to the idle state (S1 = 0)

or active (S1 = 1) with a repair rate of β1. When S1 = 1, it can serve a customer with a rate

µ1 reducing the number of customers in the system by 1.

Internal transition graph for server 2 (intermittent)
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The graph shows that server 2 goes from the accessible state (S2 = 1) to the inaccessible

state (S2 = 0) with a rate of η1 and then from the inaccessible state (S2 = 0) to the accessible

state (S2 = 1) with a rate of η0. When Server 2 is accessible, it can serve a customer with a µ2

rate, but inaccessible, it cannot serve customers.

The infinitesimal generator G is defined by:

G =



A0 B0 0 0 0 0 0 · · ·

B2 B1 B0 0 0 0 0 · · ·

0 B2 B1 B0 0 0 0 · · ·

0 0 B2 B1 B0 0 0 · · ·

0 0 0 B2 B1 B0 0 · · ·
... ... ... ... ... ... ... · · ·


with:

• A0, the matrix of internal transitions of servers. It takes into account failures, repairs,

corrective maintenance, and alternations between accessible and inaccessible states for Server

2.

• B0, the matrix of customer arrivals that occur at a λ rate.

• B1, the matrix of customer departures after service. These departures depend on the active

servers S1 = 1 or S2 = 1.

• and B2, the matrix of customer abandonments that occur at a θ. Applying the matrix
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geometric method, we get:

A0 =



− (β1 + η0) η0 β1 β1 + η0

η1 − (β1 + η1) β1 + η1 β1

β1 β1 + η0 − (γ1 + η0) η0

β1 + η1 β1 η1 − (γ1 + η1)



B0 =



0 λ 0 0

0 0 λ 0

0 0 0 λ

0 0 0 0



B1 =



− (µ1 + µ2 + θ) η1 γ1 0

η0 − (µ1 + θ) 0 0

ρ1 0 − (µ2 + θ) 0

ρ1 β1 0 − (µ2 + θ)



B2 =



−θ 0 0 0

0 −θ 0 0

0 0 −θ 0

0 0 0 −θ


Let be B the matrix of the system’s global transitions.

We have:

B = B0 +B1 +B2

=



0 λ 0 0

0 0 λ 0

0 0 0 λ

0 0 0 0


+



− (µ1 + µ2 + θ) η1 γ1 0

η0 − (µ1 + θ) 0 0

ρ1 0 − (µ2 + θ) 0

ρ1 β1 0 − (µ2 + θ)


+



−θ 0 0 0

0 −θ 0 0

0 0 −θ 0

0 0 0 −θ


Hence:

B =



− (µ1 + µ2 + 2θ) λ+ η1 γ1 0

η0 − (µ1 + 2θ) λ 0

ρ1 0 − (µ2 + 2θ) λ

ρ1 β1 0 − (µ2 + 2θ)


Theorem 1.1. Let P = (p0, p1, p2, p3) be the probability vector. The probability vector is ob-
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tained by solving the equations PB = 0 and
3∑

i=0
pi = 1. We have the following system:

− (µ1 + µ2 + 2θ) p0 + η0p1 + ρ1p2 + ρ1p3 = 0 (1)

(λ+ η1) p0 − (µ1 + 2θ) p1 + β1p3 = 0 (2)

γ1p0 + λp1 − (µ2 + 2θ) p2 = 0 (3)

λp2 − (µ2 + 2θ) p3 = 0 (4)

Proof 1.1. Solving the system by substitution, we get:

p0 =
(µ1 + 2θ)

[
(µ1 + µ2 + 2θ) (µ2 + 2θ)2 − γ1ρ1 (µ2 + 2θ + λ)

]
− β1λ [λ (µ1 + µ2 + 2θ) + η0γ1]

C +D
(5)

with:

C = (µ1 + 2θ + λ+ η1)
[
(µ1 + µ2 + 2θ) (µ2 + 2θ)2 − ρ1γ1 (µ2 + 2θ + λ)

]
and:

D = [λ (µ1 + µ2 + 2θ) + η0γ1] [−β1λ+ (λ+ η1) (µ2 + 2θ) + λ (λ+ η1)]

p1 =
(λ+ η1)

[
(µ1 + µ2 + 2θ) (µ2 + 2θ)2 − ρ1γ1 (µ2 + 2θ + λ)

]
C +D

(6)

p2 = (λ+ η1) (µ2 + 2θ) [λ (µ1 + µ2 + 2θ) + η0γ1]
C +D

(7)

p3 = λ (λ+ η1) [λ (µ1 + µ2 + 2θ) + η0γ1]
C +D

(8)

Using these probabilities, the following performance measures of the system are deduced:

• Let Lq, the average number of customers in the queue, and ρ, the occupancy rate of the

system.

We have:

Lq = p2ρ

2 (1− ρ)2 (9)

Since:

ρ = λ

2µ (10)
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Then:

Lq = p2λ

4µ
(

1− λ

2µ

)2 (11)

Replacing p2 with its expression, we have:

Lq = λ (λ+ η1) (µ2 + 2θ) [λ (µ1 + µ2 + 2θ) + η0γ1]

4µ
(

1− λ

2µ

)2

(C +D)
(12)

• Let be L, the average number of customers in the system.

We have:

L = Lq + λ

µ
(13)

with λ

µ
, the average number of customers in service. Replacing Lq with its expression, we

have:

L = λ (λ+ η1) (µ2 + 2θ) [λ (µ1 + µ2 + 2θ) + η0γ1]

4µ
(

1− λ

2µ

)2

(C +D)
+ λ

µ
(14)

• Let Wq, the average wait time in the queue.

We have:

Wq = Lq

λ
(15)

Replacing Lq with its expression, we have:

Wq = (λ+ η1) (µ2 + 2θ) [λ (µ1 + µ2 + 2θ) + η0γ1]

4µ
(

1− λ

2µ

)2

(C +D)
(16)

• Let be R, the customer abandonment rate and Tthreshold, the threshold time set by cus-

tomers.

We have:

R =


1 if Wq > Tthreshold

Wq

Tthreshold

otherwise
(17)

Replacing Wq with its expression, we have:

R =


1 if Wq > Tthreshold

(λ+ η1) (µ2 + 2θ) [λ (µ1 + µ2 + 2θ) + η0γ1]

4µ
(

1− λ

2µ

)2

(C +D)Tthreshold

otherwise (18)

7

UNDER PEER REVIEW



2 M/M/K Network Model (K>2)

2.1 Model Construction

Consider a multi-server network of queues of type M/M/K (K>2). Customers arrive in the net-

work through a Poisson process of global rate λ and service times are exponentially distributed

by global rate µ and there are K servers (K>2) divided into two categories: some are prone

to outages with corrective maintenance and other servers that can be accessed intermittently.

Let θ be the overall rate of customer abandonment when they are dissatisfied with the quality

of service. A subset of the servers (Koutages) can fail with a probability of poutage and the repair

time follows an exponential distribution of rates µr. Another subset of servers (Kintermittent) can

become temporarily unavailable with a probability of pi. The servers are restored to efficiency

after repair.

2.2 Modeling Objectives

As the model is more complex to analyze digitally, this requires the use of algorithms in order

to:

• minimize operational costs, i.e. reduce costs related to servers (operating or under repair),

reduce costs related to breakdowns, reduce costs related to corrective maintenance, reduce

costs related to intermittencies, reduce costs related to customer losses i.e. abandonments,

• maximize customer satisfaction, i.e. minimize the abandonment rate and the average

waiting time.

We will therefore first use the Particle Swarm Optimization (PSO) algorithm to dynamically

adjust the λ arrival rate, the µ service level, the number of servers K and minimize the total

operational cost C. In a second step, we will use the PSO to minimize the abandonment rate

and the average waiting time in order to maximize customer satisfaction, which will therefore

be beneficial for both the operator and the consumers (or customers).

2.3 Minimizing Operational Costs

Using the PSO algorithm and Using Matlab software, we obtain the optimal values for the

arrival rate λ, the service level µ, the number of servers K, the total operational cost C and

the performance parameters of the M/M/K networks.
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2.3.1 Results obtained

Arrival rate λ 10.00

Service Rates µ 10.00

Number of Servers K 2

Minimum total costC 273.54

Occupancy rate ρ 0.50

Average number of customers in queue Lq 0.00

Average total time W 0.10 hour

This table gives the best configurations of the arrival rate, service level, and number of servers

to minimize operational costs. The minimum total operational cost is 273.54 and the optimal

values of the arrival rate, service level and number of servers to achieve this minimum cost are

10, 10 and 2 respectively. The average number of customers in the queue as well as the average

waiting time are zero.

2.3.2 Numerical simulations

By numerical simulation, the PSO algorithm gives the evolution of the minimum total opera-

tional cost and the performance parameters of the M/M/K network as a function of the arrival

rate, the service rate and the number of servers. The following curves are obtained:

9
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Figure 1:

The figure shows that from the first to the tenth iteraton, the minimum total operational

cost decreases and from the tenth to the hundredth iteration, the cost remains constant. On the

one hand, this indicates better operational efficiency. Increasing the number of servers allows

for better load management, reducing outages and downtime. This reflects value for money

that improves the overall profitability of infrastructure. On the other hand, the cost remaining

fixed despite the increase in the arrival rate, the service level and the number of servers, can

be explained by inefficiency in the management of resources.
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In these graphs, the blue and green areas indicate a high-performing system with low values

for the average number of customers in the queue Lq, the average wait time Wq, the average

number of customers in the system L, and moderate occupancy. Orange areas indicate increas-

ing load and high pressure on the system. These areas are therefore points of attention. Black

areas indicate critical conditions where performance is unstable or infinite (ρ ≥ 1).

2.4 Maximizing Customer Satisfaction

To maximize customer satisfaction, we use the PSO algorithm to reduce wait time and aban-

donment rate by using a weighted cost function to combine them.

2.4.1 Results obtained

Arrival rate λ 10

Service Rates µ 10

Number of Servers K 20

Minimum total cost C 0

Minimum average wait time Wq 0

Minimum Abandonment Rate R 0
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Using the R software, we obtain the optimal values for the arrival rate λ, the service level µ,

the number of servers K, the minimum total cost C, the minimum average wait time (Wq)

and the minimum abandonment rate (R). These results are recorded in the following table:
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This table gives the best configurations of arrival rate, service rate, number of servers, and

minimum total cost to minimize abandonment rate and average wait time. The optimal values

for the arrival rate, service level, number of servers and minimum total cost are respectively

10; 10; 20 and 0. The minimum average wait time and minimum dropout rate are 0 and 0,

respectively.

2.4.2 Numerical simulations

By numerical simulation, the PSO algorithm gives the evolution of the abandonment rate and

the average waiting time as a function of the minimum total cost. The following curves are

obtained: Figure 3:

According to the figure, the increase in total cost leads to an increase in wait time and aban-

donment rate. Increased wait time leads to an increased risk of customer dissatisfaction as they

spend more time in the queue. The simultaneous increase in total cost, average wait time, and

abandonment rate is due to a mismatch between demand and resources. This requires the right

sizing to maintain acceptable service levels while keeping costs under control.

2.4.3 Some proposals

• Increase the number of servers to reduce overhead, which directly decreases the average

wait time,
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• Ensure that the waiting time remains below the impatience threshold by adjusting the

service level or the number of servers,

• Manage demand by implementing strategies to smooth the load,

• Optimize weights, i.e. increase the weight for wait time and weight for abandonment rate

so that the OSP prioritizes customer satisfaction.

3 Conclusion and Perspective

In this paper, we investigated the performance of M/M/K (K>2) queuing networks with inter-

mittently accessible servers, failed servers with corrective maintenance, and customer abandon-

ment. The model being more complex to analyze numerically, we first used the Particle Swarm

Optimization (PSO) algorithm to dynamically adjust the arrival rate λ, the service level µ, the

number of servers K in order to minimize the total operational cost C. This cost is related to

servers, outages, corrective maintenance, intermittents, and customer abandonment. Second,

we used the PSO to minimize the abandonment rate and average wait time to maximize cus-

tomer satisfaction. Finally, we made proposals to help further maximize customer satisfaction.

In perspective, we want to make an extension to the M/G/K model, i.e., by considering general

service distributions (G) instead of the exponential distribution (M).
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