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Abstract

In this paper, we use two different methods as FDTM (Fractional Differential Transfrom
Method) and FADM (Fractional Adomian Decomposition Method) are carried out for solving
non-linear fractional order mathematical models on dengue. Furthermore, the fractional
model solution generated by FDTM is associated with the fractional model solution derived
by FADM for different fractional orders. Also, Python software is used to analyse the result
numerically and graphically.
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1 Introduction

Dengue fever is a potentially fatal disease caused by bacteria and viruses. This epidemic disease
is linked to climate change, and more awareness of dengue fever is required. This hazardous
disease has become a major health issues in several countries throughout the world in recent
years. As a result, a dengue fever model is required. Various writers have examined and explored
mathematical models of Dengue disease, which may be found in [1, 2, 20, 25]. In the last few
decades, many researchers have been interested in the area of fractional calculus. This is due
to the fact that Fractional calculus can more correctly explain the detained and transmission
properties of diverse materials and processes than integer order models. Many researchers solved
the linear and non-linear mathematical-biological fractional model on various disease by different
methods like HPM, VIM and LADM [23,24,27] and so many variety of transform methods [14–18]
to solved FDEs . Now, in this work, we’ll look at a Dengue mathematical model of fractional
order that goes like this: 

Dα
ξ y1(ξ) = µ− [µ+ ϑy3(ξ)]y1(ξ)

Dα
ξ y2(ξ) = ϑy1(ξ)y3(ξ)− ηy2(ξ)

Dα
ξ y3(ξ) = σy2(ξ)− [σy2(ξ) + ρ]y3(ξ)

(1.1)

UNDER PEER REVIEW



with given initial conditions, y1(0) = 0.9999400528, y2(0) = 0.0000599472 and y3(0) = 0.1,
where 0 < α ⩽ 1. Further the involve functions in the model obey N(ξ) = y1(ξ)+ y2(ξ)+ y3(ξ),
where the total population is N = 5071126 in [20].

In this work, we will solve above stated model and find an approximate solution by using
FDTM and FADM. In addition, Python software is used to analyse the dengue model’s solution
numerically and graphically.

2 Basic Ideas of the FDTM and FADM

In this part, we review several key conclusions from the FDTM and FADM, both of which are
utilised to generate approximate analytical solutions for the system in this work (1.1).

2.1 Basic ideas of the FDTM

Let the fractional power series of an analytical and continuous function φ(ζ) in Riemann-Liouville
sense is as follows [16]:

φ(ζ) =
∞∑
k=0

Φ(k) (ζ − ζ0)
k/α , (2.1.1)

where α and Φ(k) are the order of fraction and FDT of φ(ζ) respectively. Let fractional IVP,
in terms of the Caputo sense are as follows.

Φ(k) =

 If k/α ∈ Z+, 1
(k/α)!

[
dk/αφ(ζ)

dζk/α

]
ζ=ζ0

for k = 0, 1, 2, . . . , (qα− 1)

If k/α /∈ Z+ 0,
(2.1.2)

where, q denotes the order of the fractional differential equation under consideration. Now we
recall some important theorems of FDTM which can be used to find an analytical solution of
the model of dengue.

Theorem 2.1 If φ(ζ) = ψ(ζ)± w(ζ), then Φ(k) = Ψ(k)± ω(k).

Theorem 2.2 If φ(ζ) = ψ(ζ)w(ζ), then Φ(k) =
∑k

l=0Ψ(l)ω(k − l).

Theorem 2.3 If φ(ζ) = ψ1(ζ)ψ2(ζ) . . . ψn−1(ζ)ψn(ζ), then

Φ(k) =

k∑
kn−1=0

kn−1∑
kn−2=0

· · ·
k3∑

k2=0

k2∑
k1=0

Ψ1 (k1)Ψ2 (k2 − k1) . . .Ψn−1 (kn−1 − kn−2)Ψn (k − kn−1)

Theorem 2.4 I f φ(ζ) = (ζ − ζ0)
r, then Φ(k) = δ(k − αr) where,

δ(k) =

{
1 if k = 0

0 if k ̸= 0

Theorem 2.5 If φ(ζ) = Dq
ζ0
[ψ(ζ)], then Φ(k) = Γ(q+1+k/α)

Γ(1+k/α) Ψ(k + αq).

.
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2.2 Basic ideas of the FADM

Now have a look at the fractional differential equations system [19]

Dαiyi(ζ) = Ni (ζ, y1, . . . , yn) , y
(k)
i (0) = cik, 0 ⩽ k ⩽ [αi] (2.2.1)

where 1 ⩽ i ⩽ n, and αi ∈ R+. After applying Iαi to the equation 2.2.1, we obtain,

yi =

[αi]∑
k=0

cik
ζk

k!
+ IαiNi (ζ, y1, . . . , yn) , 1 ⩽ i ⩽ n. (2.2.2)

We adopt ADM to solve the system 2.2.1. By representing the solution as an infinite series given
by in the second phase of the decomposition approach, we can:

yi =

∞∑
m=0

yim, (2.2.3)

and

Ni (ζ, y1, . . . , yn) =
∞∑

m=0

Aim (2.2.4)

where Aim which are depend upon y10, . . . , y1m, y20, . . . , y2m, . . . , yn0, . . . , ynm. By using equa-
tions. 2.2.3 and 2.2.4, the equation 2.2.2, can be written as,

∞∑
m=0

yim =

[αi]∑
k=0

cik
ζk

k!
+ Iαi

∞∑
m=0

Aim (y10, . . . , y1m, . . . , yn0, . . . , ynm) , 1 ⩽ i ⩽ n. (2.2.5)

This can be expressed as

yi0(ζ) =

[αi]∑
k=0

cik
ζk

k!
,

yi,m+1(ζ) = Iαi

[
1

m!

dm

dλm
Ni

(
ζ,

∞∑
m=0

y1mλ
m, . . . ,

∞∑
m=0

ynmλ
m

)]
λ=0

, m = 0, 1, . . . (2.2.6)

The shortened series can be used to approximate the answer yi.

φik =

k−1∑
m=0

yim, lim
k→∞

φik = yi(ζ).

We employ the H. Jafari [19] , for convergence of this approach.

3 Solution of the Fractional Order Dengue Model

In this part, we’ll use the FDTM and FADM algorithms to discover a solution of 2.2.1.
Consider the system of non-linear fractional order dengue model.

Dα
ξ y1(ξ) = µ− [µ+ ϑy3(ξ)]y1(t)

Dα
ξ y2(ξ) = ϑy1(ξ)y3(ξ)− ηy2(ξ)

Dα
ξ y3(ξ) = σy2(ξ)− [σy2(ξ) + ρ]y3(ξ)

(3.1)
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3.1 Solution of system 3.1 by FDTM

Now apply the FDTM and by using Theorems 2.1, 2.2, 2.4, and 2.5, then the equation 3.1 can
be expressed as follows:

Y1 (k + αθ) =
Γ (1 + k/θ)

Γ (α+ 1 + k/θ)

[
µδ(k)− µY1(k) +

k∑
l=0

ϑY3(l)Y1(k − l)

]

Y2 (k + αθ) =
Γ (1 + k/θ)

Γ (α+ 1 + k/θ)

[
k∑

l=0

ϑY1(l)Y3(k − l)− ηY2(k)

]

Y3 (k + αθ) =
Γ (1 + k/θ)

Γ (α+ 1 + k/θ)

[
σY2(k)−

k∑
l=0

σY2(l)Y3(k − l) + ρY3(k)

]
,

(3.1.1)

where θ is the fraction of order α and Y1(k), Y2(k) and Y3(k) are FDT of y1(ξ), y2(ξ) and y3(ξ)
respectively. The approximate solution of given system 3.1 by using FDTM can be written as

yi(ξ) =

∞∑
k=0

Yi(k)ξ
k/θ. i = 1, 2 and 3 (3.1.2)

3.2 Solution of system 3.1, by FADM

By using the result of FADM, the system 3.1 is transferred as follows,

N1(ȳ) = µ− µy10 − ϑy30y10 =

∞∑
j=0

A1j ,

N2(ȳ) = ϑy10y30 − ηy20 =
∞∑
j=0

A2j ,

N3(ȳ) = σy20 − σy20y30 − ρy30 =

∞∑
j=0

A3j .

Now we obtained the corresponding Adomian polynomials Aij , i = 1, 2, 3 and j = 0, 1, . . .

A10 = µ− µy10 − ϑy30y10,

A11 = −µy11 − ϑ[y31y10 + y30y11],

A12 = −µy12 − ϑ[y32y10 + y31y11 + y30y12],

A13 = −µy13 − ϑ[y33y10 + y32y11 + y31y12 + y30y13],

...

A20 = ϑy10y30 − ηy20,

A21 = ϑ[y11y30 + y10y31]− ηy21,

A22 = ϑ[y12y30 + y11y31 + y10y32]− ηy22,

A23 = ϑ[y13y30 + y12y31 + y12y31 + y10y33]− ηy23,

...
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A30 = σy20 − σy20y30 − ρy30,

A31 = σy21 − σ[y21y30 + y20y31]− ρy31,

A32 = σy22 − σ[y22y30 + y21y31 + y20y32]− ρy32,

A33 = σy23 − σ[y23y30 + y22y31 + y21y32 + y20y33]− ρy33,

...

The few terms of Adomian decomposition series 2.2.6 are as follows{
y10 = 0,
y1,m+1 = IαA1m,

{
y20 = 1,
y2,m+1 = IβA2m,

{
y30 = 1,
y3,m+1 = IγA3m,

m = 0, 1, . . . .

The approximate solution of given dengue model in series form is as follows.

φik =

k−1∑
m=0

yim, lim
k→∞

φik = yi(ζ) i = 1, 2, 3.

4 Numerical Solution of Dengue Model

In terms of an infinite power series, the FDTM and FADM give an analytical approximation
answer. However, evaluating this solution and obtaining numerical numbers from the infinite
power series is necessary in practise. To complete this work, the series is truncated as a result,
and the practical approach is used.
For sake of convenience we use following parameter in given model

Parameter Representation

y1 Represents those who are susceptible to infection.
y2 Represents people who have been infected with the Dengue virus.
y3 Represents people who have recovered from the Dengue virus.
η It denotes the rate of infection.
ϑ It denotes the average number of bites received by an infected mosquito.
µ It represents the susceptible host’s death rate.
σ It denotes the rate at which an infection can be recovered.
ρ It is the number of people who have died as a result of being infected by a mosquito.

We utilise the following numerical values for parameters from [20] to derive the approximate
series solution of the above model.

4.1 Numerical solution by FDTM

Let y1(0) = 0.9999400528, y2(0) = 0.0000599472 and y3(0) = 0.1. Now by using equation 2.1.2,
the initial conditions can be written as follows
Y1(k) = 0, Y2(k) = 0, Y3(k) = 0 for k = 1, 2, . . . , αθ − 1
Y1(0) = 0.9999400528, Y2(0) = 0.0000599472 and Y3(0) = 0.1
Y1(k), Y2(k) and Y3(k) are calculated using equation 2.1.1 upto 4 iterations.
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Case I: If we taking the values of α = 1 and θ = 1 which gives the ordinary system and values
of other parameters are η = 0.333, ρ = 0.02941, µ = 0.0045, ϑ = 0.0006, σ = 0.375. We have
Using the equation 2.1.1 the fourth approximations are calculated for y1(ξ), y2(ξ) and y3(ξ),
respectively.
In view of these values, we have

y1(ξ) = 0.9999400528− 5.97266407680003e− 05ξ + 1.0123545593952428e− 03ξ2

− 1.1520763240136989e− 08ξ3 + · · ·
y2(t) = 0.0000599472 + 4.0033985567999995e− 05ξ − 7.543628214739242e− 06ξ2

+ 8.473449632371e− 07ξ3 + · · ·
y3(ξ) = 0.1− 0.00292076782ξ + 4.973845558007358e− 05ξ2 − 1.6086908718666682e− 06ξ3

+ · · ·

Case II: If α = 0.5 and θ = 2, and values of other parameters are η = 0.333, ρ = 0.02941, µ =
0.0045, ϑ = 0.0006, σ = 0.375. We have Using the equation 2.1.1 the fourth approximations are
calculated for y1(ξ), y2(ξ) and y3(ξ), respectively as follows;

y1(ξ) = 0.9999400528− 6.739429716320906e− 05ξ1/2 + 2.0247091187904856e− 03ξ

− 5.1941816648317056e− 08ξ3/2 + · · ·
y2(ξ) = 0.0000599472 + 4.51735152907336e− 05ξ1/2 − 1.5087256429478483e− 05ξ

+ 3.824448275171701e− 06ξ3/2 + · · ·
y3(ξ) = 0.1− 0.003295733560010976ξ1/2 + 9.947691116014716e− 05ξ − 5.990968624421687e− 06ξ3/2

+ · · ·

Case III: If α = 0.4 and θ = 5 and values of other parameters are η = 0.333, ρ = 0.02941, µ =
0.0045, ϑ = 0.0006, σ = 0.375. We have Using the equation 2.1.1 the fourth approximations are
calculated for y1(ξ), y2(ξ) and y3(ξ), respectively as follows

y1(ξ) = 0.9999400528− 6.7315537487015e− 05ξ2/5 + 2.3449325427454744e− 03ξ3/5

− 7.616053066560027e− 08ξ4/5 + · · ·
y2(ξ) = 0.0000599472 + 4.512072371063551e− 05ξ2/5 − 1.7473422850668217e− 05ξ3/5

+ 4.429298427619285e− 06ξ4/5 + · · ·
y3(ξ) = 0.1− 0.003291882033710764ξ2/5 + 0.00011520995488506399ξ3/5 − 8.795086986354861e− 06ξ4/5

+ · · ·

4.2 Numerical solution by FADM

Case I: If we taking the values of α = 1 and θ = 1 which gives the ordinary system and values
of other parameters are η = 0.333, ρ = 0.02941, µ = 0.0045, ϑ = 0.0006, σ = 0.375. By using the
equation 2.2.3 and above parameters the fourth approximations for y1(ξ), y2(v) and y3(ξ) are as
follows.
In view of these values, we have
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y1(ξ) = 0.9999400528− 5.97266407680003e− 05ξ + 0.02687874429ξ2 + · · ·

y2(ξ) = 0.0000599472 + 4.0033985567999995e− 05ξ − 1.755939235e− 06
ξ2

2
+ · · ·

y3(ξ) = 0.1− 0.00292076782ξ + 0.00009947691117
ξ2

2
+ · · ·

Case II: If α = 0.5 and θ = 2 and values of other parameters are η = 0.333, ρ = 0.02941, µ =
0.0045, ϑ = 0.0006, σ = 0.375. We have Using the equation 2.1.1 the fourth approximations are
calculated for y1(ξ), y2(ξ) and y3(ξ), respectively are as follows

y1(ξ) = 0.9999400528− 5.97266407680003e− 05
ξ1/2

Γ(1.5)
+ 0.02687874429ξ + · · ·

y2(ξ) = 0.0000599472 + 4.0033985567999995e− 05
ξ1/2

Γ(1.5)
− 1.755939235e− 06ξ + · · ·

y3(ξ) = 0.1− 0.00292076782
ξ1/2

Γ(1.5)
+ 0.00009947691117ξ + · · ·

Case III: If α = 0.4 and θ = 5 and using equation 2.2.3, we obtain one more solution y1(ξ), y2(ξ)
and y3(ξ) are as follows;

y1(ξ) = 0.9999400528− 5.97266407680003e− 05
ξ2/5

Γ(1.4)
+ 0.02687874429

ξ4/5

Γ(1.8)
+ · · ·

y2(ξ) = 0.0000599472 + 4.0033985567999995e− 05
ξ2/5

Γ(1.4)
− 1.755939235e− 06

ξ4/5

Γ(1.8)
+ · · ·

y3(ξ) = 0.1− 0.00292076782
ξ2/5

Γ(1.4)
+ 0.00009947691117

ξ4/5

Γ(1.8)
+ · · ·

5 Numerical Interpretation and Discussion

The numerical graphs of various categories relating to fractional order derivatives are
presented in this section. In Fig 1, Fig 2, and Fig 3, we plot the different components of
approximate solutions of a given non-linear fractional dengue model for different order α, by
using FDTM and FADM.From Figs. 1a − 3a and 1b − 3b, when the Dengue virus spreads in
a healthy society, the number of people who are infected and the number of people who are
susceptible to infection increases. It is also observed that, if there is no cure of disease in the
infected population then the regained population then continues to decline. This fluctuation
of infection can be observed in Figs. 1a − 3a and 1b − 3b, at different fractional orders which
are calculated by FDTM and FADM. From these figures it is observed that, if the order of
the fractional derivative is lower order, then the fluctuation rate of different categories is rapid.
On the other hand, if the order of the fractional derivative is higher then the fluctuation rate
which is calculated by using both methods FDTM and FADM of different categories becomes
slower. From these graphical interpretations, we can deduce how a disease spreads in a society
that is assumed to be open to infection. When a virus strikes, the receptive rate decreases as
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infected people get more afflicted. Some people will recover if they receive adequate treatment
or vaccination, and their population will grow as a result. As a result, this graphical analysis
shows us the most effective methods of illness transmission and recovery.

(a) In a model 3.1, the Dengue virus is
transmitted to a susceptible population by
FDTM

(b) In a model 3.1, the Dengue virus is
transmitted to a susceptible population by
FADM.

Figure 1: FDTM and FADM were used to compare geometrical interpretations of Dengue virus
transmission in a susceptible population in model 3.1 at various α values.

(a) Dengue virus transmission of infected
population in model 3.1 via FDTM.

(b) Dengue virus transmission of infected
population in model 3.1 via FADM.

Figure 2: FDTM and FADM were used to compare geometrical interpretations of Dengue virus
transmission in an infected human population in model 3.1 at different values of α.

UNDER PEER REVIEW



(a) Dengue virus transmission in a recov-
ered society in model 3.1 using FDTM.

(b) Dengue virus transmission in a recov-
ered society in model 3.1 using FADM.

Figure 3: FDTM and FADM were used to compare geometrical interpretations of Dengue virus
transmission in a recovered human population in model 3.1 at various α values.

6 Conclusion

This work uses FDTM and FADM to solve a non-linear fractional order mathematical model on
dengue. Furthermore, the fractional model solution produced by FDTM is associated with the
solution of the same model estimated by FADM for different fractional orders. Two alternative
strategies FADM and FDTM have been used to solve and analyse a non-linear fractional order
mathematical model of dengue fever. In terms of infinite series for various orders and by spec-
ifying fixed components with various time intervals, an approximate solution to the specified
model is established. The Python programme is used to analyse the solution numerically and
visually. The outcomes of these numerical simulations have been positive.
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