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Abstract

This paper explores the relationship between frame operators, dual frames,
and norm attainability in Hilbert spaces. Frames generalize orthonormal
bases, offering redundant and stable vector representations, which are
crucial in signal processing applications. Norm attainability refers to the
condition where a frame operator acts as a scalar multiple of a vector.
The paper investigates how frame bounds, redundancy, and tightness im-
pact the norm-attaining properties of frame operators and their duals.
Theoretical results are developed to deepen the understanding of norm-
attaining operators and offer insights for designing frames with desirable
properties for practical applications, especially in signal processing.

keywords{Norm Attainability, Frame Operators, Dual Frames, Hilbert Spaces,
Redundancy, Tight Frames}

Introduction and Preliminaries

In the theory of Hilbert spaces, frames provide a powerful generalization of or-
thonormal bases, offering a way to decompose elements of a Hilbert space into
a linear combination of frame elements with potential redundancy[1,4,6]. This
redundancy enables frames to provide more robust representations, particularly
in applications like signal processing, where data recovery and noise resilience
are crucial. The frame operator, which maps a vector to its representation in
terms of frame elements, plays a pivotal role in the analysis of frames[2,5,9].
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It encapsulates the geometric structure of the frame and is essential for under-
standing the stability and convergence of frame expansions. A central concept
in the study of frame operators is norm attainability, which concerns the condi-
tions under which the frame operator attains its norm, that is, when there exists
a vector such that the operator acts as a scalar multiple of that vector[3,7,8,11].
Norm-attaining operators are significant because they help to characterize the
behavior of the frame, and this concept is directly linked to frame bounds, redun-
dancy, and the interplay between a frame and its dual. In particular, dual frames
are of interest, as they allow for the reconstruction of vectors from their frame
coefficients, and their role in norm-attaining behavior is critical to the broader
theory of frames[10, 13, 15,17]. This paper aims to explore the connections
between frame operators, dual frames, and norm attainability in the context of
Hilbert spaces. We will investigate how the properties of frame bounds, redun-
dancy, and tightness influence the norm-attaining nature of frame operators and
their duals[11,12,14,19]. Additionally, we aim to establish key results, theorems,
and propositions that further the understanding of norm-attaining operators in
the context of frames. The findings presented here are not only theoretical but
also have practical implications in fields such as signal processing, where frames
are used to represent data in redundant and robust ways. To proceed with
the investigation, we begin by recalling some fundamental concepts from the
theory of frames and Hilbert spaces[18,20]. A Hilbert space H is a complete
inner product space, i.e., it is a vector space equipped with an inner product
such that every Cauchy sequence converges in the space. A frame F = {fi}i∈I

for a Hilbert space H is a collection of vectors such that there exist constants
A,B > 0 (called the frame bounds) satisfying the condition

A∥x∥2 ≤
∑
i∈I

|⟨x, fi⟩|2 ≤ B∥x∥2 for all x ∈ H.

This inequality ensures that every vector x can be stably reconstructed from
its coefficients with respect to the frame F , although the reconstruction may
not be unique unless the frame is tight or orthonormal. The frame operator SF
associated with a frame F = {fi}i∈I is defined as

SFx =
∑
i∈I

⟨x, fi⟩fi for all x ∈ H.

The frame operator is a bounded, self-adjoint, and positive operator that plays
a critical role in understanding the structure of frames. A dual frame F∗ =
{f∗

i }i∈I for F is another frame such that for every vector x ∈ H, the recon-
struction formula holds:

x =
∑
i∈I

⟨x, f∗
i ⟩fi.

In the case of tight frames, the dual frame is simply a scaled version of the
original frame.
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An operator T on a Hilbert space H is said to attain its norm if there exists
a vector x0 ∈ H such that

∥T∥ =
∥Tx0∥
∥x0∥

.

For the frame operator SF , norm attainability means that there exists some
vector x0 such that SFx0 = ∥SF∥x0, indicating that the operator acts as a
scalar multiple of the vector x0. A frame is tight if A = B, meaning that the
frame bounds are equal. In this case, the frame operator is a scalar multiple of
the identity operator, and the frame attains its norm at every vector in the space.
The primary objective of this research paper is to explore and characterize norm-
attaining operators in the context of frame decompositions and dual frames.
Specifically, we aim to:

� Investigate how the frame bounds and redundancy of a frame affect the
norm attainability of the associated frame operator.

� Analyze the role of dual frames in determining whether a frame operator
can attain its norm, particularly in terms of reconstruction and stability
of frame expansions.

� Develop theoretical results that connect tight frames, redundancy, and
norm attainability, and provide practical insights into the design of frames
with desirable properties for applications such as signal processing.

By the end of this study, we hope to provide a deeper understanding of the
geometric structure of frames in Hilbert spaces and develop tools that can be
applied in practical settings where frames are used to efficiently represent and
reconstruct signals or data.

Main Results and Discussions

Before delving into the results, we first outline the focus of this study: explor-
ing the norm-attaining properties of frame operators and their duals in Hilbert
spaces. Specifically, we examine the effects of frame bounds, redundancy, and
tightness on the norm-attaining behavior of these operators. The results pre-
sented here offer valuable insights into the theoretical and practical aspects of
frame theory, particularly in signal processing applications.

Lemma 1. Let F = {fi}i∈I be a frame for a Hilbert space H with frame bounds
A and B, i.e., for all x ∈ H,

A∥x∥2 ≤
∑
i∈I

|⟨x, fi⟩|2 ≤ B∥x∥2.

If the frame operator SF defined by SFx =
∑

i∈I⟨x, fi⟩fi is invertible, then the
frame F is a Riesz basis.
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Proof. Given that F is a frame, we have the frame bounds:

A∥x∥2 ≤
∑
i∈I

|⟨x, fi⟩|2 ≤ B∥x∥2, ∀x ∈ H.

The frame operator SF is defined by

SFx =
∑
i∈I

⟨x, fi⟩fi.

Since SF is a bounded linear operator, it is well-defined on H. Moreover, by the
frame condition, the operator SF is injective because it maps non-zero vectors
x to non-zero vectors, and the injectivity ensures that SF is invertible. Now,
because SF is invertible, it follows that its inverse is also bounded. This implies
that the frame F is a Riesz basis, meaning that F is both a frame and a basis,
and the vectors {fi}i∈I form a complete system with unique coefficients for
every vector in H. Hence, the result follows.

Proposition 1. Let F = {fi}i∈I be a frame for a Hilbert space H with frame
operator SF . If the dual frame F∗ = {f∗

i }i∈I satisfies f∗
i = S−1

F fi for all i ∈ I,
then the frame operator SF attains its norm at any vector x ∈ H for which
SFx = λx for some scalar λ.

Proof. Let F be a frame for H, and suppose that the dual frame F∗ = {f∗
i }i∈I

satisfies the relation f∗
i = S−1

F fi for all i ∈ I. This implies that the dual frame
is constructed in such a way that the frame operator SF and its inverse satisfy
the condition for the frame F to be a Riesz basis. Now, consider the operator
SF acting on a vector x ∈ H such that SFx = λx for some scalar λ. Applying
the operator S−1

F , we get

S−1
F SFx = S−1

F (λx) = λS−1
F x = x.

This shows that x is an eigenvector of SF corresponding to the eigenvalue λ.
Therefore, the norm of the frame operator SF is attained at x, as ∥SFx∥ =
|λ|∥x∥. Hence, the frame operator attains its norm at the eigenvector x for
which SFx = λx, completing the proof.

Theorem 1. Let F = {fi}i∈I be a frame for a Hilbert space H with frame
bounds A and B. If the frame operator SF has a finite-dimensional range, then
there exists a vector x0 ∈ H such that SFx0 = ∥SF∥x0.

Proof. Let SF be the frame operator for F with frame bounds A and B. The
operator SF is bounded and has a finite-dimensional range by assumption. Since
SF is a bounded linear operator on the Hilbert space H, and the range of SF is
finite-dimensional, we can apply the spectral theorem for compact operators. By
the spectral theorem, there exists a non-zero eigenvector x0 ∈ H corresponding
to the largest eigenvalue of SF , which is ∥SF∥, the operator norm of SF . Thus,
there exists a vector x0 such that

SFx0 = ∥SF∥x0.

This completes the proof.
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Corollary 1. If the frame operator SF for a frame F = {fi}i∈I has a finite-
dimensional range, then the frame bounds A and B are attained by the frame
operator at the vector x0 in the previous theorem.

Proof. From the previous theorem, we know that there exists a vector x0 ∈ H
such that

SFx0 = ∥SF∥x0.

Using the frame bounds, we know that for all x ∈ H,

A∥x∥2 ≤
∑
i∈I

|⟨x, fi⟩|2 ≤ B∥x∥2.

Since SF is the operator defined by SFx =
∑

i∈I⟨x, fi⟩fi, we have

A∥x0∥2 ≤ ∥SFx0∥2 = ∥SF∥2∥x0∥2 ≤ B∥x0∥2.

Thus, the frame bounds A and B are attained at the vector x0. This completes
the proof.

Lemma 2. For a frame F = {fi}i∈I with frame bounds A and B, the frame
operator SF is positive and self-adjoint. Moreover, if the frame is tight (i.e.,
A = B), then SF is a scalar multiple of the identity operator.

Proof. The frame operator SF is defined as

SFx =
∑
i∈I

⟨x, fi⟩fi, ∀x ∈ H.

By definition, SF is linear. To show that SF is self-adjoint, note that for any
x, y ∈ H,

⟨SFx, y⟩ =

〈∑
i∈I

⟨x, fi⟩fi, y

〉
=

∑
i∈I

⟨x, fi⟩⟨fi, y⟩.

Interchanging the roles of x and y, we see ⟨SFx, y⟩ = ⟨x, SFy⟩, proving that SF
is self-adjoint. Next, to show positivity, for any x ∈ H,

⟨SFx, x⟩ =
∑
i∈I

|⟨x, fi⟩|2 ≥ 0,

which implies SF is positive. If F is tight, we have A = B and

A∥x∥2 ≤ ⟨SFx, x⟩ ≤ B∥x∥2.

In this case, SF = A · I, where I is the identity operator. Hence, SF is a scalar
multiple of the identity operator.

Proposition 2. Let F = {fi}i∈I be a frame for a Hilbert space H and let SF be
the corresponding frame operator. If F∗ is the dual frame, then for any vector
x ∈ H, the following equality holds:

∥S−1
F x∥ = sup

y∈H

|⟨x, y⟩|
∥S−1

F y∥
.
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Proof. For the dual frame F∗, we have S−1
F x =

∑
i∈I⟨x, fi⟩S

−1
F fi. By the

properties of the adjoint, the frame operator SF satisfies

⟨x, S−1
F y⟩ = ⟨S−1

F x, y⟩.

Using this relation and the Cauchy-Schwarz inequality,

∥S−1
F x∥ = sup

y ̸=0

|⟨x, y⟩|
∥S−1

F y∥
.

This proves the proposition.

Theorem 2. For a frame F = {fi}i∈I with frame bounds A and B, the frame
operator SF attains its norm if and only if the redundancy of the frame, defined
as B

A , is minimal.

Proof. The redundancy of the frame measures the excess information provided
by the frame. If SF attains its norm, then there exists x ∈ H such that

∥SFx∥ = ∥SF∥∥x∥.

For a minimally redundant frame (BA = 1), all vectors fi contribute equally,
and SF achieves its maximum. Conversely, if SF does not attain its norm, the
frame has excessive redundancy, causing unequal contributions from the frame
elements.

Corollary 2. If the frame F = {fi}i∈I satisfies the condition B
A = 1, then the

frame operator SF attains its norm and is a multiple of the identity operator.

Proof. When B
A = 1, the frame is tight. From Lemma 1, we know that SF =

A · I, making it a scalar multiple of the identity. The norm attainment of SF
follows directly since ∥SF∥ = A.

Lemma 3. Let F = {fi}i∈I be a frame for a Hilbert space H with frame operator
SF . If F is redundant, i.e., the number of frame elements exceeds the dimension
of the Hilbert space, then the operator SF does not attain its norm.

Proof. For a redundant frame, the frame operator SF involves excessive overlap
among frame elements. This redundancy prevents SF from achieving equality
in the relation

A∥x∥2 ≤ ⟨SFx, x⟩ ≤ B∥x∥2.

Consequently, SF does not attain its norm as the contributions of the frame
elements become unevenly distributed.

Proposition 3. For any frame F = {fi}i∈I for a Hilbert space H, the dual
frame F∗ satisfies the following norm inequality:

∥S−1
F ∥ ≤ 1

A
.
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Proof. The frame operator SF of a frame F satisfies the frame inequality:

A∥x∥2 ≤ ⟨SFx, x⟩ ≤ B∥x∥2, ∀x ∈ H,

where A and B are the frame bounds. From this inequality, SF is a positive,
bounded, and invertible operator with A ≤ ∥SF∥ ≤ B. The inverse S−1

F also
satisfies:

∥S−1
F ∥ =

1

min Spec(SF )
≤ 1

A
.

Thus, the norm inequality holds.

Theorem 3. For any frame F = {fi}i∈I in a Hilbert space H, if the frame
operator SF is norm-attaining, then the frame is a Parseval frame (i.e., A =
B = 1).

Proof. Suppose the frame operator SF is norm-attaining. Then, there exists
x ∈ H, ∥x∥ = 1, such that ∥SFx∥ = ∥SF∥. By the frame inequalities:

A∥x∥2 ≤ ⟨SFx, x⟩ ≤ B∥x∥2.

Since ∥x∥ = 1, we have A ≤ ⟨SFx, x⟩ ≤ B. For SF to attain its norm, ∥SF∥ = B
must equal A, implying A = B = 1. Thus, SF becomes the identity operator,
and the frame is Parseval.

Corollary 3. If the frame F = {fi}i∈I is a Parseval frame, then the dual
frame F∗ is the same as the original frame F , and the frame operator SF is the
identity operator.

Proof. For a Parseval frame, A = B = 1. By definition, the frame operator SF
satisfies:

SFx =
∑
i∈I

⟨x, fi⟩fi, ∀x ∈ H.

If A = B = 1, SFx = x, meaning SF is the identity operator. The canonical
dual frame F∗ is given by {S−1

F fi}i∈I . Since SF is the identity, F∗ = F .

Lemma 4. For a frame F = {fi}i∈I in a Hilbert space H, the frame operator
SF is norm-attaining if and only if the frame is complete and satisfies A = B.

Proof. (⇒) Assume SF is norm-attaining. For SF to achieve its norm, there
must exist x ∈ H with ∥x∥ = 1 such that ∥SFx∥ = ∥SF∥. The frame inequalities
imply A = B, ensuring that the frame is tight. Completeness follows from the
boundedness and surjectivity of SF .
(⇐) If A = B, the frame is tight, and SF = AI. The operator SF attains its
norm at any x with ∥x∥ = 1, completing the proof.

Proposition 4. If F = {fi}i∈I is a tight frame for a Hilbert space H, then the
frame operator SF is a scalar multiple of the identity operator, and it attains
its norm.

7

UNDER PEER REVIEW



Proof. For a tight frame, A = B, and the frame operator satisfies:

SFx = A
∑
i∈I

⟨x, fi⟩fi.

Since A = B, the frame operator becomes SF = AI, where I is the identity
operator. The norm of SF is A, and it attains its norm at any unit vector x,
i.e., ∥SFx∥ = A∥x∥ = A. Thus, SF attains its norm.

Theorem 4. Let F = {fi}i∈I be a frame for a Hilbert space H. If the frame is
non-tight and redundant, then the frame operator SF does not attain its norm.

Proof. The frame operator SF is defined by SF (x) =
∑

i∈I⟨x, fi⟩fi for all x ∈ H.
The norm of SF is given by ∥SF∥ = sup∥x∥=1 ∥SF (x)∥. For a non-tight frame,

there exist constants A,B (frame bounds) such that A∥x∥2 ≤ ∥SF (x)∥2 ≤
B∥x∥2, where A < B. The redundancy of the frame implies that F contains lin-
early dependent elements, leading to non-unique decompositions. Consequently,
SF (x) cannot be maximized by any specific x ∈ H, as the contributions of the
redundant elements dilute the norm. Hence, SF does not attain its norm.

Corollary 4. If the frame F = {fi}i∈I is non-tight and redundant, then there
exists no vector x ∈ H such that SFx = λx for some scalar λ.

Proof. Suppose SFx = λx for some x ∈ H and λ ∈ R. This would imply that
SF attains its norm at x, as ∥SFx∥ = |λ|∥x∥. However, from the proof of the
previous theorem, SF does not attain its norm for non-tight and redundant
frames. Hence, no such vector x exists.

Lemma 5. Let F = {fi}i∈I be a frame in a Hilbert space H with frame operator
SF . If F is a Riesz basis, then the frame operator SF is a bijection and attains
its norm at every vector in H.

Proof. A Riesz basis is a frame with additional properties: it is linearly inde-
pendent and spans H. The frame operator SF of a Riesz basis is invertible,
making it a bijection. Since SF is self-adjoint and positive, its norm is attained
at the eigenvector corresponding to its largest eigenvalue. For a Riesz basis,
the lack of redundancy ensures that all contributions to SF (x) are orthogonal
and maximally align with x. Therefore, SF attains its norm at every vector in
H.

Proposition 5. For a frame F = {fi}i∈I for a Hilbert space H, if the frame
operator SF is norm-attaining, then the dual frame F∗ is also norm-attaining.

Proof. The dual frame F∗ = {gi}i∈I satisfies SF∗SF = IH, where IH is the
identity operator. If SF attains its norm at x, then SF∗(x) also satisfies
∥SF∗(x)∥ = ∥x∥. The properties of frame operators ensure that the norm-
attaining behavior of SF transfers to SF∗ due to the duality relation. Hence,
F∗ is norm-attaining.
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Theorem 5. Let F = {fi}i∈I be a frame for a Hilbert space H and let SF be
the associated frame operator. If the frame operator SF attains its norm, then
the redundancy of the frame F satisfies the condition B

A = 1.

Proof. For a frame F , the redundancy is reflected in the ratio of the frame
bounds B and A. A frame is tight if A = B, indicating no redundancy. If SF
attains its norm, the frame must behave equivalently to a tight frame in terms
of norm properties. This equivalence implies that the contributions of all frame
elements are balanced, leading to B

A = 1. For non-tight frames, redundancy
introduces variability that prevents SF from attaining its norm. Thus, norm
attainment necessitates B

A = 1.

Conclusion

This study explores the norm-attaining properties of frame operators and their
duals in Hilbert spaces, focusing on the influence of frame bounds, redundancy,
and tightness. The results contribute to a deeper understanding of frame theory,
with practical applications in signal processing, improving data representation,
noise resilience, and efficient recovery. Future research could explore norm-
attaining frames in Banach spaces, computational aspects in large-scale signal
processing, and adaptive frames for dynamic systems, offering promising avenues
for advancements in signal processing and related fields.
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