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Potential of Nano-Particles in Mitigating Abiotic Stress in Crops

[bookmark: _GoBack]ABSTRACT
Global warming, anthropogenic activities, and other inevitable factors have caused climate change, resulting in occurrence of numerous abiotic stresses. These abiotic stresses not only reduce agriculture productivity but also result in degradation of natural resources (Shahzad et al., 2018). Different studies documented significant yield reduction in numerous crops under abiotic-stress conditions (Khan et al., 2018). Development and progress in plant science have revealed different aspects and mechanisms of abiotic stresses induced detrimental effects on crop plants. Nonetheless, development in plant physiology and genetics and other applied biological studies developed stress tolerant plants and further showed how plants can be made tolerant to different abiotic stress conditions and what aspects should be further investigated. Nanotechnology is a new and emerging technology, which relies on the application of nanoparticles (NPs) with small radius in order to enhance abiotic-stress tolerance in plants (Moisala et al., 2003). These include the use of nanoparticles, which have been shown to have a positive effect on plant performance under stress conditions (Yadav et al., 2020). The use of nano-scale agrochemicals, including nano-pesticides, nano-herbicides, and nano-fertilizers, has recently acquired increasing interest as potential plant-enhancing technologies (Abdel Latef et al., 2017).
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1. INTRODUCTION
Nanoparticles are small molecules of 1-100nm dimensions (Roco, 2003) including very small size, nanoparticles may also acquire some other physio-chemical properties, that is, improved reactivity, large surface area, malleable pore size, as well as diverse morphology (Nel et al., 2006). The word “Nano” is derived from a Greek word which means extremely small or dwarf.  In the present circumstance, nanoparticles have potential to boost plant growth and development, used as herbicides, nano-pesticide, and nano-fertilizers, etc. that can proficiently release their content in required amounts to target cellular organelles in plants. There is an extensive scope of nanotechnology in the agriculture sector and the potential uses of nanoparticles are still unknown, particularly their role and mechanism in plant growth and development (Manzer et al., 2015). Therefore, there is a constant need to develop novel approaches with the support of nanotechnology and nanoparticles that not only increase the crop production and yield, but also minimize the nutrient losses of fertilizers and augment their effective availability to plants.  Most of the chemical fertilizer applied in the field remains un-utilized by plants and gets accumulated in the soil leading to increased soil toxicity; therefore application of nano-fertilizers could help to reduce such problems (DeRosa et al., 2010; Nair et al., 2010). Plants cannot move from their growing place so they cannot escape from environmental stress conditions, that is, salinity, drought, chilling, heat, heavy metals, water-logging, UV radiation, etc. These stresses produce reactive oxygen species (ROS) in plants and cause oxidative burst. Extreme generation of ROS degrades macromolecules and membrane lipids (Foyer and Noctor, 2000), prompts toxicity in cells (Shen et al., 2010; Yadav et al., 2014), as well as conquers growth of plant (Khan et al., 2016).  On responding to heavy metal stress, plants accumulate polyphosphates, metal-chelates and organic acids that results in limiting as well as requisitioning of toxic metals in the plasma membrane. Furthermore, nano particles play an important role in the growth and development of plants, and are also involved in the protection of plants against different abiotic stress conditions (Khan et al., 2017). The nanoparticles imitate the activities of anti-oxidative enzymes and scavenge these ROS (Wei and Wang, 2013). Small size and large surface area of nanoparticles are available to toxic metals for binding, thus condensed the accessibility and toxicity of heavy metals (Worms et al., 2012). Photosynthesis is an important process of plants; however, during abiotic stress conditions, nanoparticles improve photosynthesis rate by conquering oxidative and osmotic stress and defending the photosynthetic system (Siddiqui et al., 2014). Therefore, the response of plants to nanoparticles varies from plant species and type or concentration of nanoparticles. Apart from their beneficial effects several nanoparticles show toxicity symptoms (Begum and Fugetsu, 2012). Exposure of some nanoparticles prompts oxidative stress and causes decline in germination rate, root and shoot length, loss of photosystem and crop yields (Wang et al., 2016), and nutritive value of crop plants (Peralta-Videa et al., 2014). The nanoparticles also alter expression of genes involved cell biosynthesis, cell organization, electron transport, and energy pathways in biotic and abiotic stress responses (Aken, 2015). Nanotechnology has a lot of potential for agriculture by reducing the effects of climate change and enhancing abiotic stress-controlling techniques (Mahakham et al.,2017). The use of biotechnologies at the nanoscale (i.e., nano particles) to defeat abiotic stress constitutes the emerging field of nanobiotechnology (Banerjee et al.,2016; Cheng et al., 2016). Nanotechnology is emerging as a promising technique in tackling the harmful effects of abiotic stresses. Different processes are used to create nanoparticles from metal, metal oxides, or plants. Metals can be converted into nanoparticles using physical, biological, or chemical processes. Reports available indicate that researchers developed the concept of green nanoparticles that can be produced economically by plants (Sharma et al., 2009; Iravani et al., 2011) and the effectiveness and potential of plant-derived NPs are currently being studied to determine whether they can guard crop plants against stresses, and ultimately enhance crop production.
2. HISTORY OF NANO-TECHNOLOGY:
The first mention of the term ‘Nanotechnology’, is usually used by Mr. R. Feynman in 1959 at the session of the American Physical Society. The word “nanotechnology” was introduced for the first time into a scientific world by N. Taniguchi at the international conference on industrial production in Tokyo in 1974.  (Tolochko, N.K., 2000).
3. SYNTHESIS OF NANO-PARTICLES:
Two main approaches are used for the synthesis of nano-materials: 
1. Top-down approaches and 
2. Bottom-up approaches
3.1 Top-down approaches:
 In top-down approaches, bulk materials are divided to produce nanostructured materials. Top-down methods include mechanical milling, laser ablation, etching, sputtering, and electro-explosion. 
3.1.1  Mechanical milling: 
Mechanical milling is a cost effective method for producing materials at the nano-scale level from bulk materials. Mechanical milling is an effective method for producing blends of different phases, and it is helpful in the production of nano-composites. 
3.1.2  Electro-spinning: 
Electro-spinning is one of the simplest top-down methods for the development of nano structured materials. It is generally used to produce nano- fibers from a wide variety of materials, typically polymers (Ostermann et al., 2011). One of the important breakthroughs in electro-spinning was coaxial electro-spinning. In coaxial electro-spinning, the spinneret comprises two coaxial capillaries. In these capillaries, two viscous liquids, or a viscous liquid as the shell and a non-viscous liquid as the core, can be used to form core shell nano-architectures in an electric field. This method has been used for the development of core-shell and hollow polymer, inorganic, organic, and hybrid materials (Kumar et al., 2014). 
3.1.3 Lithography: 
Lithography is a useful tool for developing nano-architectures using a focused beam of light or electrons. Lithography can be divided into two main types: masked lithography and mask less lithography (Pimpin et al., 2012). In masked nanolithography, nano patterns are transferred over a large surface area using a specific mask or template. Masked lithography includes photolithography (Szabo et al., 2013). Nano imprint lithography (Kuo et al., 2003) and soft lithography (Yin et al., 2000). 
3.1.4 Sputtering: 
Sputtering is a process used to produce nano materials via bombarding solid surfaces with high-energy particles such as plasma or gas. Sputtering is considered to be an effective method for producing thin films of nano-materials. 
3.1.5 Laser ablation 
Laser ablation synthesis involves nanoparticle generation using a powerful laser beam that hits the target material (Zhang et al., 2017). During the laser ablation process, the source material or precursor vaporizes due to the high energy of the laser irradiation, resulting in nano-particle formation. Utilizing laser ablation for the generation of noble metal nano-particles can be considered as a green technique, as there is no need for stabilizing agents or other chemicals (Amendola et al., 2009, Su et al., 2018). 
3.2 Bottom-up approaches 
3.2.1. Chemical vapour deposition (CVD): 
Chemical vapour deposition methods have great significance in the generation of carbon-based nano-materials. In CVD, a thin film is formed on the substrate surface via the chemical reaction of vapour-phase precursors.(Jones et al., 2008) A precursor is considered suitable for CVD if it has adequate volatility, high chemical purity, good stability during evaporation, low cost, a non-hazardous nature, and a long shelf-life (Machac et al., 2020). 
3.2.2 The sol–gel method:
 The sol–gel method is a wet chemical technique that is extensively used for the development of nano-materials. This method is used for the development of various kinds of high-quality metal-oxide-based nano-materials (Danks et al., 2016). 
3.2.3 Green/biological synthesis:
 The synthesis of diverse metal nanoparticles utilizing bioactive agents, including plant materials, microbes, and various bio wastes like vegetable waste, fruit peel waste, eggshell, agricultural waste, algae, and so on, is known as “green” or “biological” nanoparticle synthesis (Kumari et al., 2022). 
4. CHARACTERIZATION OF NANO-PARTICLES:
4.1Transmission Electron Microscopy (TEM):
Transmission electron microscopy is an  important nanoparticle characterization techniques that employs a focused electron beam on a thin (typically less than 200 nm) sample to produce micrographs of nanoscale materials (Williams and Carter, 2009). Current electron microscopes can achieve resolutions down to 0.05–0.1 nm by reducing image distortion by aberration correctors, hence providing high-resolution images with atomic resolution (Keefe and Horn, 2004; Dahmeen et al., 2009). TEM also enables studying the crystalline structure of selected microscopic regions of crystalline materials by spatially confining and focusing the impinging beam and detecting the resulting electron diffraction pattern (Zhou and Greer, 2016). 
4.2. Scanning Electron Microscopy (SEM) 
Scanning electron microscope enables imaging the sample surface by detecting secondary electrons emitted from the sample upon interaction with the impinging electron beam (Goldstein et al., 2018). 
4.3 Dynamic Light Scattering (DLS) 
Dynamic light scattering estimates the particle size from the Brownian diffusion of the particles in solution.  A laser is transmitted through a measurement cell containing the particle suspension, and the random thermal motion of the particles causes time-dependent fluctuations of the intensity of the scattered light.  DLS size estimation is based on the determination of the free diffusion coefficient of suspended particles (Pecora et al., 2000).
4.4 Mass Spectrometry:
Mass spectrometry was used originally for the characterization of nano-particle composition by revealing the stoichiometry of their building blocks after digestion and dissolution. With the introduction of soft ionization techniques, such as electro spray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) the separation and detection analyze the samples in the Mega Dalton range, such as ion-mobility spectrometry (IMS), time-of-flight (TOF) analysis, and single particle inductively coupled plasma-mass spectrometry (Bishop et al., 2018).
   5. CLASSIFICATION OF NANO-PARTICLES:
5.1 Carbon-based NPs 
Fullerenes and Carbon Nano Tubes (CNTs) are the two essential sub-categories of carbon-based NPs. They are globular hollow cages, like allotropic forms of carbon, are found in fullerenes. Due to their electrical conductivity, high strength, structure, electron affinity and adaptability, they have sparked significant economic interest. These materials are classified in pentagonal and hexagonal carbon units, each of which is sp2 hybridized (Astefanei et al., 2015). 
5.2. Metal NPs
 These NPs have distinctive electrical properties due to well-known localized surface Plasmon resonance (LSPR) features. Cu, Ag, and Au nanoparticles exhibit a broad absorption band in the visible region of the solar electromagnetic spectrum (Khan et al., 2019). 
5.3. Ceramics NPs 
Ceramic NPs are tiny particles made up of inorganic, non-metallic materials that are heat-treated and cooled in a specific way to give particular properties. Ceramic NPs are used in various applications, including coating, catalysts, and batteries (Sigmund et al., 2006). 
5.4 Lipid-based NPs 
These NPs are helpful in several biological applications because they include lipid moieties (Khan et al., 2019). 
5.5 Semiconductor NPs
 Semiconductor NPs have qualities similar to metals and non-metals. They have unique physical and chemical properties that make them useful for various applications. They can make smaller and faster electronic devices, such as transistors and can be used in bio imaging and cancer therapy (Biju et al., 2008). 
5.6 Polymeric NPs 
Polymeric NPs with a size between 1 and 1,000 nm can have active substances surface-adsorbed onto the polymeric core or entrapped inside the polymeric body. These NPs are often organic, and the term polymer nanoparticle (PNP) (Khan et al., 2019).
6.  MECHANISM OF UPTAKE, TRANSPORT AND TRANSLOCATION OF NANOPARTICLES IN PLANTS:
		The uptake, accumulation and interference of NPs with key metabolic processes in different plant tissues may have positive or negative effects on plants, depending on their dosage, movement, characteristics, and reactivity (Mirzajani et al., 2013). NPs can reach plant tissues through the root system or above-ground parts such as root junctions and wounds. As a carrier, NPs must pass through several physiological barriers until they are taken up by the plant and translocated (Dietz and Herth, 2011). Some NPs have been shown to develop larger pores in the cell wall to enter the cell (Kurepa et al., 2010). NPs can be transferred to other plant tissues via the apoplastic and symplastic pathways ( Ma et al., 2010). Wong et al. (2016) suggested a lipid exchange mechanism for NPs transport into plant cells. NPs-Plant Interaction Pathways NPs may affect plant metabolism by delivering micronutrients (Liu and Lal, 2015), gene regulation (Nair and Chung, 2014), and interfering with several oxidative processes in plants (Hossain et al., 2015, Foyer and Noctor, 2005), (Van Breusegem and Dat, 2006). Several studies have found an increase in lipid peroxidation and DNA damage in plants while interacting with NPs (Saha and Dutta 2017). The increase in ROS levels can cause apoptosis or necrosis, resulting in plant cell death (Faisal et al., 2013). Despite its destructive nature, ROS play a role in biological activities, including stress tolerance (Sharma et al., 2012). The balance between ROS generation and scavenging determines whether ROS has a destructive or signaling function (Sharma et al., 2012). Several studies have demonstrated that plants exposed to NPs produce more antioxidant molecules (Costa and Sharma, 2016). High concentrations of NPs have a negative impact on photosynthesis, resulting in growth retardation or death in plants. (Tripathi et al., 2017).
7. APPLICATIONS OF NPS IN AGRICULTURE INDUSTRY 
		NPs may be used in agriculture for a variety of reasons, including:

7.1 Pesticides and herbicides	
 		        Nanoparticles (NPs) can be used to deliver pesticides and herbicides in a targeted manner, minimizing the potential for environmental contamination (Khan et al., 2019). 

7.2 Fertilizers and plant growth
	     Nano fertilizers offer an opportunity for efficiently improving plant mineral nutrition. Some studies have shown that nano-materials can be more effective than conventional fertilizers, with a controlled release of nutrients increasing the efficiency of plant uptake and potentially reducing adverse environmental outcomes (Khan et al., 2019) NPs used to deliver fertilizers to plants more efficiently, reducing the amount of fertilizer needed, and reducing the risk of nutrient runoff (Kopittke et al., 2019).

8. ROLE OF NANOPARTICLES IN PLANTS
8.1 Improving plant health: Maintain the health of plants and soil by reducing chemical spread and nutrient loss (Rasheed et al., 2022). 
8.2 Increasing crop yield: Boosts crop yield and productivity (Aqeel et al., 2022). 
8.3 Improving nutrient uptake: Absorb nutrients more efficiently by loading nutrients and delivering them to different parts of the plant (Zhang et al., 2024). 
8.4  Improving water uptake: NPs can help plants improve their water uptake (Thabet et al., 2024). 
8.5 Improving grain yield: Increases grain yield and harvest index (Rasheed et al., 2022). 
8.6   Improving disease detection and management: NPs can help with efficient disease detection and management (Thabet et al., 2024). 
8.7  Improving food quality and safety: Improves food quality and safety through innovative packaging materials (Thabet et al., 2024). 
9. INVOLVEMENT OF NANOPARTICLES IN MITIGATION OF DIFFERENT ABIOTIC STRESS
	
9.1. Drought Stress
· Drought is considered a major abiotic stress that can drastically limit crop production (Al-Ashkar et al., 2021). ZnO NPs in soybean seeds under arid conditions increases the germination percentage of the seeds (Sedghi et al., 2013).Cu and Zn NPs in wheat increases their antioxidant enzyme activity and relative moisture content, decreases thio barbituric acid levels, affects reagent precipitation, stabilizes photosynthetic pigment levels in leaves, and reduces the effects of stress (Taran et al., 2017). Foliar usage of TiO2 NPs in wheat is effective to overcome the yield reduction caused by drought stress (Jaberzadeh et al., 2013). SiO2 NPs applied to hawthorn grown under drought stress reduced photosynthesis and stomatal conductivity (Ashkavand et al., 2015). Silicon (Si) NPs have been reported to ameliorate the effects of drought stress in bananas (Khan et al., 2016).
In chickpea plants, the application of Si NPs to the soil reduces the negative effects of drought by increasing the relative moisture content in the plants (Rasheed et al., 2020).
9.2 Salinity Stress:
The use of Ag NPs in salt-stressed cumin plants substantially improves plant salt resistance (Ekhtiyari and Moraghebi, 2012). SiO2 NPs has also been shown to enhance the developmental parameters, chlorophyll content, Pro accumulation, and up-regulation of antioxidant enzyme activities in tomato and squash plants under salinity stress (Siddiqui et al., 2014). Pre-application of Ag NPs to wheat seeds alters antioxidant enzyme activities, reduces oxidative damage, and elevates salt-stress tolerance in such plants (Kashyap et al., 2015).
The use of NPs in wheat not only enhances plant development but also improves germination under salt-stress conditions (Shi et al., 2016). Furthermore, Fe3O4 NPs protects mint plants from oxidative stress caused by increased NaCl content. Use of Ag NPs in Lathyrus sativus under salt stress improves germination percentage, shoot and root length, and enhanced osmotic regulation leads to reduced the negative effects of salinity (Khan et al., 2019). Application of Cu NPs to the soil reduced oxidative stress in wheat and significantly increased plant development and yield (Noman et al., 2020).
9.3 Heavy metal stress
The application of Si NPs on maize plants under arsenic (As) stress reduced the total chlorophyll, carotenoid content, and total protein content; as well as mitigates the adverse effects of As stress on maximum quantum efficiency, photochemical and non-photochemical quenching of FS II (Tripathi et al., 2017). Soil application of TiO2 NPs can effectively limit Cd toxicity by enhancing the physiological parameters and photosynthetic rate in soybean plants (Singh and Lee, 2016). Si NPs can reduce Al toxicity by activating the antioxidant defense mechanism in maize plants (de Sousa et al., 2019). The combined use of foliar ZnO NPs and soil bio-char in plants was found to be more effective against Cd stress (Rizwan et al., 2019). 20 mgL-1 of Fe3O4 NPs reduced Cd accumulation and improved Cd toxicity by increasing nutrient uptake in tomato plants  (Rahmati zadeh et al., 2019). Under HMs stress conditions, the application of NPs in the soil, regulates the expression of HMs transfer genes in plants, increases the activity of plant antioxidant systems, improves physiological functions, and stimulates the production of protective substances such as root secretions, phytochelatin, and organic acids (Zhou et al., 2021).
10. CONCLUSION:
`	Nanoparticles lessen abiotic stress-induced damage by stimulating the defense mechanism of plants. The very small size of nano-particles enable them to easily penetrate as well as control ion channels, which supports germination of seed and plant growth; further more, their large surface area assists high absorption as well as targeted delivery of molecules (Khan et al., 2019). In addition, some reported data illuminated that nanoparticles initiates signaling substance in cytosol as recognized by nanoparticle-specific proteins. Hence, initiates signaling by promoting gene expression and results in improvement of resistance to stress. 
11. FUTURE ASPECTS AND CHALLENGES
Nano-biotechnology has the potential to improve stress tolerance, stress sensing/ detection, targeted delivery and controlled release of agrochemicals, transgenic events, and seed nano-priming in plants (Wu and Li, 2022). Future research on evaluating the biological effects of nano enzymes i.e., Mn3O4 NPs in plants under stress conditions should be on top of our priorities. Understanding how NPs improve plant stress tolerance will enable researchers to design tailor-made nano materials targeting agricultural challenges.
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