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ABSTRACT
Aim: Powdery mildew, incited by Erysiphe polygoni D.C, is a prominent foliar disease of blackgram (Vigna mungo L.) that adversely impacts all developmental stages, culminating in premature defoliation and yield losses reaching up to 70%. The disease initiates as subtle, white powdery flecks on the abaxial surface of lower leaves subsequently proliferating into dense mycelial colonies that envelop aerial plant parts, persisting until physiological maturity. Despite its economic significance, the epidemiology of this pathogen under varying environmental conditions remains inadequately explored. The present investigation aimed to dissect the influence of environmental factors on conidial germination of E. polygoni under controlled in vitro conditions. 
Methodology: A spectrum of carbon sources, temperature regimes and relative humidity (RH) levels were evaluated under invitro conditions at RARS, Lam, Guntur during December, 2024.
Results: Among carbon substrates, 2.0% dextrose demonstrated the highest conidial germination rate (77.33%), markedly surpassing other treatments. This was trailed by glucose (72.67% at 1.5%) and sucrose (72.00% at 1.5% and 70.67% at 2.0%) whereas sterile water yielded the lowest germination (51.33%). Temperature analysis revealed optimal germination (64.67%) at 24°C with significant inhibition at lower extremes—15°C (37.67%) and 18°C (40.67%). Humidity trials underscored 80% RH as the most conducive, achieving 78.33% germination whereas 50% RH exhibited a suppressive effect with germination plummeting to 36.33%. 
Conclusion: This study underscores the intricate interplay of environmental parameters in regulating the infective potential of E. polygoni. 
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1. INTRODUCTION 
Blackgram, a nutritionally enriched pulse crop, is prized for its high phosphoric acid content and adaptability to diverse cropping systems. However, its productivity is severely constrained by biotic stresses, particularly powdery mildew caused by Erysiphe polygoni DC, the most destructive foliar pathogen of this crop. The disease predominantly impacts aerial plant parts, impairing photosynthetic efficiency and inducing physiological disturbances, culminating in yield reductions ranging from 20–40% annually (Chennaveeresh and Kulkarni 2017). Powdery mildew is most prevalent during the flowering and pod formation stages (35–40 days post-sowing) in the Rabi season, thriving under moderate temperatures (20–25°C) and elevated relative humidity (80–90%) (Mishra et al., 2017). The initial infection manifests as white, powdery patches on leaves and other photosynthetic tissues which expand into circular lesions leading to tissue desiccation, distortion and premature leaf loss. Advanced stages of infection accelerate plant senescence, significantly reducing the crop's yield potential. The ectophytic fungus forms specialized haustoria within epidermal cells and produces conidiophores on leaf surfaces which bear hyaline, single-celled conidia in chains (Seethapathy, 2016). Morphologically, primary conidia are lanceolate and apically pointed, while secondary conidia are ellipsoid to cylindrical with rounded or truncate apices. At maturity, cleistothecia develop, releasing asci that contain ascospores which disseminate and initiate subsequent infections (Seethapathy, 2016). Analyzing the epidemiology of powdery mildew in the context of environmental parameters allows for the quantification of relationships between independent climatic factors and disease progression enabling the formulation of predictive autoregressive models. Investigating the pathogen's response to climate variables such as relative humidity and temperature fluctuations provides invaluable insights into its epidemiological dynamics under future climate scenarios. These findings lay the groundwork for precise disease forecasting and the development of site-specific, adaptive management strategies aimed at minimizing crop losses. 
2. MATERIAL AND METHODS
The inoculum of Erysiphe polygoni was collected early in the morning from infected leaves of blackgram exhibiting characteristic symptoms. Powdery mildew colonies on the abaxial leaf surface were gently transferred using a sterile cotton pad and camel’s hairbrush into a buffer solution (pH 7.0) prepared with double-distilled water. The suspension was agitated to ensure uniform dispersion of conidia and adjusted to a final concentration of 5000 conidia ml⁻¹ to promote optimal conidial germination over a 24-hour period (Kumawat et al., 2016).
2.1 EFFECT OF DIFFERENT CONCENTRATIONS OF SUGAR ON CONIDIAL GERMINATION 
Conidial suspensions of Erysiphe polygoni were prepared in sterilized distilled water, while sucrose and dextrose solutions were formulated at concentrations of 0.5%, 1.0%, 1.5% and 2.0% by dissolving the requisite quantities of sugar in 100 ml of distilled water. Distilled water and tap water without sugar served as controls. Sterilized three-depression cavity slides were used with two drops of conidial suspension (5 × 10³ conidia/mL) placed per cavity for each sugar concentration. Three replicates were maintained for each treatment. The inoculated slides were incubated at 24°C for 24 hours. Observations on conidial germination were recorded after 24 hours examining 100 conidia per replication. The percentage of conidial germination was calculated using the formula provided below.
                                                    PG =  
Where,
PG = Per cent germination, A = Number of conidia germinated, B = Total number of conidia examined
2.2 EFFECT OF TEMPERATURE ON CONIDIAL GERMINATION
The influence of temperature on conidial germination was evaluated by placing a drop of conidial suspension on sterilized cavity slides which were supported on glass rods inside Petri dishes. To maintain optimal moisture levels both halves of the Petri dishes were lined with sterilized filter paper sprayed with sterile water. Cavity slides were utilized instead of flat slides to prevent desiccation of the droplets. The experimental protocol adhered to the standards outlined by the Committee on Standardization of Fungicide Tests of the American Phytopathological Society (1943). The conidial suspension, containing approximately 20 conidia per microscopic field under 10×10 magnification was incubated at five temperature levels: 15°C, 18°C, 21°C, 24°C, 27°C and 30°C using a digital B.O.D. incubator. Three replicates were maintained for each temperature treatment. After 24 hours of incubation, the slides were removed, and a drop of lactophenol was immediately applied to arrest further conidial germination. The per cent germination was recorded as mentioned in above 2.1.
2.3 EFFECT OF RELATIVE HUMIDITY ON CONIDIAL GERMINATION
The impact of relative humidity (RH) on the germination of Erysiphe polygoni conidia was evaluated using the previously described method for inoculum preparation. Six distinct RH levels— 50%, 60%, 70%, 80%, 90% and 100%—were established within desiccators by varying the proportions of glycerol and sterilized double-distilled water following the method recommended by Marcoli and Peter, 2005. The desiccators were then incubated in an incubator at 24°C for 24 hours. The per cent germination was recorded as mentioned in above 2.1.

3. RESULTS AND DISCUSSION
3.1 EFFECT OF DIFFERENT CONCENTRATIONS OF SUGAR ON CONIDIAL GERMINATION 
The study investigates the influence of varying sugar concentrations on the germination of fungal conidia with a focus on dextrose and sucrose. The findings reveal a statistically significant impact of sugar solutions on conidial germination rates. The highest germination rate (77.33%) was observed in a 2% dextrose solution which demonstrated significant superiority over other media. This was followed by 1.5% dextrose and 1.5% sucrose solutions which recorded germination rates of 72.67% and 72.00% respectively. Control treatments, including tap water, sterile water and distilled water exhibited comparatively lower germination rates of 57.33%, 51.33% and 56.67%, respectively. Among the sugar solutions tested, the lowest germination rate (58.08%) was associated with 0.5% sucrose (Table 1 and Fig 1). These findings underscore the critical role of carbon sources in fungal physiology, particularly the ability of higher sugar concentrations, such as 2% dextrose, to enhance conidial germination. Conversely, reduced sugar concentrations or water-based treatments result in significantly lower germination rates. This study provides valuable insights into fungal growth dynamics under varying nutritional conditions and highlights the potential implications of carbon source optimization in fungal biology. The findings were in accordance with Jyothi et al. 2014 who reported that maximum germination of conidia was observed at 2.0 per cent dextrose solution (75.50%) at 24h after incubation. Very poor germination was recorded in sterile water compared to tap water. Similarly, Ashwini et al., 2021 reported that After 24 hours of incubation, maximum conidial germination (84.64%) was observed in 1.5 per cent glucose solution which differed significantly with remaining treatments followed by glucose (79.15%) at 2 per cent concentration. Least conidial germination was noticed in distilled water (64.28%).
3.2 EFFECT OF TEMPERATURE ON CONIDIAL GERMINATION
The conidial germination of Erysiphe polygoni was significantly influenced by atmospheric temperature, as evident from the data presented in [Table 2 and Fig-2]. The highest conidial germination rate (64.67%) was observed at 24°C, which differed significantly from the germination rates recorded at other temperature levels. This was followed by germination rates of 57.33% at 21°C and 49.33% at 27°C. The lowest germination rate (37.67%) was recorded at 15°C. Interestingly, 24°C was identified as the optimum temperature for maximal conidial germination of Erysiphe polygoni, as temperatures both below and above this threshold caused a significant reduction in germination. These findings align with the results reported by Kumawat et al. (2016), who observed maximum conidial germination at 24°C. Similarly, Ashwini et al. (2021) documented a peak germination rate of 58.12% at 25°C, which significantly differed from germination rates at other temperatures. Poor germination rates of 8.28% and 20.23% were recorded at lower temperatures of 5°C and 10°C, respectively. This study underscores the pivotal role of temperature as a key abiotic factor affecting the distribution, growth and reproductive capacity of Erysiphe polygoni. Understanding the temperature-dependent dynamics of conidial germination provides critical insights into fungal ecology and its potential management under varying climatic conditions.
3.3 EFFECT OF RELATIVE HUMIDITY ON CONIDIAL GERMINATION
The present study investigated the impact of relative humidity (RH) on conidial germination under controlled conditions at 24°C. The results demonstrated that conidial germination was significantly influenced by RH levels. The maximum germination rate, 78.33% was observed at 80% RH which was statistically superior to all other treatments. The second highest germination rate, 68.33% was recorded at 70% RH followed by 55.00% at 90% RH and 46.67% at 100% RH. These levels varied significantly among themselves. The lowest germination rate, 36.33% occurred at 50% RH (Table 3 and Fig 3). These findings align with the observations of Jyothi et al. (2014), who reported optimal conidial germination of 70.50% at 80% RH, and Vikas and Ratnoo (2011) who found that RH levels between 60% and 80% were conducive for conidial germination of Erysiphe polygoni on fenugreek. The study emphasizes the critical role of relative humidity in facilitating conidial germination which is essential for fungal infection and disease progression. It highlights that 80% RH is optimal for maximum germination providing insights into how environmental conditions influence pathogen activity. This knowledge can be leveraged to develop targeted strategies for managing fungal diseases under varying climatic conditions.
4. CONCLUSION
The study elucidates the critical influence of nutritional and environmental factors on conidial germination. Carbon sources play a pivotal role with sugar concentrations significantly affecting fungal physiology. Temperature is identified as a key abiotic factor, regulating growth and reproduction within specific thresholds. Relative humidity further modulates germination dynamics, reflecting its importance in disease establishment and progression. These findings provide valuable insights into fungal ecology and offer potential applications in disease management. By understanding these interactions, strategies can be developed to mitigate fungal infections under varying climatic and environmental conditions.
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Table 1: Optimization of Sugar Solution Concentrations for Conidial Germination of
               Erysiphe polygoni DC

	S.no
	Treatment
	Concentration (%)
	Conidia Germination (%)

	1
	Sterile Water
	-
	51.33(45.79)f

	2
	Distilled Water
	-
	56.67(48.86)e

	3
	Tap water
	-
	57.33(49.24)e

	4
	Dextrose
	0.5
	60.00(50.79)cde

	5
	Dextrose
	1
	63.67(52.96)c

	6
	Dextrose
	1.5
	72.67(58.51)b

	7
	Dextrose
	2
	77.33(61.60)a

	8
	Sucrose
	0.5
	58.67(50.02)de

	9
	Sucrose
	1
	62.00(51.97)cd

	10
	Sucrose
	1.5
	72.00(58.08)b

	11
	Sucrose
	2
	70.67(57.24)b

	12
	SEm ±
	
	0.87

	13
	CD (P≤ 0.05)
	
	2.55

	14
	CV(%)
	
	2.84





 












     Figure in the parenthesis are Arc sin transformed values

Table 2: Effect of temperature on conidial germination of Erysiphe polygoni DC
	Sno.
	Temperature
	Conidia Germination (%)

	1
	T1 (15˚C)
	37.67(37.88)e

	2
	T2 (18˚C)
	40.67(39.64)de

	3
	T3 (21˚C)
	57.33(49.24)b

	4
	T4 (24˚C)
	64.67(53.56)a

	5
	T5 (27˚C)
	49.33(44.64)c

	6
	T6 (30˚C)
	44.00(41.58)d

	7
	SEm ±
	0.94

	8
	CD (P≤ 0.05)
	2.77

	9
	CV(%)
	3.70













Figure in the parenthesis are Arc sin transformed values

Table 3: Role of Relative Humidity in Regulating Conidial Germination of Erysiphe    polygoni DC 
	Sno.
	Relative Humidity (%)
	Conidia germination (%)

	1
	50
	36.33(37.09)e

	2
	60
	40.67(39.64)de

	3
	70
	68.33(55.78)b

	4
	80
	78.33(62.29)a

	5
	90
	55.00(47.89)c

	6
	100
	46.67(43.11)d

	7
	SEm ±
	1.39

	8
	CD (P≤ 0.05)
	4.09

	9
	CV(%)
	5.08












Figure in the parenthesis are Arc sin transformed values


Fig 1: Optimization of Sugar Solution Concentrations for Conidial Germination of
           Erysiphe polygoni DC





Fig 2: Effect of temperature on conidial germination of Erysiphe polygoni DC



Fig 3: Effect of Relative Humidity on Conidial Germination

REFERENCES
Ashwini R. 2023. Epidemiology and Management of Powdery mildew of okra caused by Erysiphe cichoracearum DC (Doctoral dissertation). M.Sc.(Ag)Thesis, University of Agricultural Sciences, Raichur, India. 
Channaveeresh TS and Kulkarni S. 2017. Survey for the powdery mildew of black gram [Vigna mungo (L.) Hepper] in parts of Northern Karnataka, India. International Journal of Bioassays. 5309-5312.
Committee on Standardization of Fungicide Tests, 1943. Report of the Committee on Standardization of Fungicide Tests. American Phytopathological Society.
Divya JU, Hundekar AR, Lingaraju S and Matiwade VPS. 2015. Epidemiological aspects responsible for the conidial germination of Erysiphe polygoni on green gram. Journal of Progressive Agriculture. 5(2): 37-41.
Kumawat R, Shekhawat KS and Kumawat K. 2016. Factors affecting conidial germination of Erysiphe polygoni causing powdery mildew of fenugreek (Trigonella foenum-graecum L.). International Journal of Agriculture Sciences. 8(14): 1232–1235.
Marcoli P and Peter H. 2005. Influence of relative humidity on fungal spore germination: A method for establishing controlled RH levels using glycerol-water solutions. Journal of Mycological Research. 109(3): 345-350.
Mishra V, Lal A A and Simon S. 2017. Efficacy of botanicals and bio-agents against powdery mildew disease of garden pea (Pisum sativum L.). Journal of Pharmacognosy and Phytochemistry. 6(4): 1125-1126.
Seethapathy P. 2016. Powdery mildew of blackgram. American Phytopathological Society.
Vikas and Ratnoo R.S. 2011. Journal of Plant Disease Sciences. 6(1): 65- 67.
Sterile Water	Distilled Water	Tap water	Dextrose (0.5)	Dextrose (1.0)	Dextrose (1.5)	Dextrose (2.0)	Sucrose (0.5)	Sucrose (1.0)	Sucrose (1.5)	Sucrose (2.0)	51.333333333333336	56.666666666666664	57.333333333333336	60	63.666666666666664	72.666666666666671	77.333333333333329	58.666666666666664	62	72	70.666666666666671	Media


Conidia Germination (%)



15˚C	18˚C	21˚C	24˚C	27˚C	30˚C	37.666666666666664	40.666666666666664	57.333333333333336	64.666666666666671	49.333333333333336	44	 Temperaturre


Conidia Germination (%)



50	60	70	80	90	100	36.333333333333336	40.666666666666664	68.333333333333329	78.333333333333329	55	46.666666666666664	Conidia Germination (%)


Relative Humidity (%)







